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Abstract: In this paper, we present a comparison of several important methods to solve fuzzy partial
differential equations (PDEs). These methods include the fuzzy reduced differential transform
method (RDTM), fuzzy Adomian decomposition method (ADM), fuzzy Homotopy perturbation
method (HPM), and fuzzy Homotopy analysis method (HAM). A distinguishing practical feature
of these techniques is administered without the need to use discretion or restricted assumptions.
Moreover, we investigate the fuzzy (n + 1)-dimensional fractional RDTM to obtain the solutions
of fuzzy fractional PDEs. The much more distinctive element of this method is that it requires
no predetermined assumptions, and reduces the computational effort. We apply the suggested
techniques to a set of initial valued problems and get approximate numerical solutions for linear
and nonlinear time-fractional PDEs. It is demonstrated that the fuzzy (n + 1)-dimensional fractional
RDTM is both accurate and simple to use. The methods are based on gH-differentiability and
fuzzy fractional derivatives. Some illustrative numerical examples are given to demonstrate the
effectiveness of our proposed methods. The results show that the methods are powerful mathematical
tools for solving fuzzy partial differential equations.

Keywords: fuzzy numbers; fuzzy fractional derivatives; fuzzy ADM; HPM; HAM; fuzzy (n + 1)-
dimensional RDTM; fuzzy heat-like and wave-like equations; fuzzy Zakharov-Kuznetsov equations

1. Introduction

One of the most important areas of study in the fuzzy analysis is the differential and
integral theory of fuzzy valued function, which is grounded in the idea of fuzzy number
space. In particular, the fuzzy differential and integral equations, that are extensively used
in engineering technology and social science, have piqued the interest of scholars from
a variety of disciplines. The study of fuzzy differential equations is mostly based on the
following three approaches; the first is based on the H-derivative and the generalized
derivative of Bede. The second is considered under Zadeh’s extension principle. The third
is predicated on differential inclusion theory and fuzzy differential equations theory. These
three explanations are different from one another.

In this work, we consider the H-derivative and the generalized derivative of Bede. We
summarize the contributions and novelty as follows:

• We present the comparison for a fuzzy (n + 1)-dimensional RDTM, ADM, VIM [1],
and fuzzy HPM [2] demonstrates that even though the results of these approaches
when implemented to the fuzzy wave-like and heat-like equations are the same. But,
the fuzzy (n + 1)-dimensional RDTM, like fuzzy HPM, does not require specific
algorithms and complex calculations such as fuzzy ADM or construction of correction
functionals using general Lagranges multipliers in the fuzzy variational iteration
method. In particular, the fuzzy RDTM and HPM are simple to apply and represent
two successful techniques to obtain the solution of fuzzy PDEs.
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• We investigated the comparison of fuzzy (n + 1)-dimensional RDTM, ADM, HPM,
and fuzzy HAM to obtain the solutions of fuzzy wave-like, heat-like and Zakharov-
Kuznetsov equations. Although the results of these methods are the same when
applied to problems. Moreover, the fuzzy (n + 1)-dimensional RDTM, HPM, and
HAM don’t require complex techniques and computations as fuzzy ADM. The results
recall that the fuzzy RDTM, HPM, and HAM are easy to use for solving fuzzy partial
differential equations.

• We propose the solutions of fuzzy fractional wave-like, heat-like, and Zakharov-
Kuznetsov equations using (n + 1)-dimensional fuzzy fractional RDTM. The method
is flexible and can solve problems without calculating complicated Adomian poly-
nomials or making unrealistic assumptions about nonlinear behavior. The provided
technique is thus an influential way of solving fuzzy fractional PDEs and fractional
order problems in physics, engineering, and other areas.

Fuzzy analysis and fuzzy differential equations have been proposed to deal with
uncertainty due to incomplete information that appears in several mathematical or com-
puter models of certain deterministic real-world phenomena. This theory has developed a
large number of applications in which fuzzy fractional differential equations and fractional
differential equations have emerged as important topics. Stefanini and Bede [3] proposed
the generalized Hukuhara differentiation of interval-valued functions and interval differen-
tial equations. Also, Bede and Stefanini [4] introduced the generalized differentiation of
fuzzy-valued functions. Gomes and Barros [5] discussed the generalized difference and
the generalized differentiability. Hong et al. [6] presented an exhaustive review of various
modern fractional calculus applications.

The concept of the fuzzy-type Riemann-Liouville differentiability based on Hukuhara
differentiability was introduced in [7,8] using the Hausdorff measure of non-compactness,
the researchers presented some fuzzy integral equations using appropriate compression-
type conditions. In literature various approaches and techniques, based on Hukuhara
differentiability or generalized Hukuhara differentiability [4], can be studied for the refer-
ences introduced in some of the works in the literature; see [9–18].

The fuzzy partial differential equations (FPDEs) have attracted great interest because
of their practical applications in many fields such as physics, social science, and other areas
of science and engineering. The FPDEs have been studied by many authors using different
methods. Keshavarza et al. [19] presented the fuzzy solution to the mathematical model of
a cancer tumor under Caputo-generalized Hukuhara partial differentiability by using fuzzy
integral transforms. Keshavarz and Allahviranloo [20] studied the fuzzy fundamental trian-
gular solution of the fractional diffusion equation under Caputo generalized Hukuhara par-
tial differentiability by using the fuzzy Laplace transform and the fuzzy Fourier transform.
Furthermore; see [1,21–24]. The authors [25,26] presented the various transport/diffusion
problem and an overview of the corresponding numerical solution approaches.

The differential transform method (DTM) was originally discussed by Zhou [27] in
1986, this technique adopts an analytic solution in polynomial form, which is different from
the traditional higher-order Taylor formula technique. After that, many researchers have
proposed this method to solve many problems [19,24,28–30]. To overcome the demerits
of complex computation of DTM, the RDTM was introduced by Keskin et al. [31,32] the
method is based on reputable semi-analytical technique and can be applied to find ap-
proximate solutions of PDEs, also there are several significant implementations employing
RDTM; see [32–41].

The Adomian decomposition method (ADM) is a well-known and effective approach
for solving any type of problem. It is efficient not just for linear but also for nonlinear
issues. This technique is famous for fast convergence and achieving the desired appropriate
precision in just a few iterations. Several authors have already contributed their works via
this technique; for example, see [1,24,42–44].

He [45–47] is considered as the pioneer of HPM by combining HAM [48,49] and the
perturbation method [50]. This method has been used to solve a wide range of problems
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with forwarding. Kashkari et al. [51] studied dissipative nonplanar solitons in an elec-
tronegative complex plasma by using the HPM. The HPM is used to solve both linear and
nonlinear higher-order boundary value problems numerically by Kanth and Aruna [52].
This method was used by Biazar et al. [53] to solve nonlinear systems of integro differential
equations. Osman et al. [24] compared the fuzzy HPM and other techniques applied to
solving the fuzzy (1 + n)-dimensional Burgers equation. Xu [54] proposed a perturbational
approach to construct analytical approximations based on the double-parameter transfor-
mation perturbation expansion method. Ahmad et al. [55] studied the nonlinear fractional
order KdV and Burger equation with exponential-Decay Kernel using HPM.

The HAM [56,57] was introduced by Liao in 1992. HAM was further developed and
improved by Liao in various subjects [58–60]. Several researchers have applied the HAM
for solving differential equations. Saratha et al. [61] studied the notion of a fractional
generalized integral transform under a modified Riemann-Liouville derivative with the
Mittag-Leffler function as a kernel. Li et al. [62] presented the time-delay feedback control of
a cantilever beam with concentrated mass based on the HAM. Naika et al. [48] studied the
estimating an approximate analytical solution of the HIV viral dynamic model via HAM.

This paper is structured as follows. In Section 2, we recall some basic definitions. In
Section 3, we applied the fuzzy (n + 1)-dimensional RDTM, ADM, HPM, and fuzzy HAM
to obtain the solutions of fuzzy partial differential equations. In Section 4, we present the
solution of fuzzy fractional partial differential equations via fuzzy (n + 1)-dimensional
fractional RDTM. Finally, a conclusion is given in Section 5.

2. Preliminaries

In this paper, we will denote the set of fuzzy numbers by E1, that are, normal, fuzzy
convex, upper semi-continuous and compactly supported fuzzy sets defined over the real
line. For 0 < λ ≤ 1, set [u]λ = {ϑ ∈ R|u(ϑ) ≥ λ}, and [u]0 = cl{ϑ ∈ R|u(ϑ) > 0}. We
explain [u]σ = [uσ, uσ], consequently if u ∈ E1, the σ-level set [u]σ is a closed interval for
all σ ∈ [0, 1] (see in [63,64]). Let u, v ∈ E1 and k ∈ R, the addition and scalar multiplication
are defined as

• [u + v]σ = [u]σ + [v]σ,
• [ku]σ = k[u]σ.

