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Abstract: An oscillating second-grade fluid through a rectangular cross duct is studied. A 
traditional integer time derivative in the kinematic tensors is substituted by a fractional operator 
that considers the memory characteristics. To treat the fractional governing equation, an 
analytical method was obtained. To analyze the impact of the parameters more intuitively, the 
difference method was ap-plied to determine the numerical expression and draw with the help 
of computer simulation. To reduce the cost of the amount of computation and storage, a fast 
scheme was proposed, one which can greatly improve the calculation speed. To verify the 
correctness of the difference scheme, the contrast between the numerical expression and the exact 
expression—constructed by introducing a source term—was given and the superiority of the fast 
scheme is discussed. Furthermore, the influ-ences of the involved parameters, including the 
parameter of retardation time, fractional parameter, magnetic parameter, and oscillatory frequency 
parameter, on the distributions of velocity and shear force at the wall surface with oscillatory flow 
are analyzed in detail. 

Keywords: second-grade fluid; rectangular duct; constitution relationship; fractional derivative; 
fast algorithms 

1. Introduction
The flow of fluid has widespread applications, including in aerospace, biomedicine, 

oil exploitation etc. The classical fluid model is the Newtonian fluid in which the stress 
tensor and the kinematic tensor have a linear relationship. It has a limitation in so far that 
it can only describe most pure liquids such as water and alcohol. In addition to the fluids 
listed, most fluids are non-Newtonian whose characteristics have many properties that 
different from those of Newtonian ones [1]. Studying the flow mechanism has great sig-
nificance. There are many types of non-Newtonian fluids and this paper studies the sec-
ond-grade fluid [2–4], in which the shear force is characterized by the stretching tensor 
and the Rivlin–Ericksen tensors. 

Due to the special description of the constitution relationship, the second-grade fluid 
has its own unique properties. In order to better discover its flow mechanism, the usual 
method is to consider the flow through simple models. The common categories for this 
include the flow on semi-infinite plates [5,6], two parallel infinitely long plates [7], the 
flow in pipes or ducts [8], or the flow in a circular tube [9]. Non-Newtonian fluids in rec-
tangular channels have gained special interest for the engineering applications such as in 
magnetohydrodynamic generators and marine mechanical equipment, interest which has 
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helped us to study the flow characteristics in depth [10]. Studying second-grade fluid in a 
rectangular cross duct has important research significance and application value. Erdoğan 
and İmrak [11] were the first scholars to study the unsteady motion of second-grade fluid 
through a rectangular cross duct with the influences of the side walls. It has been further 
studied by many scholars. Considering heat transfer with relaxation time, Alamri et al. 
[12] analyzed particle diffusion in the flow of second-grade fluid and discussed the effects 
of the involved parameters on the profile graphically. Bernard [13] studied a three-dimen-
sional second-grade fluid with a tangential boundary condition in a polyhedron. By com-
paring with the stress of the Newtonian fluid at the initial time, Erdoğan and İmrak [14] 
considered the motion properties of second-grade fluid driven by the impulsive motion 
or sudden pressure gradient. The comparison of the stress at the start time between the 
Newtonian fluid and the second-grade fluid was discussed. Furthermore, the influence of 
the magnetic field has important research significance. It has been applied to the Maxwell 
fluid [15], Oldroyd-B fluid [16] et al., but it has fewer studies on the second-grade fluid. 

Besides, many situations consider the steady-state motion of the second-grade fluid 
for simplicity. However, for the practical situation, the velocity field produced by the flow 
should vary with time due to the complexity of the fluid flow. The unsteady state has 
more research significance for the second-grade fluid with the condition that the time de-
rivative in the constitutional relationship is integral to considering the local characteris-
tics. With further research, it has been found that the fractional model has gained support 
for its memory characteristic [17]. At present, the fractional operators have been applied 
in many viscoelastic fluids, such as the Maxwell model [18], Oldroyd-B model [19], Burg-
ers’ model [20] et al. For the fractional second-grade fluid, the constitution relationship 
has a similar form with the viscoelastic fluid, namely, they all have the fractional material 
derivative term. The application of fractional operator on the motion of second-grade fluid 
has been analyzed by Tan and Xu [21], Bazhlekova et al. [22], Kan and Wang [23], Li et al. 
[24] et al. For flow driven by a special form of oscillatory pressure, it has been widely 
applied in the motions in an isosceles right triangle tube with Maxwell fluid [25], in a 
straight rectangular duct with the second-grade fluid [26], in a cylindrical domain with 
the Oldroyd-B fluid [27], and in cylindrical domains with the fractional Burgers fluid [28]. 
To the best of the authors’ knowledge, the two-dimensional flow of second-grade fluid in 
rectangular ducts driven by oscillatory pressure and considering a magnetic field has not 
been considered in the literature so far. 

There are many methods to solve the governing equation [29–31]. For the treatment 
of the fractional second-grade fluid, the traditional method is to apply the integral trans-
form method to obtain an analytical solution [27,32–33], with the paradox that the princi-
ple of causality causing the initial conditions is a non-rigorous enforcement. In other 
words, these treatments for the start-up flow proposed by Christov [34,35] are incorrect. 
There are many numerical methods [36] that can solve the fractional governing equation 
and the numerical difference method has been applied to solve the corresponding math-
ematical problem correctly. 

The governing equation subject to the fractional second-grade constitutive relation-
ship is solved numerically. The difference is that the integer term has mature calculation 
methods, while the key is to treat the fractional derivative. The classical method is to 
choose the L1 scheme [37] to approximate it, though it is limited by the huge amount of 
computation and storage required for long-term numerical simulation, since the Caputo 
derivative depends on historical information. This is an urgent problem to be solved at 
present. Using exponential functions to approximate the Abel kernel function of Caputo 
derivatives, the fast algorithm [38] has been developed. The main idea is to reduce the 
number of iterations by constructing a recurrent relationship. At each time step, the con-

volution containing the exponential kernel is calculated in ( )1Ο
 time. Then the compu-

tational amount ( )2NΟ
 and storage ( )NΟ

 for the direct L1-algorithm reduces to 



Fractal Fract. 2022, 6, 666 3 of 27 
 

 

( )2logN NΟ
 and ( )2log NΟ

 for the fast algorithm, respectively. This has been ap-
plied to treat fractional diffusion models [39], multi-term fractional sub-diffusion models 
[40], wave models [41] and the variable coefficient fractional diffusion wave models [42]. 
According to the numerical results, the analyses are discussed and are detailed by graph-
ical illustration. 

The paper’s outline is given as follows. The derivation of the mathematical model of 
the second-grade fluid over a rectangular duct with an infinite length and which is caused 
by a various pressure gradient is given in Section 2. The exact expression for describing 
the second-grade fluid is deduced in Section 3. Section 4 gives the numerical difference 
scheme of the formulated governing equation and the analyses of the solvability, stability 
and convergence are proven in Section 5. Section 6 gives the fast evolution of the differ-
ence scheme. Section 7 gives the comparison between the numerical expression and the 
exact expression. Furthermore, the influences of the relevant parameters on the transfer 
mechanism of the velocity field and the shear force at the wall surface are also analyzed. 
The conclusions are summarized in Section 8. 

