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Abstract: We apply two mathematical techniques, specifically, the unified solver approach and the
exp(−ϕ(ξ))-expansion method, for constructing many new solitary waves, such as bright, dark, and
singular soliton solutions via the fractional Biswas–Milovic (FBM) model in the sense of conformable
fractional derivative. These solutions are so important for the explanation of some practical physical
problems. Additionally, we study the stochastic modeling for the fractional Biswas–Milovic, where the
parameter and the fraction parameters are random variables. We consider these parameters via beta
distribution, so the mathematical methods that were used in this paper may be called random methods,
and the exact solutions derived using these methods may be called stochastic process solutions. We also
determined some statistical properties of the stochastic solutions such as the first and second moments.
The proposed techniques are robust and sturdy for solving wide classes of nonlinear fractional order
equations. Finally, some selected solutions are illustrated for some special values of parameters.
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traveling wave solutions; FBM equation; stochastic solutions

MSC: 34A08; 35A20; 35C07; 26A33; 60H15; 35R11

1. Introduction

Nonlinear fractional differential equations (NFDEs) play vital roles in many interesting
applications in chemical engineering, fluid mechanics, biology, electromagnetic theory,
physics, and others [1–4]. These equations are powerful instruments for depicting real-
world problems more accurately than the classical integer-order equations. Thus, the
investigation of solitary wave solutions for NFDEs becomes very useful in scientific research.
Recently, many researches have proposed and developed various numerical and analytical
methods for solving NFDEs. Shah et al. applied the time-fractional Caputo and Caputo–
Fabrizio fractional derivatives to the Chua type nonlinear chaotic system [5]. Alshehry et al.
presented the Laplace residual-power-series method (LRPSM), a powerful new technique
for solving fractional partial differential equations [6].

For the above reasons, recently, several efficient mathematical approaches have been

proposed to obtain solutions of NFDEs, such as the (G
′

G )− expansion method [7], the fractional
sub-equation method [8], the first integral method [9], the tanh-sech method [10], the unified
solver method [11], the exponential function method [12] and others [13–16]. Recently, the
dynamical behavior of the exact traveling wave solutions and their phase portrait analysis
were extensively studied using the dynamical system theory. Zhu et al. [17] studied the
exact traveling wave solutions and bifurcations of the fractional Klein–Gordon equation and
the fractional generalized Hirota–Satsuma coupled KdV system. Specifically, they applied
this technique for the first time to NFDEs. Based on these powerful results, some other
authors followed the same technique, for example, see [18–20]. Li et al. [18] studied the
dynamical behavior of a time–space fractional Phi-4 equation using the bifurcation method of
a planar dynamical system via conformable fractional derivative. Liu et al. [19] investigated the
dynamical behavior and bifurcation of solutions of the traveling wave system for a generalized
(3 + 1)-dimensional time-fractional gCH-KP equation. Li and Han [20] investigated the
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bifurcation and new exact solutions for the (2 + 1)-dimensional conformable time-fractional
Zoomeron equation.

The Biswas–Milovic equation studied in this paper is given by [21]

i(qm)t + a(qm)xx + bF(| q |2)qm = 0, i =
√
−1 , (1)

where x and t are two independent variables, and q is a complex valued function. The
coefficients a and b are constants with ab > 0, and m ≥ 1 is a parameter. Moreover, F is
a real-valued algebraic function, which is necessary to have smoothness of the complex
function F(| q |2) : C→ C. Equation (1) is not integrable, in general. The non-integrability
is not necessarily related to the nonlinear term in it. This equation emerges in the study
of long-distance optical communications and all-optical ultra fast switching devices. Fur-
thermore, this equation has been indicated to manage the evolution of a wave packet in
a weakly nonlinear and dispersive medium and has eventuated diverse fields, such as
plasma, nonlinear optics, and water waves.