The triangular fuzzy number defined as a fuzzy set in E1, determined by u = (a, b, c) ∈
R and a ≤ b ≤ c such that uσ = a + (b− a)σ and uσ = c− (c− b)σ are the endpoints of
σ-level sets for all σ ∈ [0, 1]. A support of fuzzy number u is given as

sup p(u) = cl{ϑ ∈ R|u(ϑ) > 0},

where cl is the closure of set {ϑ ∈ R|u(ϑ) > 0}.
The Hausdorff distance D : E1 ×E1 −→ R+ ∪ {0} between fuzzy numbers is defined

as in [65]

D(u, v) = sup
σ∈[0,1]

{dH([u]σ, [v]σ)} = sup
σ∈[0,1]

max{|uσ − vσ|, |uσ − vσ|},

where dH is the Hausdorff metric.
The metric space

(
E1, D

)
is complete, locally compact and the following properties

from [65] for metric D are valid

• D(u⊕ w, v⊕ w) = D(u, v), ∀u, v, w ∈ E1,
• D(u⊕ v, w⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ E1,
• D(w̃⊕ ṽ, 0̃) ≤ D(w̃, 0̃) + D(ṽ, 0̃), ∀w̃, ṽ ∈ E1,
• D(k� u, k� v) = |k|D(u, v), ∀u, v ∈ E1, k ∈ R,
• D(k1 � u, k2 � u) = |k1 − k2|D(u, 0), ∀u ∈ E1, k1, k2 ∈ R, with k1 · k2 ≥ 0,
• D(u	 v, w	 e) ≤ D(u, w) + D(v, e), as long as u	 v, and w	 e ∀ u, v, w, e ∈ E1,

where 	 is the H-difference, it means that w	 v = u if and only if u⊕ v = w.
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Definition 1 ([4,66]). The gH-difference between two fuzzy numbers u, v ∈ E1 is defined as

u	gH v = e⇔
{

(i) u = v⊕ e, or

(ii) v = u⊕ (−e).
(1)

In terms of σ−levels, we get [u	gH v] = [min{wσ − vσ, wσ − vσ}, max{wσ − vσ, wσ −
vσ}] and if the H-difference exists, then u 	 v = u 	gH v; the conditions for the existence of
e = u	gH v ∈ E1 are

Case (i)

{
eσ = wσ − vσ and eσ = wσ − vσ, ∀λ ∈ [0, 1],

with eσ increasing, eσ decreasing, eσ ≤ eσ.
(2)

Case (ii)

{
eσ = wσ − vσ and eσ = wσ − vσ, ∀λ ∈ [0, 1],

with eσ increasing, eσ decreasing, eσ ≤ eσ.
(3)

It is easy to show that (i) and (ii) are both valid if and only if e is a crisp number.

Proposition 1 ([67]). Let u, v ∈ E1 are two fuzzy numbers. Then

• If the gH-difference exists, it is unique.
• u	gH v = u	 v or u	gH v = −(v	 u) whenever the statement on the right exists,

especially, u	gH u = u	 u = 0.
• If u	gH v exists in sense (i), then v	gH u exists in sense (ii) and vice versa.
• (u + v)	gH v = u.
• 0	gH

(
u	gH v

)
= v	gH u.

• u	gH v = v	gH u = k if and only if k = −k; moreover, k = 0 if and only if u = v.

Definition 2 ([4]). Let f : [a, b] → E1 and ϑ0 ∈ (a, b), with f (ϑ; σ) and f (ϑ; σ) both differen-
tiable at ϑ0, then

• f is [i− gH]-differentiable at ϑ0 if

f ′i−gH(ϑ0; σ) =

[(
f
)′
(ϑ0; σ),

(
f
)′
(ϑ0; σ)

]
, 0 ≤ σ ≤ 1, (4)

• f is [ii− gH]-differentiable at ϑ0 if

f ′ii−gH(ϑ0; σ) =

[(
f
)′
(ϑ0; σ),

(
f
)′
(ϑ0; σ)

]
, 0 ≤ σ ≤ 1. (5)

Definition 3 ([3]). We say that a point ϑ0 ∈ (a, b) is a switching point for the differentiability of a
function f if in any neighborhood V of ϑ0 there exist points ϑ1 < ϑ0 < ϑ2 such that

• type I at ϑ1 (4) holds while (5) does not hold and at ϑ2 (5) holds and (4) does not hold,
or

• type II at ϑ1 (5) holds while (4) does not hold and at ϑ2 (4) holds and (5) does not hold.

Definition 4 ([63]). Let f : [a, b]→ E1 and f ′gH(ϑ) be gH-differentiable at ϑ0 ∈ (a, b) and there

is no switching point on (a, b), with
(

f
)′
(ϑ; σ) and

(
f
)′
(ϑ; σ) are both differentiable at ϑ0. Then

• f ′gH(x) is [i− gH]-differentiable whenever the type of gH-differentiability f (ϑ) and
f ′gH(ϑ) is the same:
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f ′′i−gH(ϑ0; σ) =

[(
f
)′′

(ϑ0; σ),
(

f
)′′

(ϑ0; σ)

]
, 0 ≤ σ ≤ 1, (6)

• f ′gH(ϑ) is [ii− gH]-differentiable if the type of gH-differentiability f (ϑ) and f ′gH(ϑ) is
different:

f ′′ii−gH(ϑ0; σ) =

[(
f
)′′

(ϑ0; σ),
(

f
)′′

(ϑ0; σ)

]
, 0 ≤ σ ≤ 1. (7)

Definition 5 ([68]). Let us suppose a function f : [a, b] → E1 be fuzzy Riemann integrable in
I ∈ RF if for any ε > 0 there exists δ > 0 such that for any division P = {[u, v]; ξ} with the norm
∆(P) < δ

D

(
∗
∑
p
(v− u)� f (ξ), I

)
< ε,

where ∑∗p denotes the fuzzy summation and I indicates
∫ b

a f (ϑ)dx.

Definition 6 ([69]). A fuzzy-number-valued function f : [a, b]→ E1 is said to be continuous at
t0 ∈ [a, b] if for each ε > 0 there exist δ > 0 such that D( f (t), f (t0)) < ε whenever |t− t0| < δ.
If f is continuous for each t ∈ [a, b] then we say that f is fuzzy continuous on [a, b].

Definition 7 ([70]). A fuzzy-number-valued function f : [a, b]→ E1 is said to bounded iff there
is M ≥ 0 such that D( f (t), 0) = ‖ f (u)‖ ≤ M for all t ∈ [a, b].

Definition 8 ([63]). A fuzzy-valued function f̃ of two variables is a rule that assigns to each
ordered pair of real numbers, (ϑ, t), in a set D a unique fuzzy number denoted by f̃ (ϑ, t). The set D
is the domain of f̃ and its range is the set of values taken by f̃ , i.e., { f̃ (ϑ, t)|(ϑ, t) ∈ D}.

The fuzzy-valued function f̃ : D → E1 can also be expressed in the parametric representation
as f̃ (ϑ, t; σ) = [ f (ϑ, t; σ), f (ϑ, t; σ)], for all (ϑ, t) ∈ D and σ ∈ [0, 1].

3. Fuzzy Partial Differential Equations

In this section, we present the solution of fuzzy partial differential equations. We
considered the following fuzzy (n + 1)-dimensional reduced differential transform.

3.1. Fuzzy (n + 1)-Dimensional Reduced Differential Transform

We propose the fuzzy (n + 1)-dimensional reduced differential transform for solv-
ing fuzzy partial q-differential equations, the theory of (n + 1)-dimensional RDTM with
uncertainty represented by using fuzzy concepts is explained as follows.

Definition 9. Let us consider X = (ϑ1, ϑ2, ..., ϑn) be a vector of (n + 1)-dimensional reduced
differential transformed form of ϑς(t) = (x1, x2, ..., xn), respectively, where ϑς(t) be differentiable
of order l over time domain T, then

X ς(l; σ) =

[
∂lϑς(t; σ)

∂tl

]
t=0

, ∀l ∈ K = {0, 1, 2, 3, ...},

X ς(l; σ) =

[
∂lϑς(t; σ)

∂tl

]
t=0

, ∀l ∈ K = {0, 1, 2, 3, ...},

 (8)
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when ϑς(t) is (i)-differentiable and

X ς(l; σ) =
∂lϑς(t; σ)

∂tl |t=0 , l is odd,

X ς(l; σ) =
∂lϑς(t; σ)

∂tl |t=0 , l is odd,

 (9)

and

X ς(l; σ) =
∂lϑς(t; σ)

∂tl |t=0 , l is even,

X ς(l; σ) =
∂lϑς(t; σ)

∂tl |t=0 , l is even,

 (10)

when ϑς(t) is (ii)-differentiable.

Notice that X ς(l; σ) and X ς(l; σ) denote the lower and upper spectrum of ϑς(t) at
t = 0, respectively.

Thus, if ϑς(t) be (i)-differentiable, then ϑς(t) can be expressed as:

ϑς(t; σ) =
∞

∑
l=0

X (l; σ)tl

l!
, l ∈ K, 0 ≤ σ ≤ 1, (11)

ϑς(t; σ) =
∞

∑
l=0

X (l; σ)tl

l!
, l ∈ K, 0 ≤ σ ≤ 1, (12)

and if ϑς(t) be (ii)-differentiable, then ϑς(t) can be expressed as:

ϑς(t; σ) =
∞

∑
l=1,odd

X (l; σ)tl

l!
+

∞

∑
l=0,even

X (l; σ)tl

l!
, 0 ≤ σ ≤ 1, (13)

ϑς(t; σ) =
∞

∑
l=1,odd

X (l; σ)tl

l!
+

∞

∑
l=0,even

X (l; σ)tl

l!
, 0 ≤ σ ≤ 1. (14)

The mentioned equations are known as the inverse transformation of X(l; σ), which
can be defined as

X (l; σ) = P(l)

∂l
(

ϑς(t; σ)
)

∂tl


t=0

, ∀l ∈ K,

X (l; σ) = P(l)

∂l
(

ϑς(t; σ)
)

∂tl


t=0

, ∀l ∈ K,


(15)

when ϑς(t) is (i)-differentiable then, we have

X (l; σ) = P(l)

[
∂l(ϑς(t; σ))

∂tl

]
t=0

, l is odd,

X (l; σ) = P(l)

[
∂l(ϑς(t; σ))

∂tl

]
t=0

, l is odd,


(16)

and
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X (l; σ) = P(l)

[
∂l(ϑς(t; σ))