2. The Derivation of the Mathematical Model 
Consider the motions of an incompressible second-grade fluid. The laminar flow in 

a straight duct with infinite length and the rectangular cross-section is considered and the 
flow is controlled by pressure gradient with time/space oscillations. As shown in Figure 
1, the width and height of the rectangular section are 2a  and 2b . The center in the 
cross-section is defined as the origin and the boundaries along x  direction and y  di-

rection are at the positions x a= ±  and y b= ±  while [ )0,z∈ +∞
 along z  direc-

tion. For simplicity, the body forces are neglected in this paper. 

 
Figure 1. The motion of second-grade fluid in a rectangular cross duct. 

The continuity equation is given as 

0V∇ ⋅ = , (1)

where ∇  denotes the gradient operator. 
As a development, for the fractional second-grade fluid when considering the 

memory characteristics [21], the stress tensor τ  has the following expression 
2

1 1 2 2 1A A Aτ μ α α= + + , (2)

where μ  refers to the dynamic viscosity, 1α  and 2α  denote the material moduli, 1A  

and 2A  are the kinematic tensors with the expression as 

( )1
TA V V= ∇ + ∇

 and ( )2 1 1 1
T

tA D A A V V Aα= + ∇ + ∇
, (3)
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where tD
α

 denotes the Riemann–Liouville’s fractional operator of order α  ( 0 1a< < ) 

[43], the definition for a function ( )f t  defined on [ ]1 2,t t
 is given as 

( ) ( )
( )

( )1

1
1

t

t t

fdD f t d
dt t

α
α

ξ
ξ

α ξ

 
=  

 Γ − − 


. 
(4)

For considering the Clausius–Duhem inequality and assuming that the minimum at 
equilibrium for the Helmholtz free energy is [44,45], the material constants satisfy the fol-
lowing restrictions 

0μ ≥ , 1 0α ≥  and 1 2 0α α+ = . (5)

Applying the periodic pressure gradient into the z -direction, the motion of second-
grade fluid in the direction is parallel to the axial coordinate with an oscillating form. The 
velocity field is assumed as 

( )0,0, , ,
T

V w x y t=    , 
(6)

where ( ), ,w x y t
 refers to the velocity in the z -direction. For this consideration, it is 

simple to find that the continuity Equation (1) automatically satisfies consideration of the 
velocity field (6). 

Considering the effect of an electromagnetic field, the motion equation for describing 
the second-grade fluid is denoted as follows 

2
0 0tDV p B Vρ τ σ= −∇ +∇⋅ − , (7)

where V  corresponds to the velocity vector, ρ  refers to the fluid density, p  denotes 

the hydrostatic pressure, the operator tD  refers to the material derivative, 0σ  refers to 

electrical conductivity and 0B  is the magnetic field. 
Combining the expansion of Equation (2) (see the Appendix A) with Equation (7), 

the fractional governing equation can be derived as 

( )
2 2

2 2
11 t

w w w pD Mw
t x y z

αν λ
ρ

 ∂ ∂ ∂ ∂= + + − − ∂ ∂ ∂ ∂  , 
(8)

where 

μν
ρ

=
 denotes the kinematic viscosity, 

1αλ
μ

=
 refers to the retardation time, 

2
0 0BM σ
ρ

=
 corresponds to the magnetic parameter. 

The initial conditions are 

( ), , 0 0w x y =
, (9)

and the boundary conditions regardless of slip are given as 

( ) ( ), , , , 0w a y t w x b t± = ± =
. (10)

The initial boundary conditions of (9) and (10) are the Dirichlet type based on the 
physical backgrounds considering a laminar flow in a straight duct with infinite length 
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and rectangular cross-section. When the boundary conditions change to Neumann, Robin 
or some other kind of initial boundary conditions, the physical meaning of this paper 
changes. However, the treatment process of the fractional governing equation with the 
difference method and the fast algorithm is also applicable. The only difference is the 
boundary discretization is slightly different. 

Theorem 1. [43] Assume a positive α  satisfies 0 1n nα≤ − < < . Suppose the function 
( )f t

 in region [ ]1 2,t t
 has 1n −  continuous bounded derivative for every 2 1t t> , then 

( ) ( )
( ) ( ) ( )
( )

1
1 1

1 1

jjn
C

t t
j

f t t t
D f t D f t

j

α
α α

α

−−

=

−
= +

Γ + −
, 1 2t t t≤ ≤ , 

(11)

where ( )C
tD f tα

 refers to the Caputo’s fractional derivative [43]. 

Through Theorem 1, we have ( ) ( )C
t tD f t D f tα α=

 with the condition that second-
grade fluid flowing along a straight rectangular duct is subjected to the zero initial condi-
tion. In the following discussions, we are able to substitute the Riemann–Liouville deriv-
ative with Caputo’s derivative. 

3. Analytical Solution 
In this part, we try to obtain the analytical solution of (8)–(10). Firstly, we consider 

the equation: 

2 2

2 2
u u u Mu
t x y

ν  ∂ ∂ ∂= + − ∂ ∂ ∂  , 
(12)

( ) ( )1, , , , 1, , 0u y t u x tτ τ± = ± =
. (13)

To simplify the calculation, we introduce ( ) ( ), , , 1, 1, ,u x y t h x y tτ τ= + +
, after 

which it becomes: 

2 2

2 2
h h h Mh
t x y

ν  ∂ ∂ ∂= + − ∂ ∂ ∂  , 
(14)

( ) ( ) ( ) ( )0, , , , 0, , 2, , , , 2, , 0h y t h x t h y t h x tτ τ τ τ= = = =
  (15)

The solution of (14)–(15) is obtained by separation of variables. Defining 

( ) ( ) ( ), , , , ,h x y t T t x yτ τ= Φ
 and the operator 

2 2

2 2x y
∂ ∂Δ = +
∂ ∂ , yields: 

T T MT
t

ν∂Φ = ΔΦ− Φ
∂ , 

(16)

( ) ( ) ( ) ( )0, ,0 2, , 2 0y x y xΦ = Φ = Φ = Φ =  (17)

Denote 
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ηΔΦ = ⋅Φ . (18)

It can be deduced immediately that 

( )T M T
t

νη∂ = −
∂   

(19)

Equation (18) is a Helmholtz equation and the solution with the boundary conditions 

(17) can be obtained: 
, sin sin

2 2n m
n mx yπ π   Φ =    

    , where ,n m∈ . It can then be 

deduced that η  can only be discrete values with the value 

2 2
2

4
n mη π+= −

. It is sim-

ple to determine the solution to Equation (19) as ( ) ( )M tT B e νητ −=
, where ( )B τ

 is an 

arbitrary function. The solution of ( , , , )h x y t τ  has the following form 

( ) ( )
2 2

2

4
,

1 1
, , , sin sin

2 2

n mv M t

n m
n m

n mh x y t B e x y
π π πτ τ

 ++∞ +∞ − +  
 

= =

   =    
   


, 

(20)

and then 

( ) ( ) ( )
2 2

2

4
,

1 1
( , , , ) sin 1 sin 1

2 2

n mv M t

n m
n m

n mu x y t B e x y
π π πτ τ

 ++∞ +∞ − +  
 

= =

   = + +   
   


  

(21)

Denote 
( )1 p g t

zρ
∂ =
∂ . Equation (8) can be expressed as: 

( ) ( )
2 2

2 21 t
w w wD Mw g t
t x y

αν λ  ∂ ∂ ∂= + + − − ∂ ∂ ∂  . 
(22)