To highlight numerous complex phenomena in various fields of nature, such as biology,
economy, engineering, chemical engineering, signal processing, solid state physics, and
electromagnetic theory, it is crucial to take into account random problem effects. Practical
considerations require that the stochastic type perturbations be considered. More focus has
been placed in recent years on the impact of noise on the spread of these solton solutions.
Therefore, we must take into consideration the stochastic effect.

The novelties of this paper are mainly exhibited in four aspects. First, we present a
general form of a new fractional Biswas–Milovic equation (FBM). Second, we use a new
method, the so-called unified solver method [22], in order to solve the FBM. Many other
nonlinear models developing in applied science and new physics can be solved using the
solver as a box solver. In comparison to previous methods, this solver has some advantages,
such as avoiding difficult and time-consuming calculations and presenting important
solutions explicitly. Moreover, we use the exp-function method [23,24] in order to solve the
proposed equation. Indeed, this method presents powerful solutions in vital applications in
natural science [25,26]. Third, we obtain new types of exact analytical solutions. Comparing
our results with other results, one can see that our results are new and more extensive.
Fourth, we study the stochastic modeling for the fractional Biswas–Milovic through the
parameter where the fraction parameters are random variables. Thus, we must discuss our
fractional problem under beta distribution [27].

The remainder of this paper is arranged as follows. In Section 2, some preliminaries,
notions of local fractional calculus, and the beta random distribution method are introduced.
Section 3 presents the description of the two methods applied in this work, namely, the
unified solver method and the exp-function method. In Section 4, some exact solutions of
the fractional BM equation are presented, using the two methods. Stochastic study with
beta distribution is studied in Section 5. Conclusions are in Section 6.

2. Preliminaries

Here, we give some fundamental notions of fractional calculus theory, which turn
out to be very useful to complete this article in a unified way. There are various types
of fractional derivatives [2], such as Grünwald–Letnikov, Caputo local fractional deriva-
tive [28], Abel–Riemann fractional derivative [29] and He’s fractional derivative [15,16].
Khalil et al. [30] presented a new vital definition of fractional derivatives, the so-called
conformable fractional derivative. This definition preserves various advantages that cannot
be satisfied by the known fractional derivatives, such as Rolle’s theorem, mean value
theorem, the product of two functions, and the chain rule [31]. The conformable fractional
derivative has attracted important attention due to its simplicity. Thus, many studies has
been done on it by many scientists. First, we introduce some properties of the conformable
fractional derivative. Second, we give the beta random distribution.
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Definition 1 ([30]). Let a function φ : (0, ∞)→ R, then the conformable fraction derivative of φ
of order α is

Dα
t (φ)(t) = lim

ι→0

φ(t + ιt1−α)− φ(t)
ι

, t > 0, 0 < α ≤ 1.

The conformable fractional derivative satisfies:

(i) Dα
t (a χ + b φ) = aDα

t (χ) + bDα
t (φ), a, b ∈ R,

(ii) Dα
t (t

n) = ntn−α, n ∈ R,
(iii) Dα

t (χ φ) = χ Dα
t (φ) + φ Dα

t (χ),

(vi) Dα
t (

χ
φ ) =

φ Dα
t (χ)−χ Dα

t (φ)

φ2 ,

(v) If φ is differentiable, thus Dα
t (φ)(t) = t1−α dφ

dt .

Theorem 1 ([30]). Let χ, φ : (0, ∞)→ R be differentiable and also α-differentiable, then:

Dα
t (χ ◦ φ)(t) = t1−αφ′(t)ψ′(φ(t)). (2)

Beta Distribution

If we have a real random variable X defined on the probability space (Ω, F, P) that has
the probability density function f (x), we can defined the statistical moments as follows:

Remark 1. 1. The first moment:

E[X] =
∫ ∞

−∞
x f (x)dx (3)

2. The second moment:

E
[

X2
]
=
∫ ∞

−∞
x2 f (x)dx. (4)

Therefore, if X has a beta distribution, then the probability density function defined as

f (x) =
(x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1 a ≤ x ≤ b; α, β > 0

is called a beta random variable. Here, α and β are the shape parameters, a and b are the
lower and upper bounds, respectively, of the distribution. In addition, B(α, β) is the beta
function, and if we have a = 0 and b = 1, it is called the standard beta distribution.