∂tl

]
t=0

, l is even,

X (l; σ) = P(l)

[
∂l(ϑς(t; σ))

∂tl

]
t=0

, l is even,


(17)

when ϑς(t) is (ii)-differentiable, then, the function ϑς(t) can be expressed as:

ϑς(t; σ) =
∞

∑
l=0

tl

l!
X (l; σ)

P(l)
, l ∈ K, 0 ≤ σ ≤ 1, (18)

ϑς(t; σ) =
∞

∑
l=0

tl

l!
X (l; σ)

P(l)
, l ∈ K, 0 ≤ σ ≤ 1, (19)

when ϑς(t) are (i)-differentiable, and if ϑς(t) be (ii)-differentiable, we obtain

ϑς(t; σ) =

[
∞

∑
l=1,odd

tl

l!
X (l; σ)

P(l)
+

∞

∑
l=0,even

tl

l!
X (l; σ)

P(l)

]
, 0 ≤ σ ≤ 1, (20)

ϑς(t; σ) =

[
∞

∑
l=1,odd

tl

l!
X (l; σ)

P(l)
+

∞

∑
l=0,even

tl

l!
X (l; σ)

P(l)

]
, 0 ≤ σ ≤ 1, (21)

where P(l) > 0, P(l) denoted the weighting factor. In this work P(l) = Cl

l! is applied, where
C is the time horizon on interest. Consequently, if ϑς(t) be (i)-differentiable, then

X (l; σ) =
Cl

l!
∂lϑς(t; σ)

∂tl , l ∈ K, 0 ≤ σ ≤ 1, (22)

X (l; σ) =
Cl

l!
∂lϑς(t; σ)

∂tl , l ∈ K, 0 ≤ σ ≤ 1, (23)

and if ϑς(t) be (ii)-differentiable, then

X (l; σ) =
Cl

l!
∂lϑς(t; σ)

∂tl , l is odd, 0 ≤ σ ≤ 1,

X (l; σ) =
Cl

l!
∂lϑς(t; σ)

∂tl , l is odd, 0 ≤ σ ≤ 1,

 (24)

and

X (l; σ) =
Cl

l!
∂lϑς(t; σ)

∂tl , l is even, 0 ≤ σ ≤ 1,

X (l; σ) =
Cl

l!
∂lϑς(t; σ)

∂tl , l is even, 0 ≤ σ ≤ 1.

 (25)

Unitizing the fuzzy (n + 1)-dimensional RDTM, the fuzzy PDEs in the particular
domain is transformed into an algebraic equation in the domain K, and ϑς(t) is provided
as the finite-term Taylor series plus a reminder as:

ϑς(t; σ) =
n

∑
l=0

tl

l!
X (l; σ)

P(l)
+ Rn+1(t) =

n

∑
l=0

(
t
C

)lX (l; σ)

P(l)
+ Rn+1(t), l ∈ K, 0 ≤ σ ≤ 1, (26)

ϑς(t; σ) =
n

∑
l=0

tl

l!
X (l; σ)

P(l)
+ Rn+1(t) =

n

∑
l=0

(
t
C

)lX (l; σ)

P(l)
+ Rn+1(t), l ∈ K, 0 ≤ σ ≤ 1, (27)

when ϑς(t) is (i)-differentiable and
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ϑς(t; σ) =
n

∑
l=0,odd

(
t
C

)lX (l; σ)

P(l)
+ Rn+1(t) +

∞

∑
l=0,even

(
t
C

)lX (l; σ)

P(l)
+ Rn+1(t), 0 ≤ σ ≤ 1, (28)

ϑς(t; σ) =
∞

∑
l=0,odd

(
t
C

)lX (l; σ)

P(l)
+ Rn+1(t) +

∞

∑
l=0,even

(
t
C

)lX (l; σ)

P(l)
+ Rn+1(t), 0 ≤ σ ≤ 1, (29)

when ϑς(t) is (ii)-differentiable.
In this section, we present the solution of fuzzy PDEs at the equally spaced grid points

[t0, t1, ..., tn] where tς = a + ςl∗ for each (ς = 0, 1, 2, ...n), and l∗ = b−a
n . That is, the domain

of interest are proved to n is sub-domain, and the fuzzy approximation functions in each
sub-domain are ϑς(t; σ) for ς = 0, 1, 2, ..., n− 1, respectively.

Taking the initial conditions, we obtain

X (0; σ) = ϑς(0; σ), X (0; σ) = ϑς(0; σ), 0 ≤ σ ≤ 1.

In the first sub-domain, ϑς(t; σ) and ϑς(t; σ) can be described by ϑς(0; σ) = ϑς,0(σ)

and ϑς(0; σ) = ϑς,0(σ), respectively. They can be expressed in terms of their n-th order
bivariate Taylor series with respect to t0 = 0. That is

ϑς(t0; σ) = X 0(0; σ) +X 0(1; σ)t +X 0(2; σ)t2 + ... +X 0(n; σ)tn,

and

ϑς(t0; σ) = X 0(0; σ) +X 0(1; σ)t +X 0(2; σ)t2 + ... +X 0(n; σ)tn.

Additionally, using Taylor series for ϑς(tς; λ), the solution on the grid points tς+1 can
be expressed as:

ϑς(tς+1; σ) = X ς(tς+1; σ) = X ς(0; σ) +X ς(1; σ)(tς+1 − tς) +X ςι(2; σ)(tς+1 − tς)
2

+ ... +X ς(n; σ)(tς+1 − tς)
n

=
n

∑
i=0
X ς(i; σ)hi,

and

ϑς(tς+1; σ) = X ς(tς+1; σ) = X ς(0; σ) +X ς(1; σ)(tς+1 − tς) +X ςι(2; σ)(tς+1 − tς)
2

+ ... +X ς(n; σ)(tς+1 − tς)
n

=
n

∑
i=0
X ς(i; σ)hi.

3.1.1. The Properties of Fuzzy (N + 1)-Dimensional Reduced Differential Transform

We present some mathematical operations of fuzzy (n + 1)-dimensional RDTM
as following.

Proposition 2. Let u(X , t) and v(X , t) are fuzzy-valued functions and their fuzzy (n + 1)-
dimensional reduced differential transformations denoted by Ul(X ) and Vl(X ), respectively. Then

• If f (X , t) = u(X , t)⊕ v(X , t), then Fl(X ) = Ul(X )⊕Vl(X ), l ∈ K
• If f (X , t) = u(X , t)	gH v(X , t), then Fl(X ) = Ul(X )	gH Vl(X ), l ∈ K
• If f (X , t) = c� u(X , t), then Fl(X ) = c�Ul(X ), l ∈ K, where c is a constant.

provided the generalized Hukuhara difference (gH-difference) exists.
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Proof. By using definition (9), the proof is obvious.

Proposition 3. Let us consider the fuzzy-valued function w ∈ E1 and f (X , t) = ∂w(X ,t)
∂t , then

we can obtain Fl(X ) = (l+1)!
l! Wl+1(X ), l ≥ 1 where Fl(X ) and Wl(X ) are the fuzzy (n + 1)-

dimensional reduced differential transformations of fuzzy-valued functions f and w, respectively.

Proof. Using Definition (9), we obtain for 0 ≤ σ ≤ 1

Fl(X ; σ) =
1
l!

[
∂l

∂tl

(
∂

∂t
w(X , t; σ);

∂

∂t
w(X , t; σ)

)]
t=0

=
1
l!

[
∂l+1

∂tl+1 w(X , t; σ);
∂l+1

∂tl+1 w(X , t; σ)

]
t=0

= (l + 1)

[
1

[l + 1]!

(
∂l+1

∂tl+1 w(X , t; σ);
∂l+1

∂tl+1 w(X , t; σ)

)]
t=0

.

Using definition of fuzzy (n + 1)-dimensional RDTM, we have

Fl(X ; σ) =
(l + 1)!

l!
Wl+1(X ; σ), 0 ≤ σ ≤ 1,

the proof is completed.

Lemma 1. Suppose w ∈ E1 and f (X , t) = ∂w(X ,t)
∂ϑς

, then we can obtain Fl(X ) = ∂Wl(X )
∂ϑς

, l ≥ 1
where Fl(X ) and Wl(X ) are the fuzzy (n + 1)-dimensional reduced differential transformations of
fuzzy-valued functions f and w, respectively.

Proof. Using definition (9), we can obtain the following equation for σ ∈ [0, 1]

f (X , t; σ) =
∂w(X , t; σ)

∂ϑς
=

[
∂w(X , t; σ)

∂ϑς
,

∂w(X , t; σ)

∂ϑς

]
. (30)

Similarly, in view of definition (9) the fuzzy RDTM function can be written as:

Fl(X ; σ) =
1
l!

[
∂lw(X , t; σ)

∂tl ;
∂lw(X , t; σ)

∂tl

]∣∣∣∣∣
t=0

. (31)

We achieve the result by differentiating the right side of the preceding equality with
consideration to ϑς,

∂Fl(X ; σ)

∂ϑς
=

∂
(

1
l!

[
∂l w(X ,t;σ)

∂tl ; ∂lw(X ,t;σ)
∂tl

]∣∣∣
t=0

)
∂ϑς

=
1
l!

∂l
[

∂w(X ,t;σ)
∂ϑς

; ∂w(X ,t;σ)
∂ϑς

]
∂tl

∣∣∣∣∣∣
t=0

= Fl(X ; σ) 0 ≤ σ ≤ 1,

Hence, the proof is completed by achieving our desired result.

Lemma 2. Let us consider w ∈ E1 and f (X , t) = ∂℘1+...+℘n+ηw(X ,t)
∂ϑ

℘1
1 ,...,∂ϑ℘n

n ∂tη
, then we have

Fl(X ) = (l+η)!
l!