Suppose there is a function ( ), , ,u x y t τ
 satisfying 

( ) ( )
0

, , , , ,
t

w x y t u x y t dτ τ=  . 
Substituting this expression into (21), yields 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

0 0

0 0

, , ,
, , , , , , , , ,

, , , .
1

t t

t

u x y t
u x y t t d u x y t Mu x y t d

t
d t u x y d d g t
dt

ξα

τ
τ ν τ τ τ

νλ ξ ξ τ τ ξ
α

−

∂
+ = Δ −

∂

+ − Δ −
Γ −

 

 
 

(23)

From Equation (12), Equation (23) can be reduced as: 

( ) ( ) ( ) ( ) ( )
0 0

, , , , , ,
1

td t u x y d d u x y t t g t
dt

ξανλ ξ ξ τ τ ξ
α

−− Δ − =
Γ −  

. 
(24)

Substituting the solution (21) into Equation (24), yields 
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( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
2

2 2
2

2 2
42

,0 0
1 1

4
,

1 1

1 4

sin 1 sin 1 .
2 2

n mv Mt

n m
n m

n mv M t

n m
n m

n m d t B d e d
dt

n mB t e x y g t

π ξξα

π

νλ π ξ τ τ ξ
α

π π

 ++∞ +∞ − +  −  

= =

 ++∞ +∞ − +  
 

= =

  +− −  Γ −  
    − ⋅ + + =       

  


 

(25)

Perform the inner product with 
( ) ( )0 0sin 1 sin 1

2 2
n mx yπ π   + +   

     on both sides 

of Equation (25) and integral interval chosen as [ ] [ ]1,1 1,1− × −
. Then for the left side of 

the Equation (25), we have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 0 0
, 1 1

1 1

1, 0 0

1
1 1

0 0

sin 1 sin 1 sin 1 sin 1
2 2 2 2

cos 1 cos 1
4 2 2

cos 1 cos 1
2 2

n m
n m

n m

n m

n mn mC t x y x y dxdy

C t n n n n
x x dx

m m m m
y y

π ππ π

π π

π π

+∞ +∞

− −
= =

+∞ +∞

−
= =

      + + + +       
       

 − +   
= + − +    

     
 − +   

⋅ + − +   
   

  

 

( )
0 0

1

1

,n m

dy

C t

−


 
  

=



 

(26)

where 

( ) ( )
( ) ( ) ( ) ( )

2 2 2 2
2 22 2 2

4 4
, , ,0 04 1

n m n mv M v M tt

n m n m n m

n m dC t t B d e d B t e
dt

π ξ πξανλπ
ξ τ τ ξ

α

   + +− + − +      −    
+

= − − −
Γ −  

  

For the right-hand component of Equation (25), the integral is zero when 0n  and 

0m  are even. Set 0 12 1n k= − , 0 22 1m k= − , where 1k  and 2k  are positive integers. 
Then we have the following integral formula: 

( ) ( ) ( ) ( ) ( )( )
1 1 1 2

21 1
1 2

2 1 2 1 16sin 1 sin 1
2 2 2 1 2 1

k k
x y dxdy

k k
π π

π− −

− −   
+ + =    − −   

 
. 

(27)

By a combination of Equations (26) and (27), the following equation can be obtained: 

( ) ( ) ( ) ( ) ( )
( 2) ( 2)

, ,

(1)
, (3)

, , ,0 01
n m n m

t C C tn m
n m n m n m

C d t B d e d B t e C g t
dt

ξα ξξ τ τ ξ
α

− − −− − =
Γ −  

, 
(28)

where 12 1n k= − , 22 1m k= − , 

2 2
(1) 2
, 4n m

n mC π νλ += −  
  , 

2 2
(2) 2
, 4n m

n mC v Mπ += +
 and

(3)
, 2

16
n mC

nmπ
=

. 

Denote tξ γ= − , Equation (28) can be rewritten as: 
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( ) ( ) ( ) ( ) ( )( )
( ) ( )

( 2) ( 2)
, ,

( 2)
,

(1)
, (2)

, , ,0 0 0

(3)
, ,

1

.

n m n m

n m

t t tC t C tn m
n m n m n m

C t
n m n m

C
B t e d C B d e d

B t e C g t

γγ γα αγ γ γ γ τ τ γ
α

−− −− −

−

− −
Γ −

− =

  

 

(29)

Denote 0t = , we have the relationship: 

( ) ( )(3)
, ,0 0n m n mB C g= −

. (30)

Multiplying the left and right sides of (29) by 
(2)
,n mC te  and taking the derivative of t , 

yields: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( 2) ( 2) ( 2)
, , ,

( 2)
,

(1)
, (2)

, , , ,0 0

, (3) (2)
, ,

0
1

.

n m n m n m

n m

t tC t C Cn m
n m n m n m n m

C tn m
n m n m

C
t B e B t e d C B t e d

dB t
e C C g t g t

dt

γ γα α αγ γ γ γ γ γ
α

− − −′+ − − −
Γ −

′− = +

 

 

(31)

Resort to variable tγ ξ= −  and multiply both sides of Equation (31) by 
(2)
,n mC te− , we 

have: 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( 2) ( 2)
, ,

( 2)
,

(1)
, , , (2)

, ,0

(1)
,(3) (2)

, , ,

1

0 .
1

n m n m

n m

C C t
t C tn m n m n m

n m n m

n m
n m n m n m

C dB e dB t e
t d C B t e

d dt

C
C C g t g t t B

ξ
α

α

ξ
ξ ξ

α ξ

α

− −
− −

−

− − −
Γ −

′= + −
Γ −



 

(32)

Denoting ( ) ( )
( 2)

,
, ,

n mC t
n m n mA t B t e−=

 and according to (30), we have 

( ) ( )( ) ( )
( )

1 (1)
, , , ,(1) (2) (3) (2)

, , , , ,1

0
1

n m n m n m n m
n m n m n m n m n m

d A dA C A
C C A C C g t g t t

dt dt

α
α

α α

+
−

+
′− − = + −

Γ − , 
(33)

where 12 1n k= − , 22 1m k= −  and ( ) ( )(3)
, ,0 0n m n mA C g= −

. The analytical solution can 
be obtained by referring to [46]. 

Then the solution to Equation (20) can be obtained as: 

( ) ( ) ( ) ( )
2 2

2

1 2

4
,0

1 1
2 1 2 1

, , sin 1 sin 1
2 2

n mv M tt

n m
n m

n k m k

n mw x y t B d e x y
π π πτ τ

 ++∞ +∞ − +  
 

= =
= − = −

   = ⋅ + +   
   

  
, 

(34)

where ( ) ( )
( 2 )

,
, ,

n mC t
n m n mB t e A t=

 and ( ),n mA t
 refers to the solution of (33). 

4. Numerical Discretization Method 
Numerical Scheme 

Firstly, we divide the spatial region [ ] [ ], ,a a b b− × −
 with the uniform mesh points 

i xx a ih= − + , 0,1, , xi M=  , j yy b jh= − +
, 

0,1, , yj M= 
, in which 

2 /x xh a M= , 
2 /y yh b M=

. For the time region [ ]0,T
, we take nt nτ=  with time 



Fractal Fract. 2022, 6, 666 9 of 27 
 

 

step /T Nτ =  for 0,1,n N=  . Define 
( ){ }, 0 ,0h i j x yx y i M j MΩ ≡ ≤ ≤ ≤ ≤

 

and 
{ }0nt n NτΩ ≡ ≤ ≤

. 