Additionally, E[X] = α
α+β , where, E[ ] denotes the expectation value operator. In this

work, we will deal with the standard beta distribution.
Any NFDEs in two independent variables x and t can be expressed as follows:

Λ(φ, Dα
t φ, Dα

xφ, Dα
t Dα

xφ, Dα
x Dα

xφ, ...) = 0, (5)

1 ≥ α > 0.
Utilizing the traveling wave transformation

φ(x, t) = Φ(ξ), ξ =
xα

α
+ w

tα

α
(6)

converts Equation (5) to the following ODE:

Λ(Φ, Φ′, Φ′′, Φ′′′, ...) = 0. (7)

If we have any NFDEs in two independent variables x and t, then we develop it only
in the beta random distribution because the range of the beta random variable is 1 ≥ α > 0.
Therefore, the random case of (5) is given when α has a beta random distribution. We use
the beta random distribution traveling wave transformation (6), where k, λ are non zero
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constants and α has beta random distribution. Therefore, we can complete the beta random
distribution methods as in the deterministic α where 0 < α ≤ 1. In this paper, the beta
random distribution method is considered through two methods. When we use the beta
random variable as in the random problem itself or when we use beta random distribution
traveling wave transformation, the proposed methods, namely the unified solver and the
exp(−ϕ(ξ))-expansion methods, are called random methods. Additionally, the solutions
produced by these random methods are stochastic process solutions.

3. Description of the Methods

We briefly give the unified solver [22] and the exp[−ϕ(ξ)]-expansion techniques [23,24].
Various NFDEs (5) reduce to the following ODE:

Λ1 Φ′′ + Λ2 Φ3 + Λ3 Φ = 0, (8)

where Λ1, Λ2, and Λ3 are constants that depend on the proposed equation’s constants and
the wave transformations’ speed.

3.1. Unified Solver Method

In light of the unified solver [22], the solutions of Equation (8) are:

(i) Rational solutions: (when Λ3 = 0)

Φ1,2(x, t) =

(
∓

√
−Λ2

2Λ1
(ξ + ε)

)−1

. (9)

(ii) Trigonometric solutions: (when Λ3
Λ1

< 0)

Φ3,4(x, t) = ±

√
Λ3

Λ2
tan

(√
−Λ3

2Λ1
(η + ε)

)
(10)

and

Φ5,6(x, t) = ±

√
Λ3

Λ2
cot

(√
−Λ3

2Λ1
(η + ε)

)
. (11)

(iii) Hyperbolic solutions: (when Λ3
Λ1

> 0)

Φ7,8(x, t) = ±

√
−Λ3

Λ2
tanh

(√
Λ3

2Λ1
(η + ε)

)
(12)

and

Φ9,10(x, t) = ±

√
−Λ3

Λ2
coth

(√
Λ3

2Λ1
(η + ε)

)
. (13)

Here, ε is an arbitrary constant.

3.2. The Exp[−ϕ(ξ)]-Expansion Method

In view of the exp[−ϕ(ξ)]-expansion approach [23,24], the solution of Equation (8) is
rewritten in the following polynomial form of exp[−ϕ(ξ)]:

Φ(ξ) = B0 + B1exp[−ϕ(ξ)] (14)

B0 and B1 6= 0 are constants and ϕ(ξ) satisfies

ϕ′(ξ) = exp[−ϕ(ξ)] + ν exp[ϕ(ξ)] + λ . (15)
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The solutions of Equation (15) are:

1. At λ2 − 4ν > 0 & ν 6= 0,

ϕ(ξ) = ln

−√λ2 − 4ν tanh
(√

λ2−4ν
2 (ξ + C)

)
− λ

2ν

, (16)