∂℘1+...+℘n Wl+η(X )

∂ϑ
℘1
1 ,...,∂ϑ℘n

n
, l ≥ n where Fl(X ) and Wl(X ) are the fuzzy (n+ 1)-dimensional

reduced differential transformations of fuzzy-valued functions f and w, respectively.
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Proof. Using definition (9), we obtain for 0 ≤ σ ≤ 1

f (X , t; σ) =
∂℘1+...+℘n+ηw(X , t; σ)

∂ϑ℘1
1 , ..., ∂ϑ℘n

n ∂tη
=

[
∂℘1+...+℘n+ηw(X , t; σ)

∂ϑ℘1
1 , ..., ∂ϑ℘n

n ∂tη
,

∂℘1+...+℘n+ηw(X , t; σ)

∂ϑ℘1
1 , ..., ∂ϑ℘n

n ∂tη

]
,

we have

Fl(X ; σ) =
1
l!

[
∂l

∂tl

(
∂℘1+...+℘n+ηw(X , t; σ)

∂ϑ℘1
1 , ..., ∂ϑ℘n

n ∂tη
,

∂℘1+...+℘n+ηw(X , t; σ)

∂ϑ℘1
1 , ..., ∂ϑ℘n

n ∂tη

)]∣∣∣∣
t=0

.

From the calculus, one can obtain

Fl(X ; σ) =
1
l!

∂℘1+...+℘n

∂ϑ℘1
1 ...∂ϑ℘n

n

[
∂l+ηw(X , t; σ)

∂tl+η
,

∂l+ηw(X , t; σ)

∂tl+η

]∣∣∣∣
t=0

. (32)

Consequently, the fuzzy (n + 1)-dimensional RDTM of fuzzy-valued function
w(X , t; σ) = [w(X , t; σ), w(X , t; σ)], as follows

Fl+η(X ; σ) =
1

(l + η)!

[
∂l+ηw(X , t; σ)

∂tl+η
,

∂l+ηw(X , t; σ)

∂tl+η

]∣∣∣∣
t=0

,

thus, we get

Fl(X ; σ) =
(l + η)!

l!
∂℘1+...+℘n Wl+η(X ; σ)

∂ϑ℘1
1 , ..., ∂ϑ℘n

n
, 0 ≤ σ ≤ 1. (33)

the proof is completed.

Theorem 1. Let Wl(X ) and Gl(X ) are the (n + 1)-dimensional fuzzy RDTM of w(X , t) is a
positive real-valued function and g(X , t) is a fuzzy-valued function. Also let us suppose that if
f (X , t) = w(X , t)g(X , t), then

Fl(X ; σ) =
l

∑
℘=0

W℘(X )� Gl−℘(X ; σ), 0 ≤ σ ≤ 1. (34)

Proof. Using definition (9), we get

f (X ; σ) ≈
(

n

∑
l=0

Wl(X )tl

)
�
(

n

∑
l=0

Gl(X ; σ)tl

)
=
[
W0(X ) + W1(X )t + W2(X )t2 + ... + Wn(X )tn

]
�
[

G0(X ; σ) + G1(X ; σ)t + G2(X ; σ)t2+

... + Gn(X ; σ)tn]

= [W0(X)G0(X ; σ)] + [W0(X )G1(X ; σ) + W1(X )G0(X ; σ)]t

+ [W0(X )G2(X ; σ) + W1(X )G1(X ; σ) + W2(X )G0(X ; σ)]t2 + ...

+ [W0(X )Gn(X ; σ) + W1(X )Gn−1(X ; σ) + ... + Wn−1(X )G1(X ; σ) + Wn(X )G0(X ; σ)]tn.

In general, we obtain

f (X ; σ) ≈
n

∑
l=0

l

∑
℘=0

W℘(X )Gl−℘(X ; σ)tl ,

and from the definition of (n + 1)-dimensional RDTM, we obtain
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Fl(X ; σ) =
l

∑
℘=0

W℘(X )� Gl−℘(X ; σ), 0 ≤ σ ≤ 1.

This completes our required proof.

Lemma 3. Assume that f∈ E1, if f (X , t) = ϑı1
1 , ϑı2

2 , ..., ϑın
n tη , then Fl(X ) = ϑı1

1 , ϑı2
2 , ..., ϑın

n δ(l −
η), where

δ(l − η) =

{
1, l = η,

0, otherwise,
are the fuzzy (n + 1)-dimensional reduced differential transformations of f .

Proof. From definition (9), for any σ ∈ [0, 1], we obtain

Fl(X ; σ) =
1
l!

[
∂l f (X , t; σ)

∂tl ,
∂l f (X , t; σ)

∂tl

]∣∣∣∣∣
t=0

=
1
l!

[
ϑı1

1 , ϑı2
2 , ..., ϑın

n
∂ltη

∂tl

]∣∣∣∣∣
t=0

.

This means

• If l < η or η < l, then Fl(X ; σ) = 0̃,
• If l = η, then Fl(X ; σ) = ϑı1

1 , ϑı2
2 , ..., ϑın

n ,

the required proof is completed.

Lemma 4. Let g∈ E1 and f (X , t) = ϑı1
1 , ϑı2

2 , ..., ϑın
n tη g(X , t), where η ≤ l, then Fl(X ) =

ϑı1
1 , ϑı2

2 , ..., ϑın
n Gl−η(X ), are the fuzzy (n + 1)-dimensional RDTM of fuzzy-valued functions f and

g, respectively.

Proof. From Definition (9), for any σ ∈ [0, 1]. Assume that w(X , t) = ϑı1
1 , ϑı2

2 , ..., ϑın
n tη , i.e.,

f (X , t) = w(X , t)g(X , t). According to Theorem (1), the RDTM real-valued function of
f (X , t) is

Fl(X ; σ) =
l

∑
℘=0

W℘(X ) · Gl+℘(X ; σ), 0 ≤ σ ≤ 1,

Fl(X ; σ) =
l

∑
℘=0

W℘(X ) · Gl+℘(X ; σ), 0 ≤ σ ≤ 1.

Using Lemma (3), it follows

W℘(X ) = ϑı1
1 , ϑı2

2 , ..., ϑın
n tηδ(℘− η). (35)

Since η ≤ l, and using (35), we get

Fl(X ; σ) = Wη(X ) · Gl+η(X ; σ) = ϑı1
1 , ϑı2

2 , ..., ϑın
n Gl−η(X ; σ), 0 ≤ σ ≤ 1,

the proof is completed.

Theorem 2. Let us consider the real-valued function w ∈ R and f (X , t) = w(X ) · g(X , t), then
Fl(X ) = w(X ) · Gl(X ), where Fl(X ) and Gl(X ) are (n + 1)-dimensional RDTM of real-valued
functions f and g, respectively.
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Proof. Using definition (9) for σ ∈ [0, 1], we obtain

Fl(X ; σ) =
1
l!

[
∂lw(X ) · g(X, t; σ)

∂tl ,
∂lw(X ) · g(X , t; σ)

∂tl

]∣∣∣∣∣
t=0

= w(X )
1
l!

[
∂l g(X , t; σ)

∂tl ,
∂l g(X , t; σ)

∂tl

]∣∣∣∣∣
t=0

,

thus, we obtain

Fl(X ; σ) = w(X ) · Gl(X ; σ), 0 ≤ σ ≤ 1,

which is our required result.

3.1.2. Applications

In this section, we propose some examples in [1,2] to illustrate the applicability of the
alternative approach of fuzzy (n + 1)-dimensional RDTM to obtain the solutions of fuzzy
heat-like and wave-like equations with variable coefficients.

Example 1. We consider the following fuzzy (2 + 1)-dimensional heat-like equation [1,2]

∂w
∂t

=
1
2

(
θ2 � ∂2w

∂ϑ2 ⊕ ϑ2 � ∂2w
∂θ2

)
, 0 < ϑ, θ < 1, t > 0, (36)

with the initial condition

w(ϑ, θ, 0) = [(1 + 2σ)n, (5− 2σ)n]	gH θ2, (37)

where n = 1, 2, 3, ...
Applying the fuzzy reduced differential transform to (36), we get

(l + 1)W l+1(σ) =
θ2

2
∂2W l(σ)

∂ϑ2 +
ϑ2

2
∂2W l(σ)

∂θ2 , 0 ≤ σ ≤ 1, (38)

(l + 1)W l+1(σ) =
θ2

2
∂2W l(σ)

∂ϑ2 +
ϑ2

2
∂2W l(σ)

∂θ2 , 0 ≤ σ ≤ 1. (39)

Similarly, applying fuzzy reduced differential transformation on the initial condition (37)
to achieve

W0(σ) = [(1 + 2σ)n, (5− 2σ)n]	gH θ2. (40)

Putting Equations (40) into (38), we obtain

w(ϑ, θ, t; σ) =
∞

∑
l=0

W lt
l

= (1 + 2σ)n −
[

θ2
(

1 +
t2

2!
+

t4

4!
+ ...

)
+ ϑ2

(
t +

t3

3!
+

t5

5!
+ ...

)]
and

w(ϑ, θ, t; σ) =
∞

∑
l=0

W ltl

= (5− 2σ)n −
[

θ2
(

1 +
t2

2!
+

t4

4!
+ ...

)
+ ϑ2

(
t +

t3

3!
+

t5

5!
+ ...

)]
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thus, we can achieve the solution of w(ϑ, θ, t; σ) as follows:

w(ϑ, θ, t; σ) = [(1 + 2σ)n, (5− 2σ)n]	gH

(
θ2 cosh(t) + ϑ2 sinh(t)

)
, 0 ≤ σ ≤ 1.