For a net function 
{ }, 0 ,0 ,0n

i j x yw w i M j M n N= ≤ ≤ ≤ ≤ ≤ ≤
 defined on an in-

terval h τΩ ×Ω , denote the following symbols for simplicity: 

1
, ,

,

n n
i j i jn

t i j

w w
w

τ

−−
∇ =

, 

, 1,
,

n n
i j i jn

x i j
x

w w
w

h
δ −−

=
, 

, , 1
,

n n
i j i jn

y i j
y

w w
w

h
δ −−

=
, 

1, , 1,2
, 2

2n n n
i j i j i jn

x i j
x

w w w
w

h
δ + −− +

=
, 

, 1 , , 12
, 2

2n n n
i j i j i jn

y i j
x

w w w
w

h
δ + −− +

=
 

Furthermore, the exact solution is defined as ( ), , ,n
i j i j nW w x y t=

 for simplicity. 
Applying the L1-scheme [37] for discretizing the fractional derivative, at the mesh points 

( ), ,i j nx y t
, we have: 

( ) ( ) ( )
1

, 0
0 , 1 , 1 , 1 ,

12

n n
ni j n k

i j n k n k i j n i j i j
k

W
c W c c W c W R

t

α α

α
τ

α

− −

− − − −
=

∂  = − − − + ∂ Γ −  


 
(35)

where ( )1 11kc k kα α− −= + −
 and 

( ) 2
1 ,

n

i j
R C ατ −≤

. 

At the mesh points ( ), ,i j nx y t
, the backward difference method is applied to dis-

cretize the time derivative of order one 

( ),
,

n
i j n

t i j

W
W

t
τ

∂
=∇ +Ο

∂   
(36)

Use of the central difference scheme yields the discretization schemes for the second 
order space derivatives 

( )
2

, 2 2
,2

n
i j n

x i j x

W
W h

x
δ

∂
= +Ο

∂  and 
( )

2
, 2 2

,2

n
i j n

y i j y

W
W h

y
δ

∂
= +Ο

∂  
(37)

Combining (35) and (37), we have the difference schemes for the mixed derivatives 
of time and space: 

( ) ( ) ( )
2 1

2 2 2 0
, 0 , 1 , 1 , 22 ,

12

n
nn n k

i j x i j n k n k x i j n x i j i j
k

W c W c c W c W R
t x

α α

α
τ δ δ δ

α

− −

− − − −
=

∂ ∂  = − − − + ∂ ∂ Γ −  


, 
(38)

( ) ( ) ( )
2 1

2 2 2 0
, 0 , 1 , 1 , 32 ,

12

n
nn n k

i j y i j n k n k y i j n y i j i j
k

W c W c c W c W R
t y

α α

α
τ δ δ δ

α

− −

− − − −
=

∂ ∂  = − − − + ∂ ∂ Γ −  
 , (39)

where 
( ) ( )2 2

2 ,

n
xi j

R C hατ −≤ +
 and 

( ) ( )2 2
3 ,

n
yi j

R C hατ −≤ +
. 
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Denote the discretization scheme for 

1 p
zρ
∂−
∂  at the points ( ), ,i j nx y t

 as ,
n
i jg . 

Through the difference schemes (35)–(39), we have the final discretization scheme for the 
governing Equation (8) 

( ) ( )

( ) ( )

2 2
, . , ,

1
2 2 2 0

0 , 1 , 1 ,
1

1
2 2 2 0

0 , 1 , 1 , , ,
1

2

,
2

n n n n
t i j i j x i j y i j

n
n k

x i j n k n k x i j n x i j
k

n
n k n n

y i j n k n k y i j n y i j i j i j
k

W MW W W

c W c c W c W

c W c c W c W g R

α

α

νδ νδ

τνλ δ δ δ
α

τνλ δ δ δ
α

− −

− − − −
=

− −

− − − −
=

∇ + − −

 = − − − Γ −  

 + − − − + + Γ −  




 

(40)

where ( )2 2
,
n
i j x yR C h hτ≤ + +

. 

Substituting ,
n
i jW

 with ,
n
i jw

, we have the numerical difference scheme of Equation 
(8) 

( ) ( )

( ) ( )

2 2
, . , ,

1
2 2 2 0

0 , 1 , 1 ,
1

1
2 2 2 0

0 , 1 , 1 , ,
1

2

.
2

n n n n
t i j i j x i j y i j

n
n k

x i j n k n k x i j n x i j
k

n
n k n

y i j n k n k y i j n y i j i j
k

w Mw w w

c w c c w c w

c w c c w c w g

α

α

νδ νδ

τνλ δ δ δ
α

τνλ δ δ δ
α

− −

− − − −
=

− −

− − − −
=

∇ + − −

 = − − − Γ −  

 + − − − + Γ −  




 

(41)

By merging the terms at the same time layer, making the left side the n -th time layer, 
and the right side the time layer with the order less than n , Equation (41) can be rewritten 
in another form: 

( )( ) ( )( )

( )( ) ( )

, 1 1, , 1, 1 , 1 , . 12 2

1
1 2 2 2 0 2 0

, 1 1 , , 1 , , ,
1

1 1 2 1 2

1 ,

n n n n n n n
i j i j i j i j i j i j i j

x y

n
n k k n
i j n k n k x i j y i j n x i j y i j i j

k

M w r w w w r w w w
h h

w r c c w w c w w g

ν ν
τ

ν δ δ δ δ
τ

+ − + −

−
−

− − − −
=

 + − + − + − + − + 
 

 = − − + + + +  


 

(42)

where ( )1 2
r

αλτ
α

−

=
Γ −  and 

( )
,

, ,1 i j nn
i j

p x y t
g

zρ
∂

= −
∂ . 

In what follows, the symbol E  denotes the unit matrix which may be with a differ-
ent order in various sections. Considering the zero-boundary conditions, the discretiza-
tion scheme (42) can be rewritten in a matrix form: 

( ) ( )

( )( ) ( )

1 1
1 22 2

1
1 0

1 1 1 2 1 1 2
1

1 11

1 ,

n n n

x y

n
n k n

n k n k n
k

r r
M Ew E K w K Ew

h h

Ew r c c E K K E w c E K K E w g

ν ν
τ

ν
τ

−
−

− − − −
=

+ + + − ⊗ − ⊗ 
 

 = − − ⊗ + ⊗ + ⊗ + ⊗ +  


 

where the symbol ⊗  denotes the Kronecker product [47], 
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( ) ( )

1

1 1

2 1
1 2 1

1 2 1
x xM M

K

− × −

− 
 − =
 
 − 

  

, ( ) ( )

2

1 1

2 1
1 2 1

1 2 1
y yM M

K

− × −

− 
 − =
 
 − 

  

, 

( )1,1 2,1 1,1 1,2 2,2 1,2 1, 1 2, 1 1, 1, , ..., , , ,..., ,..., , ,...,
x x y y x y

T
n n n n n n n n n n

M M M M M Mw w w w w w w w w w− − − − − −= , 

( )1,1 2,1 1,1 1,2 2,2 1,2 1, 1 2, 1 1, 1, ,..., , , , ..., , ..., , ,...,
x x y y x y

T
n n n n n n n n n n

M M M M M Mg g g g g g g g g g− − − − − −= . 