2. At λ2 − 4ν < 0 & ν 6= 0,

ϕ(ξ) = ln

√4ν− λ2 tan
(√

4ν−λ2

2 (ξ + C)
)
− λ

2ν

, (17)

3. At λ2 − 4ν > 0 & λ 6= 0 & ν = 0,

ϕ(ξ) = −ln
(

λ

exp[λ(ξ + C)]− 1

)
, (18)

4. At λ2 − 4ν = 0 & λ 6= 0 & ν 6= 0,

ϕ(ξ) = ln
(
−2(λ(ξ + C) + 2)

λ2(ξ + C)

)
, (19)

5. At λ2 − 4ν = 0 & λ = 0&ν = 0,

ϕ(ξ) = ln(ξ + C) . (20)

Here, C is an arbitrary constant.
Setting Equation (14) and Equation (15) into Equation (8) and adding all phrases with

the same power exp[−mϕ(ξ)], m = 0, 1, 2, 3. Then, putting them with zero yields algebraic
equations. Solving these equations provides the values of B0, B1. Then, we obtain the
solutions (14) that produce the exact solutions of Equation (7).

4. Application

In this section, we are concerned with the fractional type of BM equation [32]

iDα
t qm + γD2α

x qm + δ | q |2 qm = 0 , (21)

where 1 ≥ α > 0, m ≥ 1. There are many approaches that have been applied to provide
solutions for Equation (21), such as the four trigonometric analytical methods [33], Adomian
decomposition method [34], the extended fractional sinh–Gordon equation expansion
approach [32], etc. Indeed, most standard papers considered the same methods to study
the fractional differential equations in a deterministic sense. In contrast to these papers, we
considered the stochastic modeling for the fractional Biswas–Milovic through the parameter,
and the fraction parameters are random variables. In probability theory, this means that the
only random distribution for these parameters is the beta distribution, so the mathematical
methods used in this paper may be called random methods, and the exact solutions found
using these methods may be called stochastic process solutions. In addition, we determined
some of statistical properties of the stochastic solutions as the first and the second moments.
To perform this procedure, we apply the unified solver method and the exp-function
method. We consider the traveling wave transformation:

q(x, t) = u(ξ)eiψ, ξ =
xα

α
− ν

tα

α
, ψ = −k

xα

α
+ w

tα

α
+ θ, (22)
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where ν, k, θ, and w denote the speed of the wave, frequency, phase constant, and wave
number, respectively. Substituting (22) into (21) gives [32]

a u′′ + bu3 − (w + ak2) u = 0 (23)

and
ν = −2 a k. (24)

Now we apply the unified solver method and exp-function methods for Equation (24).

4.1. On Solving Equation (21) Using the Unified Solver Method

In view of the unified solver approach introduced in [22], the solutions for
Equation (24) are:

4.1.1. Rational Solutions

The rational solution of Equation (24) is

u1(x, t) =

(
∓
√
−b
2a

(
xα

α
− ν

tα

α
+ µ

))−1

. (25)

Using Equations (22) and (25), the solutions of Equation (21) take the form:

q1(x, t) = ei
(
−k xα

α +w tα
α +θ

) (
∓
√
−b
2a

(
xα

α
− ν

tα

α
+ µ

))−1

. (26)

4.1.2. Trigonometric Solutions

The trigonometric solutions of Equation (24) are

u2,3(x, t) = ±
√
−(w + ak2)

b
tan

(√
(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
(27)

and

u4,5(x, t) = ±
√
−(w + ak2)

b
cot

(√
(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
. (28)

Using Equations (22), (28) and (43), the solutions of Equation (21) take the forms:

q2,3(x, t) = ±
√
−(w + ak2)

b
ei
(
−k xα

α +w tα
α +θ

)
tan

(√
(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
(29)

and

q4,5(x, t) = ±
√
−(w + ak2)

b
ei
(
−k xα

α +w tα
α +θ

)
cot

(√
(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
. (30)