Example 2. Consider the following fuzzy (3 + 1)-dimensional heat-like equation [1,2]

∂w
∂t

= Ψ(ϑ, θ, φ)⊕ 1
36

(
ϑ2 � ∂2w

∂ϑ2 ⊕ θ2 � ∂2w
∂θ2 ⊕ φ2 � ∂2w

∂φ2

)
, 0 < ϑ, θ, φ < 1, t > 0, (41)

subject to the initial condition

w(ϑ, θ, φ, 0) = 0̃, (42)

where

Ψ(ϑ, θ, φ; σ) = (−1, 0, 1)n � (ϑθφ)4

= [(σ− 1)n, (1− σ)n]� (ϑθφ)4, 0 ≤ σ ≤ 1, n = 1, 2, 3, ..., 0̃∈ E1.

Applying the fuzzy (n + 1)-dimensional reduced differential transform on (41) to get

(l + 1)W l+1(σ) = (σ− 1)n(ϑθφ)4 +
1

36

(
ϑ2 ∂2w

∂ϑ2 + θ2 ∂2w
∂θ2 + φ2 ∂2w

∂φ2

)
(σ), t > 0, (43)

(l + 1)W l+1(σ) = (1− σ)n(ϑθφ)4 +
1

36

(
ϑ2 ∂2w

∂ϑ2 + θ2 ∂2w
∂θ2 + φ2 ∂2w

∂φ2

)
(σ), t > 0. (44)

Using the initial condition (42), we obtain

W0(σ) = 0̃, (45)

W0(σ) = 0̃. (46)

Substituting (46) into (43), we obtain the series solution as

w(ϑ, θ, φ, t; σ) = (σ− 1)n(ϑθφ)4
(

t +
t2

2!
+

t3

3!
+

t4

4!
+ ...

)
,

w(ϑ, θ, φ, t; σ) = (1− σ)n(ϑθφ)4
(

t +
t2

2!
+

t3

3!
+

t4

4!
+ ...

)
,

we can obtain the exact solution as:

w(ϑ, θ, φ, t; σ) = [(σ− 1)n, (1− σ)n]� (ϑθφ)4(exp(t)− 1), 0 ≤ σ ≤ 1.

Example 3. Consider the following fuzzy (2 + 1)-dimensional wave-like equation [1,2]

∂2w
∂t2 =

1
12

(
ϑ2 � ∂2w

∂ϑ2 ⊕ θ2 � ∂2w
∂θ2

)
, 0 < ϑ, θ < 1, t > 0, (47)

subject to the initial conditions

w(ϑ, θ, 0) = [(0.2 + 0.2σ)n, (0.6− 0.2σ)n]� ϑ4,

∂w
∂t

∣∣∣∣
t=0

= [(0.2 + 0.2σ)n, (0.6− 0.2σ)n]� θ4,
(48)

where n = 1, 2, 3, ...
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Using the fuzzy RDTM for (47), we get

(l + 1)(l + 2)W l+2(σ) =
1

12

(
ϑ2 ∂2W l(λ)

∂ϑ2 + θ2 ∂2W l(σ)

∂θ2

)
(σ), t > 0, (49)

(l + 1)(l + 2)W l+2(σ) =
1

12

(
ϑ2 ∂2W l(σ)

∂ϑ2 + θ2 ∂2W l(σ)

∂θ2

)
(σ), t > 0. (50)

From initial conditions (48), we obtain

W0(σ) = (0.2 + 0.2λ)nϑ4, W1(σ) = (0.2 + 0.2λ)nθ4, (51)

W0(σ) = (0.6− 0.2λ)nϑ4, W1(σ) = (0.6− 0.2λ)nθ4. (52)

Substituting (52) into (49), we get the series solution as:

w(ϑ, θ, t; σ) = (0.2 + 0.2σ)n
[

ϑ4
(

1 +
t2

2!
+

t4

4!
+ ...

)
+ θ4

(
t +

t3

3!
+

t5

5!
+ ...

)]
,

w(ϑ, θ, t; σ) = (0.6− 0.2σ)n
[

ϑ4
(

1 +
t2

2!
+

t4

4!
+ ...

)
+ θ4

(
t +

t3

3!
+

t5

5!
+ ...

)]
,

We can obtain the exact solution as:

w̃(ϑ, θ, t; σ) = [(0.2 + 0.2σ)n, (0.6− 0.2σ)n]�
(

ϑ4 cosh(t) + θ4 sinh(t)
)

, 0 ≤ σ ≤ 1.

Example 4. Consider the following fuzzy (3 + 1)-dimensional wave-like equation [1,2]

∂2w
∂t2 =

(
ϑ2 + θ2 + φ2

)
⊕ 1

2

(
ϑ2 � ∂2w

∂ϑ2 ⊕ θ2 � ∂2w
∂θ2 ⊕ φ2 � ∂2w

∂φ2

)
, 0 < ϑ, θ, φ < 1, t > 0, (53)

with the initial conditions

w(ϑ, θ, φ, 0) = 0̃,
∂w
∂t

∣∣∣∣
t=0

= [(0.5σ)n, (1− 0.5σ)n]⊕
(

ϑ2 + θ2 − φ2
)

, (54)

where n = 1, 2, 3, ...
Applying (53), we get

(l + 1)(l + 2)W l+2(σ) =
(

ϑ2 + θ2 + φ2
)
+

1
2

(
ϑ2 ∂2W l

∂ϑ2 + θ2 ∂2W l
∂θ2 + φ2 ∂2W l

∂φ2

)
, t > 0, (55)

(l + 1)(l + 2)W l+2(σ) =
(

ϑ2 + θ2 + φ2
)
+

1
2

(
ϑ2 ∂2W l

∂ϑ2 + θ2 ∂2W l
∂θ2 + φ2 ∂2W l

∂φ2

)
, t > 0. (56)

Taking Equation (54) yields

W0(σ) = (0.5σ)n, W1(σ) = (0.5σ)n +
(

ϑ2 + θ2 − φ2
)

, (57)

W0(σ) = (1− 0.5σ)n, W1(σ) = (1− 0.5σ)n +
(

ϑ2 + θ2 − φ2
)

. (58)

Using (58) into (55), we get the series solution as:

w(ϑ, θ, t; σ) = (0.5σ)n +

[
(ϑ2 + θ2)

(
1 + t +

t2

2!
+ ...

)
+ φ2

(
1− t +

t2

2!
+ ...

)
−
(

ϑ2 + θ2 + φ2
)]

w(ϑ, θ, t; σ) = (1− 0.5σ)n +

[
(ϑ2 − θ2)

(
1 + t +

t2

2!
+ ...

)
+ φ2

(
1− t +

t2

2!
+ ...

)
−
(

ϑ2 + θ2 + φ2
)]
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We can find the exact solution as:

w(ϑ, θ, t; σ) = [(0.5σ)n, (1− 0.5σ)n]⊕
((

ϑ2 + θ2
)

exp(t) + φ2 exp(−t)−
(

ϑ2 + θ2 + φ2
))

, 0 ≤ σ ≤ 1.

When this method is compared to other methods in [1,2], it shows that when these
methods are used to solve fuzzy heat-like and wave-like equations, they all lead to the same
proposed solution. In addition, fuzzy (n + 1)-dimensional RDTM like HPM doesn’t always
involve specific algorithms and complex calculations like fuzzy ADM or the development
of correction functionals utilizing general Lagranges multipliers in the fuzzy VIM. So,
the fuzzy (n + 1)-dimensional RDTM is a better way to solve fuzzy partial differential
equations and is also simple and easy to use.

3.2. Fuzzy Zakharov-Kuznetsov Equations

In this part, we present the nonlinear fuzzy Zakharov-Kuznetsov equations as follows:

wt ⊕ Υ1 � (wm)ϑ ⊕ Υ2 � (wn)ϑϑϑ ⊕ Υ3 � (wl)θθϑ = 0, mnl 6= 0, Υ1, Υ2, Υ3 ≥ 0, (59)

subject to the initial condition

w(ϑ, θ, t) = f (ϑ, θ, t), (60)

where Υ1, Υ2, Υ3 are the arbitrary constants and m, n, l are integrals.

3.3. Fuzzy Adomian Decomposition Method

Consider the following formal nonlinear fuzzy differential equation as:

Lw⊕Rw⊕Nw = 0, (61)

where L is a linear differential operator, R denotes the linear operator’s remainder, and
Nw denotes the nonlinear terms. We can obtain (61) using the inverse operator L−1 on
both sides

L−1Lw⊕L−1(Rw)⊕L−1(Nw) = 0, (62)

Firstly, (59) can be represented as

Lw = Nw, (63)

where

L =
∂

∂t
, (64)

and

Nw = −Υ1 � (wm)ϑ 	gH Υ2 � (wn)ϑϑϑ 	gH Υ3 �
(

wl
)

θθϑ
. (65)

Suppose that L−1 and an integral operator defined by

L−1(·) =
∫ t

0
(·)dt. (66)

Using the integral operator L−1 on both sides of (59), we get

w(ϑ, θ, t; σ) = w(ϑ, θ, 0)(σ)	gH L−1
(

Υ1 � (wm)ϑ ⊕ Υ2 � (wn)ϑϑϑ ⊕ Υ3 �
(

wl
)

θθϑ

)
. (67)
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The fuzzy decomposition method assumes a series solution for w̃(ϑ, θ, t; σ) given by
an infinite sum of components as:

w(ϑ, θ, t; σ) =
∞

∑
l=0

wl(ϑ, θ, t; σ) (68)

where w0, w1, w2, ... are obtained sequentially.
The nonlinear terms 

F (w(ϑ, θ, t; σ)) = (wm(ϑ, θ, t; σ))ϑ

G(w(ϑ, θ, t; σ)) = (wn(ϑ, θ, t; σ))ϑϑϑ

H(w(ϑ, θ, t; σ)) = (wl(ϑ, θ, t; σ))θθϑ

(69)

are decomposed into three infinite polynomial series

F (w(ϑ, θ, t; σ)) = (wm(ϑ, θ, t; σ))ϑ =
∞

∑
l=0
Al

G(w(ϑ, θ, t; σ)) = (wn(ϑ, θ, t; σ))ϑϑϑ =
∞

∑
l=0
Bl

H(w(ϑ, θ, t; σ)) = (wl(ϑ, θ, t; σ))θθϑ =
∞

∑
l=0
Cl ,

(70)

where Al ,Bl , and Cl are Adomian polynomials, which can be used to determine all types
of nonlinearities using fuzzy Adomian’s techniques. The analytical formulae for Adomian
polynomials are:

Al =
1
l!