The initial condition can be discretized as 
0
, 0i jw =

 and the boundary conditions are 

discretized as 0, , ,0 , 0
x y

n n n n
j M j i i Mw w w w= = = =

. The above numerical method can be ap-
plied to widespread situations, for example, the dynamics in porous media for solving 
Richards’ equation [48]. For this equation, the treating method mentioned above can be 
similarly applied. 

Besides the velocity distribution, the shear force is another important quantity to an-

alyze. We consider the shear force xzτ  for xz -direction at the wall surface ( 0x = ), and 
the difference scheme is given as: 

( )

( ) ( ) ( ) ( )

1
0

0 01
1, 0, 1, 0, 1, 0,1 11 1

1
1

.
2 2 2

xz t
x

n n k kn
j j j j j jn

n k n k
kx x x

wD
x

w w w w w wcc c
h h h

α

αα α

τ μ α

α τα τ α τμ
α α α

=

−− − −
−

− − −
=

∂= +
∂

  − − −
≈ + − − − Γ − Γ − Γ − 


 

)

Due to the symmetry of the velocity in the x - and y -directions, we deduce the 

shear force along the yz -direction at the wall surface 0y =  to be the same as the xz -
direction. 

5. Feasibility Analysis 

Denote 
{hV v v=

 is a net function on h τΩ ×Ω , , 0n
i jv =

 when 0i =  and xM  

or 0j =  and yM . For 
nw , 

n
hv V∈ , we denote the discrete inner products and norms: 

( )
11

, ,
1 1

,
yx MM

n n n n
x y i j i j

i i
w v h h w v

−−

= =

=  
 and ( )2

,n n nw w w=
. 

(43)

Lemma 1. [49] The matrix ⊗A B  is symmetric positive definite with the condition that both 
n n×∈A   and 

n n×∈B   satisfy symmetric positive definite. For 
2n∀ ≠ ∈0 v  , it holds 

that: 

( ) 0T ⊗ >v A B v
. (44)

Lemma 2. [50] For all A  and B , ( )T T T⊗ = ⊗A B A B
. 
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Lemma 3. For , hw v τ∈Ω ×Ω , it is straightforward to check that 

( ) ( )2 , ,k k k k
x x xw v w vδ δ δ= −

 with the zero-boundary conditions by applying integration by 
parts. 

Lemma 4. [37] For the symbols jc  in (35), define the vector [ ]1 2, ,..., T
NS S S S=

 and con-
stant P , it holds that: 

( ) ( ) ( ) ( )
11

2 2
0 1 1

1 1 12 2 1 2 2

N k N

k k j k j j k k k
k j k

T Tc S c c S c P S S P
α α ατ
α α τ α

− − −−

− − − −
= = =

 
− − − ≥ − Γ − Γ − Γ − 

  
 

5.1. Solvability 

Theorem 2. Denote ,
n
i jw

 as the numerical solution of Equations (8)–(10) for 0,1, , xi M=  , 
0,1, , yj M= 

 and 0,1,n N=  , then (42) is uniquely solvable. 

Proof. Denote the coefficient matrix 
( ) ( )1 1

1 22 2

1 11
x y

r r
M E E K K E

h h
ν ν

τ
+ + = + − ⊗ − ⊗ 

 
G

. 
Firstly, using Lemma 3, we have: 

( ) ( )1 1
1 22 2

1 11T T T T T T

x y

r r
M E E K K E

h h
ν ν

τ
+ + = + − ⊗ − ⊗ = 

 
G G

  

Furthermore, the matrix G  can simply be verified as strictly diagonally dominant. 
Then, the matrix G  is positive definite. Therefore, the numerical difference scheme has 
a unique solution. □ 

5.2. Stability 

Theorem 3. The scheme (41) possesses unconditional stability, which satisfies: 

2 2

, ,1
max

2
N n
i j i jn N

Tw g
M ≤ ≤

≤
  

Proof. Multiplying both sides of Equation (41) by ,
n

x y i jh h wτ
, and summing i , j , n  

from 1  to 1xM − , 1  to 
1yM −

, 1  to N , respectively, we derive the following 
equation: 
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( )

( ) ( )

1 1 11 1 1
2 2

, , , . , , ,
1 1 1 1 1 1 1 1 1

1
2 2 2 0

0 , 1 , 1 , ,
12

y y yx x xM M MM M MN N N
n n n n n n n

x y i j t i j x y i j i j x y i j x i j y i j
i i n i i n i i n

n
n k

x y x i j n k n k x i j n x i j i
k

h h w w M h h w w h h w w w

h h c w c c w c w w
α

τ τ ντ δ δ

νλτ τ δ δ δ
α

− − −− − −

= = = = = = = = =

− −

− − − −
=

∇ + − −

 − − − − Γ −  

      



( ) ( )

11

1 1 1

11 1
2 2 2 0

0 , 1 , 1 , ,
1 1 1 1

11

, ,
1 1 1

2

.

yx

yx

yx

MM N
n
j

i i n

MM N n
n k n

x y y i j n k n k y i j n y i j i j
i i n k

MM N
n n

x y i j i j
i i n

h h c w c c w c w w

h h w g

ανλτ τ δ δ δ
α

τ

−−

= = =

−−− −

− − − −
= = = =

−−

= = =

 − − − − Γ −  

=

 

  

 
 

By applying the inequation 
( ) ( )2 21

2
a a b a b− ≥ −

 and considering the zero initial 
condition, the first term satisfies: 

( ) ( )

( ) ( ) ( )

1 11 1 2 21
, , , ,

1 1 1 1 1 1
11 2 2 2 2 20 0

, ,
1 1

1
2

1 1 1 .
2 2 2

y yx x

yx

M MM MN N
n n n n

x y i j t i j x y i j i j
i i n i i n

MM
N N N

x y i j i j
i i

h h w w h h w w

h h w w w w w

τ
− −− −

−

= = = = = =

−−

= =

 ∇ ≥ −  

 = − = − =  

    

 
 

Considering the relationship between the norm and inner product, the second term 
yields 

( )
11 2

, . , ,
1 1 1 1 1

,
yx MM N N N

n n n n n
x y i j i j i j i j

i i n n n
M h h w w M w w M wτ τ τ

−−

= = = = =

= =   
 

By using the Lemma 3, for the third term, we have 

( )
11

2 2
, , ,

1 1 1
1 11 1

, , , ,
1 1 1 1 1 1

2 2

1
0.

yx

y yx x

MM N
n n n

x y i j x i j y i j
i i n

M MM MN N
n n n n

x y x i j x i j x y y i j y i j
i i n i i n

N
n n

x y
n

h h w w w

h h w w h h w w

w w

ντ δ δ

ντ δ δ ντ δ δ

ντ δ ντ δ

−−

= = =

− −− −

= = = = = =

=

− +

= +

= + ≥

 

   


 

By applying Lemma 4, the fourth term satisfies: 

( ) ( )

( ) ( )

11 1
2 2 2 0

0 , 1 , 1 , ,
1 1 1 1

11 1
0

0 , 1 , 1 , ,
1 1 1 1

2

2

yx

yx

MM N n
n k n

x y x i j n k n k x i j n x i j i j
i i n k

MM N n
n k n

x y x i j n k n k x i j n x i j x i j
i i n k

x

h h c w c c w c w w

h h c w c c w c w w

h h

α

α

νλτ τ δ δ δ
α

νλτ τ δ δ δ δ
α

νλτ

−−− −

− − − −
= = = =

−−− −

− − − −
= = = =

 − − − − Γ −  

 = − − − Γ −  

≥

  

  

( ) ( ) ( ) ( )

( ) ( )

11 12 20
, ,

1 1 1

12 20

1

2 1 2 2

0.
2 1 2 2

yx MM N
n

y x i j x i j
i i n

N
n

x x
n

T Tw w

T Tw w

α α

α α

δ δ
α τ α

νλτ νλδ δ
α α

−− − −

= = =

− −

=

 
− Γ − Γ − 

= − ≥
Γ − Γ −

  


 

 

Similarly, for the fifth term, it satisfies 
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( ) ( )
11 1

2 2 2 0
0 , 1 , 1 , ,

1 1 1 1
0

2

yx MM N n
n k n

x y y i j n k n k y i j n y i j i j
i i n k

h h c w c c w c w w
ανλτ τ δ δ δ
α

−−− −

− − − −
= = = =

 − − − − ≥ Γ −  
   

. 
 