4.1.3. Hyperbolic Solutions

The hyperbolic solutions of Equation (24) are

u6,7(x, t) = ±
√

w + ak2

b
tanh

(√
−(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
(31)

and
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u8,9(x, t) = ±
√

w + ak2

b
coth

(√
−(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
. (32)

Using Equations (22), (31) and (32), the solutions of Equation (21) take the forms:

q6,7(x, t) = ±
√

w + ak2

b
ei
(
−k xα

α +w tα
α +θ

)
tanh

(√
−(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
(33)

and

q8,9(x, t) = ±
√

w + ak2

b
ei
(
−k xα

α +w tα
α +θ

)
coth

(√
−(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
. (34)

4.2. On Solving Equation (21) Using the Exp(−ϕ(ξ))-Expansion Method

In view of the exp(−ϕ(ξ))-expansion technique [23,24], the solutions of Equation (24)
have the following solution:

u = A0 + A1exp(−ϕ), (35)

where A0 and A1 are constants to be determined, such that A1 6= 0 . It is easy to see that

u′′ = A1

(
2 exp(−3ϕ) + 3λ exp(−2ϕ) + νλ + 2ν exp(−ϕ) + λ2 exp(−ϕ)

)
, (36)

u3 = A3
1 exp(−3ϕ) + 3A0 A2

1 exp(−2ϕ) + 3A2
0 A1 exp(−ϕ) + A3

0 (37)

Substituting u, u′′, u3 into Equation (24) and then equating the coefficients of exp(−ϕ)
to zero gives a system of algebraic equations. Solving this system yields

u(ξ) = ±
√
−c
2b

(λ + 2exp(−ϕ(ξ))) . (38)

Hence, the solutions of Equation (24) are:
Case 1. At λ2 − 4ν > 0, ν 6= 0,

ũ1,2(ξ) = ±
√
−c
2b

1− 4ν
√

λ2 − 4ν tanh
(√

λ2−4ν
2

( xα

α − ν tα

α + K
))

+ λ

 , (39)

ũ3,4(ξ) = ±
√
−c
2b

1− 4ν
√

λ2 − 4ν coth
(√

λ2−4ν
2

( xα

α − ν tα

α + K
))

+ λ

 . (40)

Using Equations (22), (39) and (40), the solutions of Equation (21) take the forms:

q̃1,2(ξ) = ±
√
−c
2b

1− 4ν
√

λ2 − 4ν ei(−k xα
α +w tα

α +θ) tanh
(√

λ2−4ν
2

( xα

α − ν tα

α + K
))

+ λ

 , (41)

q̃3,4(ξ) = ±
√
−c
2b

1− 4ν
√

λ2 − 4ν ei(−k xα
α +w tα

α +θ) coth
(√

λ2−4ν
2

( xα

α − ν tα

α + K
))

+ λ

 . (42)
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Case 2. At λ2 − 4ν < 0, ν 6= 0,

ũ5,6(ξ) = ±
√
−c
2b

1 +
4ν

√
4ν− λ2 tan

(√
4ν−λ2

2
( xα

α − ν tα

α + K
))
− λ

 , (43)

ũ7,8(ξ) = ±
√
−c
2b

1 +
4ν

√
4ν− λ2 cot

(√
4ν−λ2

2
( xα

α − ν tα

α + K
))
− λ

 . (44)

Using Equations (22), (43) and (44), the solutions of Equation (21) take the forms:

q̃5,6(ξ) = ±
√
−c
2b

1 +
4ν

√
4ν− λ2 ei(−k xα

α +w tα
α +θ) tan

(√
4ν−λ2

2
( xα

α − ν tα

α + K
))
− λ

 , (45)

q̃7,8(ξ) = ±
√
−c
2b

1 +
4ν

√
4ν− λ2 ei(−k xα

α +w tα
α +θ) cot

(√
4ν−λ2

2
( xα

α − ν tα

α + K
))
− λ

 . (46)