[
dl

dµlF
(

∞

∑
ς=0

µςwς(ϑ, θ, t; σ)

)]
µ=0

Bl =
1
l!

[
dl

dµl G
(

∞

∑
ς=0

µςwς(ϑ, θ, t; σ)

)]
µ=0

Cl =
1
l!

[
dl

dµlH
(

∞

∑
ς=0

µςwς(ϑ, θ, t; σ)

)]
µ=0

.

For the nonlinear operators (69), we provide the first few Adomian polynomials
A0 = (wm

0 )ϑ

A1 =
(

mw1wm−1
0

)
ϑ

...

(71)

and 
B0 = (wn

0 )ϑϑϑ

B1 =
(

nw1wn−1
0

)
ϑϑϑ

...

(72)

and



Fractal Fract. 2022, 6, 656 17 of 47


C0 =

(
wl

0

)
θθϑ

C1 =
(

lw1wl−1
0

)
θθϑ

....

(73)

Using (70) into (68), we obtain

∞

∑
l=0

wl(ϑ, θ, t; σ) = w(ϑ, θ, 0)(σ)	gH L−1

(
Υ1 �

(
∞

∑
l=0
Al

)
⊕ Υ2 �

(
∞

∑
l=0
Bl

)
⊕ Υ3 �

(
∞

∑
l=0
Cl

))
. (74)

We use the recursive relation to identifying the components wl(ϑ, θ, t), l ≥ 0, as{
w0(ϑ, θ, t; σ) = w(ϑ, θ, 0)(σ),

wl+1(ϑ, θ, t; σ) = −L−1(Υ1 �Al ⊕ Υ2 �Bl ⊕ Υ3 � Cl), l ≥ 0.
(75)

We assume that all of the components wς(ϑ, θ, t; σ) are calculated in light of (75) into
(71) and

w(ϑ, θ, t; σ) =
∞

∑
ς=0

wς(ϑ, θ, t; σ).

Convergence analysis of the fuzzy ADM can be found in (Theorem 3.3, [24]).

3.4. The Fuzzy Homotopy Perturbation Method

We consider the following general nonlinear fuzzy differential equation

A(w) = f̃ (℘), ℘ ∈ Φ, (76)

under the boundary condition

B
(

w,
∂w
∂℘

)
= 0, ℘ ∈ ∂Φ, (77)

where B denotes the boundary operator, ∂Φ denotes the boundary of the domain Φ, w̃(℘)
denotes the analytical function, and A is a general differential operator. The fuzzy operator
Ã can be broken into fuzzy linear L and nonlinear N parts. Hence, Equation (76) can be
rewritten as:

L(w)(σ) +N (w)(σ)− f (℘; σ) = 0̃, (78)

L(w)(σ) +N (w)(σ)− f (℘; σ) = 0̃. (79)

We generate a homotopy using the fuzzy homotopy technique:

ṽ(℘, $) : Φ× [0, 1]→ R

which satisfies

H(v(σ), $) = (1− $)[L(v)(σ)−L(w0(σ))] + $[A(v)(σ)− f (℘; σ)] = 0̃,

H(v(σ), $) = (1− $)[L(v)(σ)−L(w0(σ))] + $[A(v)(σ)− f (℘; σ)] = 0̃,
(80)

where $ ∈ [0, 1] denote the embedding parameter, and for w̃0(℘) denote the initial approxi-
mation to (76) which satisfies the boundary conditions. Clearly, from (80), we obtain
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H(v(σ), 0) = [L(v)(σ)−L(w0(σ))] = 0̃, (81)

H(v(σ), 1) = [A(v)(σ)− f (℘; σ)] = 0̃, (82)

and

H(v(σ), 0) = [L(v)(σ)−L(w0(σ))] = 0̃, (83)

H(v(σ), 1) = [A(v)(σ)− f (℘; σ)] = 0̃, (84)

and the changing process of $ from zero to unity is just that ṽ(℘, $; σ) from w0(℘; σ) to
w(℘; σ). Applying the Homotopy parameter $ as an extending parameter to obtain

v(σ) =
∞

∑
n=0

$nvn(σ), (85)

v(σ) =
∞

∑
n=0

$nvn(σ). (86)

As a result of $→ 1, the approximate solution of (76) is given as

w(σ) = lim
$→1

v(σ) =
∞

∑
n=0

vn(σ), (87)

w(σ) = lim
$→1

v(σ) =
∞

∑
n=0

vn(σ). (88)

Convergence analysis of the fuzzy HPM can be found in (Theorem 3.4, [24]).

3.5. The Fuzzy Homotopy Analysis Method

We consider the following fuzzy differential equation as:

N [w̃(℘, t)] = 0̃, (89)

where 0̃∈ E1, N is a nonlinear operator, ℘ and t were independent variables, and w(℘, t; σ)
denote the unknown fuzzy-valued function, respectively. For simplicity, we disregard all
boundary or initial conditions, that can be handled in a similar manner. Constructions for
the so-called zero-order deformation equation are made possible through the generalization
of the classical homotopy technique.

(1− $)L
[

ϕ(℘, t, $; σ)− w0(℘, t; σ)
]
= ph̄H(℘, t)N

[
ϕ(℘, t, $; σ)

]
, (90)

(1− $)L[ϕ(℘, t, $; σ)− w0(℘, t; σ)] = ph̄H(℘, t)N [ϕ(℘, t, $; σ)], (91)

for σ ∈ [0, 1] denotes the fuzzy number, $ ∈ [0, 1] denotes the embedding parameter,
h̄ 6= 0 denotes a non-zero auxiliary parameter, H(℘, t) 6= 0 denotes the non-zero auxiliary
function, and L denotes the auxiliary linear operator with the follows:

L
[

ϕ(℘, t; σ)
]
= 0̃, ϕ(℘, t; σ) = 0̃, (92)

L[ϕ(℘, t; σ)] = 0̃, ϕ(℘, t; σ) = 0̃, (93)

w̃0(℘, t; σ) shows an initial guess for w̃(℘, t; σ), and w̃(℘, t, $; σ) = [w(℘, t, $; σ), w(℘, t, $; σ)]
presents an unknown fuzzy-valued function. It the important to note that HAM provides a
large amount of flexibility in choosing auxiliary items. Clearly, this is accurate for $ = 0
and $ = 1,
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ϕ(℘, t; 0)(σ) = w0(℘, t; σ), ϕ(℘, t; 1)(σ) = w(℘, t; σ), (94)

ϕ(℘, t; 0)(σ) = w0(℘, t; σ), ϕ(℘, t; 1)(σ) = w(℘, t; σ), (95)

when the quantity $ increases from 0 to 1, the solution ϕ̃(℘, t, $), changes from the initial guesses,
w̃0(℘, t; σ) = [w0(℘, t; σ), w0(℘, t; σ)], to the solution, w̃(℘, t; σ) = [w(℘, t; σ), w(℘, t; σ)].
Taylor series can be extended with respect to $:

ϕ(℘, t, $; σ) = w0(℘, t; σ) +
+∞

∑
µ=1

wµ(℘, t; σ)$µ, (96)

ϕ(℘, t, $; σ) = w0(℘, t; σ) +
+∞

∑
µ=1

wµ(℘, t; σ)$µ, (97)

where

wµ(℘, t; σ) =
1
µ!

∂µ ϕ(℘, t, $; σ)

∂$µ |$=0, (98)

wµ(℘, t; σ) =
1
µ!

∂µ ϕ(℘, t, $; σ)

∂$µ |$=0. (99)

If such auxiliary linear operator, the initial approximation, the auxiliary parameter h̄,
and the auxiliary fuzzy-valued function are all appropriately determined, and the series
(96) and (97) converges at $ = 1. Then, we obtain the following result:

wµ(℘, t; σ) = w0(℘, t; σ) +
+∞

∑
µ=1

wµ(℘, t; σ), (100)

wµ(℘, t; σ) = w0(℘, t; σ) +
+∞

∑
µ=1

wµ(℘, t; σ). (101)

As h̄ = −1 and H(℘, t; σ) = 1 the expression (90) and (91) yields

(1− $)L
[

ϕ(℘, t, $; σ)− w0(℘, t; σ)
]
+ $N

[
ϕ(℘, t, $; σ)

]
= 0̃, (102)

(1− $)L[ϕ(℘, t, $; σ)− w0(℘, t; σ)] + $N [ϕ(℘, t, $; σ)] = 0̃. (103)

According to (98) and (99), the governing equation can be deduced from the zero-order
deformation Equations (90) and (91). Define the vector

−→wn(σ) = {w0(℘, t, $; σ), w1(℘, t, $; σ), w2(℘, t, $; σ), ...wn(℘, t, $; σ)}, (104)
−→
wn(σ) = {w0(℘, t, $; σ), w1(℘, t, $; σ), w2(℘, t, $; σ), ...wn(℘, t, $; σ)}. (105)

The mth order deformation equation is obtained by differentiating Equations (90) and (91)
times with respect to parameter $ at $ = 0

L
[
wµ(℘, t; σ)− χµwµ−1(℘, t; σ)

]
= h̄H(℘, t)Rµ

(
~wµ−1(℘, t; σ)

)
, (106)

L
[
wµ(℘, t; σ)− χµwµ−1(℘, t; σ)

]
= h̄H(℘, t)Rµ

(
~wµ−1(℘, t; σ)

)
, (107)

where
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Rµ(~wµ−1(℘, t; σ)) =
1

(µ− 1)!