By using the Cauchy–Schwartz inequality, the last term changes as: 

( )
11 2 2

, , , ,
1 1 1 1 1 1

,
4

yx MM N N N N
n n n n n n

x y i j i j i j i j
i i n n n n

h h w g w g M w g
M
ττ τ τ

−−

= = = = = =

= ≤ +    
. 

As a conclusion, we deduce: 

2 2 2

11
max

2 2

N
N n n

n Nn

Tw g g
M M
τ

≤ ≤=

≤ ≤
. 

□ 

5.3. Convergence 

Define the error ( ), , , ,n n
i j i j i j ne w w x y t= −

. Taking the difference between the Equa-
tions (40) and (41), we deduce that the error satisfies: 

( ) ( )

( ) ( ) ( )

2 2
, . , ,

1
2 2 2 0

0 , 1 , 1 ,
1

1
2 2 2 0 2 2

0 , 1 , 1 ,
1

2

.
2

n n n n
t i j i j x i j y i j

n
n k

x i j n k n k x i j n x i j
k

n
n k

y i j n k n k y i j n y i j x y
k

e Me e e

c e c c e c e

c e c c e c e h h

α

α

νδ νδ

τνλ δ δ δ
α

τνλ δ δ δ τ
α

− −

− − − −
=

− −

− − − −
=

∇ + − −

 = − − − Γ −  

 + − − − +Ο + + Γ −  




 

(45)

Theorem 4. The scheme (41) is convergent with the following form: 

( )22 2 2

2
N

x y
Te h h
M

τ≤ + +
. 

(46)

Proof. Similar to the proof of the stability, substituting the source term with the error, we 
have: 

( ) ( )2 22 2 2 2 2

12 2

N
N

x y x y
n

Te h h h h
M M
τ τ τ

=

≤ + + = + +
. 

(47)

□ 

6. Acceleration of the Fractional Derivative 
The traditional treating method for the fractional derivative is to use the L1 scheme 

with an expensive cost of computation and storage due to the non-locality that the frac-

tional derivative contains. The difference scheme at nt t=  contains a summation of all 

values from zero to the current time and the total cost at every spatial point is ( )2NΟ
. 

To reduce the computational and storage cost, a fast algorithm [38] is applied. Here we 
summarized the main idea of the fast algorithm. 
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The definition of Caputo’s fractional derivative of order 0 1α< <  can be expressed 

as the summation of two terms, a local part ( )l nC t
 and a history part ( )h nC t

: 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

1

1

0

0

1
1

1 1 1 1                   
1 1

                 : .

n

n

n n

n

tC
t nt t

t t

t
n n

l n h n

w s
D w t t s ds

s

w s w s
ds ds

s st s t s

C t C t

αα

α α

α

α α
−

−

−

=

∂
= −
Γ − ∂

∂ ∂
= +
Γ − ∂ Γ − ∂− −

= +



 

 

(48)

For the local portion, we approximate 

( )w s
s

∂
∂  by 

( ) ( )1n nw t w t
τ

−−

, yields 

( ) ( )
( ) ( )

( ) ( )
( )1

1 1( )
1 2

n

n

tn n n n
l n t

n

w t w t w t w tdsC t
t s α ατ α τ α−

− −− −
≈ =

Γ − Γ −−
. 

(49)

We employ the integration by parts for the history part 

( )
( ) ( ) ( )

( )
11 0

10

1( )
1

ntn
h n

n n

w t w t w s
C t ds

t t s αα α α
α τ

−−
+

 
= − − 
Γ − −  


. 

(50)

Treating the kernel 
1

1
tα+  in the convolution integral is the key. Referring to [38], for 

any time interval [ ],Tτ
, the kernel 

1
1
tα+  can be approached by an efficient sum-of-ex-

ponentials approximation with a prescribed absolute error ε . Specifically speaking, there 

are real positive numbers lw  and ls  ( exp1, ,l N= 
) such that 

exp

1
1

1
l

N
s t

l
l

e
tα

ω ε−
+

=

− ≤
, for any [ ],t Tτ∈

, 
(51)

where expN
 is of the order 

exp
1 1 1 1 1log log log log log log log logTN
ε ε σ σ ε σ

    = + + +        


. 
(52)

Equation (4) is the main idea for the fast algorithm. The sum-of-exponentials approx-

imation for the kernel 

1
t β  can also be generalized for the order 0 2α< <  [38,51]. 

We substitute the kernel 
1

1
tα+  via the formular (51) to approximate the history por-

tion as: 

( ) ( )
( ) ( ) exp

1 0
,

1

1 ( )
1

N
n

h n l his l n
ln

w t w t
C t wW t

tα α α
α τ

−

=

 
≈ − − Γ −  


, 

(53)



Fractal Fract. 2022, 6, 666 16 of 27 
 

 

where 
( ) ( )1 ( )

, 0

n
n l

t t t s
his l nW t e w t dt− − −=  . 

The function ( ),his l nW t
 is calculated for 1,2, ,n N=   and the following recur-

rent relationship is derived 

( ) ( ) ( ) ( )1

2
, , 1

n l nl

n

t s ts
hist l n hist l n t

W t e W t e w dττ τ τ−

−

− −−
−= + 

, ( ), 0 0hist lW t =
. 

(54)

The integral in (54) could be rewritten as: 

( ) ( ) ( ) ( )1

2

1 2
2 1 1
l

n l n l l l

n

st s t s s sn n
l lt

l

ee w d e s w e e s w
s

τ
τ τ τ ττ τ τ τ

τ
−

−

−
− − − − −− − ≈ − + + − − 

. 
(55)

To compute ( ),his i nW t
, as Equation (55) indicates, ( ), 1his i nW t −  is already com-

puted and stored and the cost is needed by only ( )1Ο
 at each step. As (6.4) indicates, 

the cost to evaluate the fractional derivative is needed ( )expNΟ
 at each time step. That 

is to say, a reduction from ( )NΟ
 to ( )log NΟ

 or ( )2log NΟ
. 