Case 3. At λ2 − 4ν > 0, ν = 0, λ 6= 0

ũ9,10(ξ) = ±
√
−c
2b

(
1 +

2λ

exp
(
λ
( xα

α − ν tα

α + K
))
− 1

)
. (47)

Using Equations (22) and (47), the solutions of Equation (21) take the forms:

q̃9,10(ξ) = ±
√
−c
2b

ei
(
−k xα

α +w tα
α +θ

) (
1 +

2λ

exp
(
λ
( xα

α − ν tα

α + K
))
− 1

)
. (48)

5. Discussion in Some Stochastic Cases under Beta Random Distribution

In this section, we consider Equation (21) in a stochastic sense, where α is a beta
random variable. Namely, we study the statistical properties for the stochastic processes
solutions as follows:

5.1. Stochastic Solutions of (21) via the Unified Solver Method

Here, we can write the stochastic solutions of problem (21) by using the unified solver
method to show the statistical properties of the stochastic processes solutions. As in the
deterministic case, we find the random relations as follows:

5.1.1. Rational Stochastic Solutions

sq1(x, t) = ei
(
−k xα

α +w tα
α +θ

) (
∓
√
−b
2a

(
xα

α
− ν

tα

α
+ µ

))−1

. (49)

The mean value E[sq1] and the second moment E[sq2
1] are depicted in Figure 1a,b,

respectively.
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(a)

(b)

Figure 1. The first moment for the random solution sq1 in (49); α is a beta random variable and
−2 ≤ t, x ≤ 2.

5.1.2. Trigonometric Stochastic Solutions

sq2,3(x, t) = ±
√
−(w + ak2)

b
ei
(
−k xα

α +w tα
α +θ

)
tan

(√
(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
(50)

The mean value E[sq3] and the second moment E[sq2
3] are depicted in Figure 2a,b,

respectively.
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(a)

(b)

Figure 2. The first and second moments for the random solution sq3 in (50); α is a beta distribution
random variable and −2 ≤ t, x ≤ 2.

sq4,5(x, t) = ±
√
−(w + ak2)

b
ei
(
−k xα

α +w tα
α +θ

)
cot

(√
(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
. (51)

The mean value E[sq5] and the second moment E[sq2
5] are depicted in Figure 3a,b,

respectively.
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(a)

(b)

Figure 3. The first and second moments for the random solution sq5 in (51); α is a beta random
variable and −2 ≤ t, x ≤ 2.

5.1.3. Hyperbolic Stochastic Solutions

sq6,7(x, t) = ±
√

w + ak2

b
ei
(
−k xα

α +w tα
α +θ

)
tanh

(√
−(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
(52)

The mean value E[sq7] and the second moment E[sq2
7] are depicted in Figure 4a,b,

respectively.
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(a)

(b)

Figure 4. The first and second moments for the random solution sq7 in (52); α is a beta random
variable and −2 ≤ t, x ≤ 2.

And

sq8,9(x, t) = ±
√

w + ak2

b
ei
(
−k xα

α +w tα
α +θ

)
coth

(√
−(w + ak2)

2a

(
xα

α
− ν

tα

α
+ µ

))
. (53)

The mean value E[sq9] and the second moment E[sq2
9] are depicted in Figure 5a,b,

respectively.
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(a)

(b)

Figure 5. The first and second moments for the random solution sq9 in (53); α is a beta random
variable and −2 ≤ t, x ≤ 2.

5.2. Stochastic Solutions of (21) via the Exp(−ϕ(ξ))-Expansion Method

Here, we can write the stochastic solutions of problem (21) using the exp(−ϕ(ξ))-
expansion method and try to find the statistical properties of the stochastic processes
solutions. As in the deterministic case, we can find the random relations as follows:

Case 1. At λ2 − 4ν > 0, ν 6= 0,

s̃q1,2(ξ) = ±
√
−c
2b

1− 4ν
√

λ2 − 4ν ei(−k xα
α +w tα

α +θ) tanh
(√

λ2−4ν
2

( xα

α − ν tα

α + K
))

+ λ

 , (54)
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where α is a beta random variable.
The mean value E[s̃q1] and the second moment E

[
s̃q2

1
]

are depicted in Figure 6a,b,
respectively.