∂µ−1N [ϕ(℘, t, $; σ)]

∂$µ−1 |$=0 (108)

Rµ(~wµ−1(℘, t; σ)) =
1

(µ− 1)!
∂µ−1N [ϕ(℘, t, $; σ)]

∂$µ−1 |$=0 (109)

and

χµ =

{
0, µ ≤ 1,

1, µ > 1.
(110)

3.6. Applications

In this section, we present examples 5 and 6 to illustrate the discussed methods for
effectiveness by solving Zakharov-Kuznetsov equations.

Example 5. We consider the following fuzzy ZK(2, 2, 2) equation

wt ⊕ (w2)ϑ ⊕
1
8
� (w2)ϑϑϑ ⊕

1
8
� (w2)θθϑ = 0, (111)

subject to the initial condition

w(ϑ, θ, 0) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]� 4
3

ρ sinh2(ϑ + θ), (112)

where n = 1, 2, 3, ..., for ρ is an arbitrary constant.

Case [A]. Fuzzy Adomian decomposition method.
Applying the fuzzy ADM to (111) and the initial condition (112), we have

w(ϑ, θ, t; σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ)−L−1
(
(w2)ϑ +

1
8
(w2)ϑϑϑ +

1
8
(w2)θθθ

)
, (113)

w(ϑ, θ, t; σ) = (2.8− 0.4σ)n 4
3

ρ sinh2(ϑ + θ)−L−1
(
(w2)ϑ +

1
8
(w2)ϑϑϑ +

1
8
(w2)θθϑ

)
. (114)

The decomposition series (68) is substituted for w(ϑ, θ, t; σ) into (113) and (114) to produce

∞

∑
j=0

wj(ϑ, θ, t; σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ)

−L−1

((
∞

∑
j=0
Aj

)
+

1
8

(
∞

∑
j=0
B j

)
+

1
8

(
∞

∑
j=0
C j

))
, (115)

∞

∑
j=0

wj(ϑ, θ, t; σ) = (2.8− 0.4σ)n 4
3

ρ sinh2(ϑ + θ),

−L−1

((
∞

∑
j=0
Aj

)
+

1
8

(
∞

∑
j=0
B j

)
+

1
8

(
∞

∑
j=0
C j

))
. (116)

The nonlinear terms (w2)ϑ, (w2)ϑϑϑ and (w2)θθϑ, are represented by Adomian polynomials
Al ,Bl and Cl , respectively. We can derive the recursive relation from (115) as:
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w0(ϑ, θ, t; σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ)

w1(ϑ, θ, t; σ) = −L−1
(
A0 +

1
8
B0 +

1
8
C0

)
wj+1(ϑ, θ, t; σ) = −L−1

(
Aj +

1
8
B j +

1
8
C j

)
, j ≥ 1.

(117)

We assume m = n = j = 2 in (73) into (71) to get Adomian polynomials Aj, Bj and Cj,
we have 

A0 =
(

w2
0

)
ϑ
, A1 = (2w1w0)ϑ, A2 =

(
2w2w0 + w2

1

)
ϑ
, ...,

B0 =
(

w2
0

)
ϑϑϑ

, B1 = (2w1w0)ϑϑϑ, B2 =
(

2w2w0 + w2
1

)
ϑϑϑ

, ...,

C0 =
(

w2
0

)
θθϑ

, C1 = (2w1w0)θθϑ, C2 =
(

2w2w0 + w2
1

)
θθϑ

, ...,

(118)

Substituting (118) into (117), we obtain

w0(ϑ, θ, t; σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ)

w1(ϑ, θ, t; σ) = (2 + 0.4σ)n
[
−8

3
ρ2t cosh(ϑ + θ) sinh(ϑ + θ)

]
w2(ϑ, θ, t; σ) = (2 + 0.4σ)n

[
4
3

ρ3t2
[
cosh2(ϑ + θ) + sinh2(ϑ + θ)

]]
w3(ϑ, θ, t; σ) = (2 + 0.4σ)n

[
−16

9
ρ4t3 cosh(ϑ + θ) sinh(ϑ + θ)

]
....

(119)

The solution in a series form as

w(ϑ, θ, t; σ) = (2 + 0.4σ)n
[

4
3

ρ sinh2(ϑ + θ)− 8
3

ρ2t cosh(ϑ + θ) sinh(ϑ + θ)

+
4
3

ρ3t2
[
cosh2(ϑ + θ) + sinh2(ϑ + θ)

]
− 16

9
ρ4t3 cosh(ϑ + θ) sinh(ϑ + θ) + · · ·

]
. (120)

Similarly, the series solution of w(ϑ, θ, t; σ) on the Formula (116) can be determined as follows:

w(ϑ, θ, t; σ) = (2.8− 0.4σ)n
[

4
3

ρ sinh2(ϑ + θ)− 8
3

ρ2t cosh(ϑ + θ) sinh(ϑ + θ)

+
4
3

ρ3t2
[
cosh2(ϑ + θ) + sinh2(ϑ + θ)

]
− 16

9
ρ4t3 cosh(ϑ + θ) sinh(ϑ + θ) + · · ·

]
. (121)

Thus, we have obtained the exact solution w(ϑ, θ, t; σ) of (111) as

w(ϑ, θ, t; σ) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]� 4
3

ρ sinh2(ϑ + θ − ρt), 0 ≤ σ ≤ 1.

Case [B]. Fuzzy Homotopy perturbation method.
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Applying the fuzzy HPM, we construct a homotopy as follows

H(v, p; σ) = (1− p)
[

∂v
∂t
− ∂w0

∂t

]
+ p

[
∂v
∂t

+
∂v2

∂ϑ
+

1
8

∂3v2

∂ϑ3 +
1
8

∂

∂ϑ

∂2v2

∂θ2

]
= 0̃, (122)

H(v, p; σ) = (1− p)
[

∂v
∂t
− ∂w0

∂t

]
+ p

[
∂v
∂t

+
∂v2

∂ϑ
+

1
8

∂3v2

∂ϑ3 +
1
8

∂

∂ϑ

∂2v2

∂θ2

]
= 0̃, (123)

We consider the initial approximation that satisfies the initial condition

w(ϑ, θ, 0) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]� 4
3

ρ sinh2(ϑ + θ). (124)

Substituting (85) and (86), with (122), and equating the terms of identical powers of p is

p0 :
∂v0
∂t

=
∂w0
∂t

, v0(ϑ, θ, 0)(σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ)

p1 :
∂v1
∂t

=
∂

∂t
w0 −

∂

∂ϑ
v2

0 −
1
8

∂3

∂ϑ3 v2
0 −

1
8

∂

∂ϑ

∂2

∂θ2 v2
0, v1(ϑ, θ, 0)(σ) = 0,

p2 :
∂v2
∂t

= −2
∂

∂ϑ
v0v1 −

1
4

∂3

∂ϑ3 v0v1 −
1
4

∂

∂ϑ

∂2

∂θ2 v0v1, v2(ϑ, θ, 0)(σ) = 0,

....

(125)

The solution of successively calculating (125) gives

v0(ϑ, θ, t; σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ)

v1(ϑ, θ, t; σ) = (2 + 0.4σ)n
[
−224

9
ρ2 sinh3(ϑ + θ) cosh(ϑ + θ)t

−32
3

ρ2 sinh(ϑ + θ) cosh3(ϑ + θ)t
]

v2(ϑ, θ, t; σ) = (2 + 0.4σ)n
[
−64

27
ρ3
(

1200 cosh6(ϑ + θ)

−2080 cosh4(ϑ + θ) + 968 cosh2(ϑ + θ)− 79
)

t2
]

....

(126)

Consequently, the solution to (111) for p→ 1, as follows:

v(ϑ, θ, t; σ) = (2 + 0.4σ)n
[

4
3

ρ sinh2(ϑ + θ)− 224
9

ρ2 sinh3(ϑ + θ) cosh(ϑ + θ)t

−32
3

ρ2 sinh(ϑ + θ) cosh3(ϑ + θ)t +
64
27

ρ3
(

1200 cosh6(ϑ + θ)

−2080 cosh4(ϑ + θ) + 968 cosh2(ϑ + θ)− 79
)

t2 − ...
]
. (127)

Similarly, we can obtain the series solution of v(ϑ, θ, t; σ) for Equation (123) as follows:

v(ϑ, θ, t; σ) = (2.8− 0.4σ)n
[

4
3

ρ sinh2(ϑ + θ)− 224
9

ρ2 sinh3(ϑ + θ) cosh(ϑ + θ)t

−32
3

ρ2 sinh(ϑ + θ) cosh3(ϑ + θ)t +
64
27

ρ3
(

1200 cosh6(ϑ + θ)

−2080 cosh4(ϑ + θ) + 968 cosh2(ϑ + θ)− 79
)

t2 − ...
]
. (128)

Thus, we have obtained the exact solution w(ϑ, θ, t; σ) of (111) as
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w(ϑ, θ, t; σ) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]� 4
3

ρ sinh2(ϑ + θ − ρt), 0 ≤ σ ≤ 1.