As a summation, the fast evolution of the Caputo’s fractional derivative at nt t=  is 
given as: 

( ) ( ) ( ) ( )
exp1 1 0

, 1
1

1, ,
2 1

Nn n n
F

t n l hist l n
ln

W W W WD w x y t W t R
t

α
α α α α ω
τ α α τ

− −

=

 −= + − − + Γ − Γ −  


, 
(56)

where ( )2
1R C ατ ε−≤ +

 and the recurrence relation satisfies (6.7) and (6.8). 
Combining (56) and (37), we have: 

( ) ( ) ( )
exp2 2 1 2 1 2 02

, , , , 2
, ,2

1

1
2 1

n n n N
x i j x i j x i j x i jn

i j l x hist l n
ln

w w w w
w w t

t x t

α

α α α α

δ δ δ δ
α ω δ

τ α α τ

− −

=

 −∂ ∂ = + − − ∂ ∂ Γ − Γ −   


, 
(57)

( ) ( ) ( )
exp2 2 1 2 1 2 02

, , , , 2
, ,2

1

1
2 1

n n n N
y i j y i j y i j y i jn

i j l y hist l n
ln

w w w w
w w t

t y t

α

α α α α

δ δ δ δ
α ωδ

τ α α τ

− −

=

 −∂ ∂ = + − − ∂ ∂ Γ − Γ −   
 , (58)

where 
( ) ( ) ( ) ( )1

2

2 2 2
, , 1

n l nl

n

t s ts
x hist l n x hist l n xt
w t e w t e w dττδ δ δ τ τ−

−

− −−
−= + 

, ( )2
, 0 0x hist lw tδ =

, 

( ) ( ) ( ) ( )1

2

2 2 1 2 2
2 1 1
i

n l n i i i

n

st s t s s sn n
x i x i xt

i

ee w d e s w e e s w
s

τ
τ τ τ τδ τ τ τ δ τ δ

τ
−

−

−
− − − − −− − ≈ − + + − − 

, 

( ) ( ) ( ) ( )1

2

2 2 2
, , 1

n l nl

n

t s ts
y hist l n y hist l n yt
w t e w t e w dττδ δ δ τ τ−

−

− −−
−= + 

, ( )2
, 0 0y hist lw tδ =

,

( ) ( ) ( ) ( )1

2

2 2 1 2 2
2 1 1
i

n l n i i i

n

st s t s s sn n
y i y i yt

i

ee w d e s w e e s w
s

τ
τ τ τ τδ τ τ τ δ τ δ

τ
−

−

−
− − − − −− − ≈ − + + − − 

. 
By a combination, we deduce the final difference scheme: 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
ex

2 2
, 1, , 1, , 1 , , 12 2

1 2 1 2 1
, , ,

2 0 2 0 2 2
, , , ,

1

1 2 2

1 1 1
1 2

1 1

n n n n n n n
i j i j i j i j i j i j i j

x y

n n n
i j x i j y i j

N

x i j y i j l x hist l n y hist l n
ln

r rM w w w w w w w
h h

w w w

w w w t w t
t

α

α

ν ν
τ

νλ δ δ
τ τ α α

νλ νλαδ δ ω δ δ
α α

+ − + −

− − −

=

 + − − + − − + 
 

 
= + − +  Γ − Γ − 

 − + − + Γ − Γ −

p

, ,n
i jg+

 

(59)

where ( )2 1
2

r α
λ

τ α
= +

Γ − .  
The discretization scheme (59) can be rewritten in a matrix form: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
exp

2 2
1 22 2

1
1 2

0 2 2
1 2 , ,

1

1

1 1 1
1 2

.
1 1

n

x y

n n

N

l x hist l n y hist l n
ln

r rM E E K K E w
h h

E E K K E w g

E K K E w w t w t
t

α

α

ν ν
τ

νλ
τ τ α α

νλ ανλ ω δ δ
α α

−

=

  + − ⊗ − ⊗  
   
  

= + − ⊗ + ⊗ +   Γ − Γ −   

 − ⊗ + ⊗ − + Γ − Γ − 
 

(60)

7. Results and Discussion 

Example 1. (Verification of the discretization scheme). 

The governing equation is solved numerically that the fractional derivative is discre-
tized by the traditional L1 difference method and the fast algorithm. How to verify the 
correctness of the difference method is the key. As Section 3 indicates, the exact solution 
is complicated. As a modification, a source term is introduced and the governing equation 
changes as: 

( )
2 2

2 21 , ,w D w w Mw f x y t
t Dt x y

α

αν λ  ∂ ∂ ∂= + + − +  ∂ ∂ ∂   , 
(61)

with the initial distribution and the boundary distributions: 

( ), , 0 0w x y =
, (62)

( ) ( )1, , , 1, 0w y t w x t± = ± = . (63)

Define an exact solution for (61)–(63) as: 

( ) ( ) ( ) ( ) ( )2 2 2 2 2, , 1 1 1 1w x y t x x y y t= − + − +
, the expression of the source term can be 

deduced: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

2 2 2 2

2 2 2 22 2 22

, , 1 1 1 1 2

4 1 3 1 1 1 3 1 1 1 .
3

f x y t x x y y t Mt

t t x y y y x xαλν
α

−

Γ

= − + − + +

   − + − − + + − − +    −    

(64)



Fractal Fract. 2022, 6, 666 18 of 27 
 

 

Figure 2 presents the three-dimensional comparison behavior between the numerical 
and exact expressions. Obviously, the distribution of the numerical solution is basically 
the same as that of the exact solution, showing a bell-shaped curve that is high in the 
middle and low at both ends. Tables 1 and 2 show the maximum error with the form 

( ) ,0 ,0
, , max

x y

n
x y i ji M j M

E h h eτ
≤ ≤ ≤ ≤

=
, the convergence order for space with 

( )
( )2

, ,
log

/ 2, / 2,
x y

s
x y

E h h
r

E h h

τ
τ

=
, for time with 

( )
( )2

, ,
log

, , / 2
x y

t
x y

E h h
r

E h h

τ
τ

=
 and the compu-

tational time between the classical difference scheme and the fast scheme. The two tables 
show that the error is very small when verifying the accuracy of the numerical scheme 

and the accuracy is ( )2 2
x yh h τΟ + +

, which is consistent with the analysis in the conver-
gence in Theorem 2. Furthermore, the computational time indicates that the superiority 
of the fast scheme is that it can greatly reduce the calculation time without affecting the 
total accuracy. 

  
  

Figure 2. The three-dimensional comparison of velocity distributions for 0.5α = , 0.5M =  and 
0.1λ = . 

Table 1. The error and convergence order for space and the comparison of computational time be-

tween the finite difference scheme and the fast scheme when 0.5α = , 1M = , 1ν =  and 
0.1λ = . 

 Normal L1 Method Fast Algorithm 
1 / 20000τ =  Error Order Time (s) Error Order TIME (s) 

21 / 2x yh h= =
 

11.4745 10−×    11.4745 10−×   6.58 
31 / 2x yh h= =

 
23.6738 10−×  2.00 317.32 23.6738 10−×  2.00 8.78 

41 / 2x yh h= =
 

39.1903 10−×  2.00 2737.48 39.1903 10−×  2.00 14.61 
51 / 2x yh h= =

 
32.3032 10−×  2.00 16424.92 32.3032 10−×  2.00 43.06 

61 / 2x yh h= =
 

45.8123 10−×  1.99 59840.35 45.8123 10−×  1.99 185.47 
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Table 2. The error and convergence order for time and the comparison of computational time be-

tween the finite difference scheme and the fast scheme when 0.5α = , 1M = , 1ν =  and 
0.1λ = . 