(a)

(b)

Figure 6. The first and second moments for the random solution s̃q1 in (54); α is a beta random variable
and −2 ≤ t, x ≤ 2 , the first moment is on the upper part and the second moment is on the lower part.

Case 2. At λ2 − 4ν < 0, ν 6= 0,

s̃q3,4(ξ) = ±
√
−c
2b

1− 4ν
√

λ2 − 4ν ei(−k xα
α +w tα

α +θ) coth
(√

λ2−4ν
2

( xα

α − ν tα

α + K
))

+ λ

 , (55)

where α is a beta random distribution.
The mean value E[s̃q3] and the second moment E

[
s̃q2

3
]

are depicted in Figure 7a,b,
respectively.
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(a)

(b)

Figure 7. The first and second moments for the random solution s̃q3 in (55); α is a beta distribution
random variable and −2 ≤ t, x ≤ 2.

Case 3. At λ2 − 4ν > 0, ν = 0, λ 6= 0

s̃q5,6(ξ) = ±
√
−c
2b

1 +
4ν

√
4ν− λ2 ei(−k xα

α +w tα
α +θ) tan

(√
4ν−λ2

2
( xα

α − ν tα

α + K
))
− λ

 , (56)

where α is a beta random variable.
The mean value E[s̃q5] and the second moment E

[
s̃q2

5
]

are depicted in Figure 8a,b,
respectively.

And

s̃q7,8(ξ) = ±
√
−c
2b

1 +
4ν

√
4ν− λ2 ei(−k xα

α +w tα
α +θ) tan

(√
4ν−λ2

2
( xα

α − ν tα

α + K
))
− λ

 . (57)
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where α is a beta random variable.
The mean value E[s̃q7] and the second moment E

[
s̃q2

7
]

are depicted in Figure 9a,b,
respectively.

s̃q9,10(ξ) = ±
√
−c
2b

ei
(
−k xα

α +w tα
α +θ

) (
1 +

2λ

exp
(
λ
( xα

α − ν tα

α + K
))
− 1

)
, (58)

where α is a beta random variable. The mean value E[s̃q9] and the second moment E
[
s̃q2

9
]

are depicted in Figure 10a,b, respectively.

5.3. The Influence of Randomness

Here, we show the effect of the beta random variable on the behavior of solutions.
We present a number of graphs for various values of beta distribution parameters. As
illustrated in Figures 1, 5 and 7, some are more dispersive than the others. Additionally,
Figures 8 and 9 show a near stable solution, whereas in Figures 4, 6 and 10, the surface
becomes more planar after minor adjustments.

(a)

(b)

Figure 8. The first and second moments for the random solution s̃q5 in (56); α is a beta random
variable and −2 ≤ t, x ≤ 2.
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(a)

(b)

Figure 9. The first and second moments for the random solution s̃q7 in (57); α is a beta distribution
random variable and −2 ≤ t, x ≤ 2.

(a)

Figure 10. Cont.
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(b)

Figure 10. The first and second moments for the random solution s̃q9 in (58); α is a beta distribution
random variable and −2 ≤ t, x ≤ 2.

6. Conclusions

We have successfully applied the unified solver and the exp(−ϕ(ξ))-expansion ap-
proaches to extract some solitary waves through deterministic and beta distribution cases
for the (stochastic) fractional Biswas–Milovic (FBM) equation in the sense of conformable
fractional derivatives. Specifically, some new random solutions for the FBM equation have
successfully been obtained. These solutions may have important significance for the expla-
nation of some practical physical phenomena. The graphs of some solutions are illustrated
for suitable coefficients. Additionally, the first and the second moments are obtained with
graphical representation for the beta distribution case. This method can be applied for
other stochastic NFDEs with complex valued solutions appearing in applied sciences.
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