 Normal Scheme Fast Scheme 
1/ 640x yh h= =

 Error Order Time (s) Error Order Time (s) 
21/ 2τ =  

23.9307 10−×   2749.74 23.9307 10−×   6.83 
31/ 2τ =  

21.9424 10−×  1.02 2851.14 21.9424 10−×  1.02 14.90 
41/ 2τ =  

39.5638 10−×  1.02 3057.22 39.5638 10−×  1.02 33.67 
51/ 2τ =  

34.7173 10−×  1.02 3579.91 34.7173 10−×  1.02 70.72 
61/ 2τ =  

32.3347 10−×  1.01 4622.72 32.3347 10−×  1.01 147.05 

Example 2. The effects of the dynamic parameters on the distributions of velocity and shear force 
subject to various pressure with cosine forms. 

Figures 3–5 show the distribution of the velocity and shear force at 0x =  (wall sur-

face) with oscillating pressure gradient versus time with the form 
( )1 cos 1p t

zρ
∂− = +
∂  

when we choose 1ν = . The influences of the retardation time parameter on the velocity 
distributions and the distribution of shear force at the wall are shown in Figure 3. For 

0λ = , the influences of the retardation time disappear. With the appearance of the retar-
dation time parameter, the big difference is that the overall distribution becomes lower 
with the physical, meaning that the retardation time parameter reflects a relaxation char-
acteristic in slowing down the velocity propagation and decreasing the magnitude of the 
shear force at the wall. It can be concluded that a bigger the retardation time parameter 
corresponds to a larger the relaxation characteristic. The magnetic parameter has im-
portant impacts on the distributions of velocity and the shear force. The parameter 

0M =  indicates that the influence of the magnetic parameter is not considered. As 
shown in Figure 4, the consideration of the magnetic field makes the distribution at a fixed 
position smaller, and the value of the distribution becomes smaller when the magnetic 
parameter becomes bigger. The fractional parameter makes the velocity transport con-
sider the memory characteristic. Figure 5 shows that the value of the distribution becomes 
smaller with an increase of fractional parameter. 

  

Figure 3. The influences of retardation time parameters on the velocity distribution and the shear 

force xzτ  at the wall surface for 0.5α = , 1M =  and 
( )1 cos 1p wt

zρ
∂− = +
∂ . 
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Figure 4. The influences of magnetic parameter on the velocity distribution and the shear force xzτ  

at the wall surface for 0.5α = , 0.1λ =  and 
( )1 cos 1p wt

zρ
∂− = +
∂ . 

  

Figure 5. The influences of fractional parameter on the velocity distribution and the shear force xzτ  

at the wall surface for 1M = , 0.1λ =  and 
( )1 cos 1p wt

zρ
∂− = +
∂ . 

The oscillatory frequency has important impacts on velocity distributions and the 

shear force distributions. Consider 
( )1 cos 1p wt

zρ
∂− = +
∂ , the three-dimensional veloc-

ity distributions and shear force distributions versus y  and t  with the effects of fre-
quency are exhibited in Figures 6 and 7, respectively. For 0w = , the pressure is constant 
and the time parameter (for 0t > ) has no effects on the distributions. For 0w ≠ , the 
distributions present as an oscillatory form and the bigger the frequency parameter is, the 
stronger the oscillatory character of the distributions will be. To discuss the effects of the 

various pressures with the space oscillatory flow, we consider 
( )1 cos 1p wz

zρ
∂− = +
∂  

with different w . The effects of frequency parameter on the velocity distributions and the 
shear force distributions versus x  and z  are respectively exhibited in Figures 8 and 9. 
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Similarly, the distribution curve shows that the distribution exhibits as a normal form for 
0w = . For 0w ≠ , the distribution presents as an oscillatory form. Finally, the bigger the 

frequency parameter, the stronger is the oscillation of the distribution curve. 

  

  

Figure 6. The three-dimensional distribution for velocity field versus y  and t  with various oscil-

latory pressure with cosine form versus time 
( )1 cos 1p wt

zρ
∂− = +
∂  for different 

0,1,2,3w =  for 0.5α = , 0.1λ =  and 0.1M = . 
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Figure 7. The three-dimensional distribution for shear force versus y  and t  with various oscilla-

tory pressure with cosine form versus time 
( )1 cos 1p wt

zρ
∂− = +
∂  for different 0,1,2,3w =  

for 0.5α = , 0.1λ =  and 1M = . 
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Figure 8. The three-dimensional distribution for velocity versus y  and z  with various oscilla-

tory pressure with cosine form versus space 
( )1 cos 1p wz

zρ
∂− = +
∂  for different 

0,1,2,3w =  for 0.5α = , 0.1λ =  and 1M = . 

  

  

Figure 9. The three-dimensional distribution for shear force versus y  and z  with various oscil-

latory pressure with cosine form versus space 
( )1 cos 1p wz

zρ
∂− = +
∂  for different 

0,1,2,3w =  for 0.5α = , 0.1λ =  and 1M = . 



Fractal Fract. 2022, 6, 666 24 of 27 
 

 

8. Conclusions 
This paper considered the motion of fractional second-grade fluid in a straight rec-

tangular duct. Both the analytical solution and the numerical solution were obtained. For 
faster computation, a fast scheme was proposed. Two examples were given. One illus-
trated the accuracy of the numerical solution and the advantage of the fast scheme. The 
other discussed the impacts of the involved parameters on the velocity distributions and 
the shear force at the wall surface. The results show that the retardation time parameter 
plays a role in a relaxation characteristic. The magnetic parameter and fractional parame-
ter with the memory characteristic made the distribution of velocity and shear force be-
come slower. The oscillation of the pressure versus space and time made the distribution 
present as an oscillatory form and for a larger frequency parameter, the oscillation of the 
distribution was stronger. 
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Appendix A 
The expanded form of (3) is given as: 

( )1

0 0 0 0
0 0 0
0 0 0 0 0 0 0

0 0 0 0 0

T

w w
x x
w wA V V
y y

w w
w wx y
x y

 ∂ ∂     ∂ ∂       ∂ ∂ = ∇ + ∇ = + =    ∂ ∂   ∂ ∂     ∂ ∂ ∂ ∂       ∂ ∂  , 
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( )2 1 1 1

2 2

2 2

0 00 0

0 0 0 0

0 0 0 0 0 00

T
t

t

t

t t

A D A A V V A

w w w w w wwD x x y x x yx
w w w w w w wD
y x y y x y y

w wD D
x y

α

α

α

α α

= + ∇ + ∇

   ∂ ∂ ∂ ∂ ∂ ∂    ∂         ∂ ∂ ∂ ∂ ∂ ∂      ∂          ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂         ∂ ∂         ∂ ∂     

=

2

2

2 2

2 2 .

0

t

t

t t

w w w wD
x x y x

w w w wD
x y y y
w wD D
x y

α

α

α α

 ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂   ∂ ∂ ∂ ∂  

∂ ∂ 
 ∂ ∂
 

 

Then the expression for the shear force is obtained 

( )

( )

( ) ( )

2
1 1 2 2 1

2

1 1 1

2

1 1 1

22

1 1 2

t

t

t t

A A A

w w w wD
x x y x

w w w wD
x y y y

w w w wD D
x y x y

α

α

α α

τ μ α α

α α μ α

α α μ α

μ α μ α α

= + +

 ∂ ∂ ∂ ∂  +  ∂ ∂ ∂ ∂ 
 

  ∂ ∂ ∂ ∂= +  ∂ ∂ ∂ ∂  
   ∂ ∂ ∂ ∂  + + +    ∂ ∂ ∂ ∂      . 
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