Case [C]. Fuzzy Homotopy analysis method
Using the linear operator to determine the exact solution of (111) as

L[=(ϑ, θ, t, q)] =
∂=(ϑ, ϑ, t, q)

∂t
(129)

with the property

L[c1 + c2] = 0,

where c1 and c2 are integral constants. The inverse operator L−1 is given by

L−1(·) =
∫ t

0
(·)dt, (130)

from (111), we define the nonlinear operator as

N [=(ϑ, θ, t, q)] =
∂=(ϑ, θ, t, q)

∂t
+ (=(ϑ, θ, t, q)2)ϑ +

1
8
(=(ϑ, θ, t, q))2

ϑϑϑ +
1
8
(=(ϑ, θ, t, q))2

θθϑ.

Using above definition, we construct the zeroth-order deformation equation:

(1− q)L[ψ(ϑ, θ, t, q; σ)− w0(ϑ, θ, t; σ)] = qh̄H(ϑ, θ, t)[ψ(ϑ, θ, t, q; σ)], (131)

(1− q)L[ψ(ϑ, θ, t, q; σ)− w0(ϑ, θ, t; σ)] = qh̄H(ϑ, θ, t)[ψ(ϑ, θ, t, q; σ)], (132)

where h̄ is an auxiliary parameter.
Obviously

ψ(ϑ, θ, t, 0)(σ) = w0(ϑ, θ, t; σ), ψ(ϑ, θ, t, 1)(σ) = w(ϑ, θ, t; σ), (133)

ψ(ϑ, θ, t, 0)(σ) = w0(ϑ, θ, t; σ), ψ(ϑ, θ, t, 1)(σ) = w(ϑ, θ, t; σ), (134)

thus we get the mth order deformation:

L[wm(ϑ, θ, t, q; σ)− χmwm−1(ϑ, θ, t, q; σ)] = h̄H(ϑ, θ, t)Rm(
−−−→wm−1(ϑ, θ, t, q; σ)), m ≥ 1, (135)

L[wm(ϑ, θ, t, q; σ)− χmwm−1(ϑ, θ, t, q; σ)] = h̄H(ϑ, θ, t)Rm(
−−−→
wm−1(ϑ, θ, t, q; σ)), m ≥ 1, (136)

where

−−−→wm−1(ϑ, θ, t, q; σ) = {w0(t), w1(t), ..., wn(t)}, (137)
−−−→
wm−1(ϑ, θ, t, q; σ) = {w0(t), w1(t), ..., wn(t)}, (138)

and

R(−−−→wm−1(ϑ, θ, t, q; σ)) = w′m−1(t; σ) +
m−1

∑
℘=0

(w℘)ϑ(wm−1−℘)ϑ

+
1
8

m−1

∑
℘=0

(w℘)ϑϑϑ(wm−1−℘)ϑϑϑ +
1
8

m−1

∑
℘=0

(w℘)θθϑ(wm−1−℘)θθϑ, (139)

R(−−−→wm−1(ϑ, θ, t, q; σ)) = w′m−1(t; σ) +
m−1

∑
℘=0

(w℘)ϑ(wm−1−℘)ϑ

+
1
8

m−1

∑
℘=0

(w℘)ϑϑϑ(wm−1−℘)ϑϑϑ +
1
8

m−1

∑
℘=0

(w℘)θθϑ(wm−1−℘)θθϑ, (140)
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thus the solution of mth order deformation (139) for m ≥ 1 becomes

wm(ϑ, θ, t; σ) = χmwm−1(ϑ, θ, t; σ) + h̄H(ϑ, θ, t)L−1[Rm(
−−−→wm−1(ϑ, θ, t; σ))

]
. (141)

We choose the initial step w0(ϑ, θ, t; σ) = [(2 + 0.4σ)n, (2.8− 0.4σ)n] � 4
3 ρ sinh2(ϑ + θ)

which makes boundary condition (111). First, we consider the solution of (111) with the boundary
condition

w0(ϑ, θ, t; σ) = (2 + 0.4σ)n 4
3

ρ sinh2(ϑ + θ). (142)

Now, we have
w1(ϑ, θ, t; σ) = −(2 + 0.4σ)n 80

9
ρ2 sinh2 2(ϑ + θ)t

w2(ϑ, θ, t; σ) = (2 + 0.4σ)n 10880
27

ρ3 sinh 2(ϑ + θ) sinh 4(ϑ + θ)t2

....

Next, we can achieve the series solutions as

w(ϑ, θ, t; σ) = (2 + 0.4σ)n
[

4
3

ρ sinh2(ϑ + θ)− 80
9

ρ2 sinh2 2(ϑ + θ)t

+
10880

27
ρ3 sinh 2(ϑ + θ) sinh 4(ϑ + θ)t2 + ...

]
. (143)

Similarly, the series solution of w(ϑ, θ, t; σ) on the Formula (140) can be calculated as follows:

w(ϑ, θ, t; σ) = (2.8− 0.4σ)n
[

4
3

ρ sinh2(ϑ + θ)− 80
9

ρ2 sinh2 2(ϑ + θ)t

+
10880

27
ρ3 sinh 2(ϑ + θ) sinh 4(ϑ + θ)t2 + ...

]
. (144)

Thus, we have obtained the exact solution w(ϑ, θ, t; σ) of (111) as

w(ϑ, θ, t; σ) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]� 4
3

ρ sinh2(ϑ + θ − ρt), 0 ≤ σ ≤ 1.

Example 6. We consider the fuzzy Zakharov-Kuznetsov (ZK(3, 3, 3)) equation

wt ⊕ (w3)ϑ ⊕ 2� (w3)ϑϑϑ ⊕ 2� (w3)θθϑ = 0, (145)

subject to the initial condition

w(ϑ, θ, 0) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
[

1
6
(ϑ + θ)

]
, (146)

where n = 1, 2, 3, ..., for ρ is an arbitrary constant.

Case [A]. Fuzzy reduced differential transform method
Applying the fuzzy RDTM to (145) with the initial condition (146), we get
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(l + 1)W l+1(σ) +
∂
(

∑l
℘=0 ∑℘

s=0 W l−℘W℘−sWs

)
(σ)

∂ϑ
+ 2

∂3
(

∑l
℘=0 ∑℘

s=0 W l−℘W℘−sWs

)
(σ)

∂ϑ3

+ 2
∂3
(

∑l
℘=0 ∑℘

s=0 W l−℘W℘−sWs

)
(σ)

∂θ2∂ϑ
= 0

W0(σ) = (3.1 + 0.3σ)n 3
2

ρ sinh
[

1
6
(ϑ + θ)

]
,

(147)

and

(l + 1)W l+1(σ) +
∂
(

∑l
℘=0 ∑℘

s=0 W l−℘W℘−sWs

)
(σ)

∂ϑ
+ 2

∂3
(

∑l
℘=0 ∑℘

s=0 W l−℘W℘−sWs

)
(σ)

∂ϑ3

+ 2
∂3
(

∑l
℘=0 ∑℘

s=0 W l−℘W℘−sWs

)
(σ)

∂θ2∂ϑ
= 0

W0(σ) = (3.8− 0.4σ)n 3
2

ρ sinh
[

1
6
(ϑ + θ)

]
.

(148)

Utilizing (147) allows for iteratively obtaining the values of Wj with fewer and simpler
computations. Consequently, the (n + 1)-term numerical solution of (145) can be expressed
as follows:

w∗n(ϑ, θ, t; σ) =
n

∑
j=0

W jt
j, (149)

and the analytical solution is

w(ϑ, θ, t; σ) = lim
n→∞

w∗n(ϑ, θ, t; σ) =
n

∑
j=0

W jt
j.

Particularly, the 4-term numerical solution of (145) can be obtained as:

w∗3(ϑ, θ, t; σ) =
3

∑
j=0

W jt
j(σ)

= (3.1 + 0.3σ)n
[

1
4096

ρ

(
6144ρ2t sinh

(
ϑ + θ

6

)
− 13824 cosh3

(
ϑ + θ

6

)
+12288ρ2t cosh

(
ϑ + θ

6

)
+ 146880ρ4t2 sinh

(
ϑ + θ

6

)
cosh4

(
ϑ + θ

6

)
−139968ρ4t2 sinh

(
ϑ + θ

6

)
cosh2

(
ϑ + θ

6

))
+ 17472ρ4t2 sinh

(
ϑ + θ

6

)
+6116688ρ6t3 cosh5

(
ϑ + θ

6

)
− 3010896ρ6t3 cosh7

(
ϑ + θ

6

)
−3751488ρ6t3 cosh3

(
ϑ + θ

6

)
+ 637616ρ9t3 cosh

(
ϑ + θ

6

)]
.



(150)

Similarly, we can represent the series solution of w(ϑ, θ, t; σ) in Equation (148) as:
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w∗3(ϑ, θ, t; σ) =
3

∑
j=0

W jtj(σ)

= (3.8− 0.4σ)n
[

1
4096

ρ

(
6144ρ2t sinh

(
ϑ + θ

6

)
− 13824 cosh3

(
ϑ + θ

6

)
+12288ρ2t cosh

(
ϑ + θ

6

)
+ 146880ρ4t2 sinh

(
ϑ + θ

6

)
cosh4

(
ϑ + θ

6

)
−139968ρ4t2 sinh

(
ϑ + θ

6

)
cosh2

(
ϑ + θ

6

))
+ 17472ρ4t2 sinh

(
ϑ + θ

6

)
+6116688ρ6t3 cosh5

(
ϑ + θ

6

)
− 3010896ρ6t3 cosh7

(
ϑ + θ

6

)
−3751488ρ6t3 cosh3

(
ϑ + θ

6

)
+ 637616ρ9t3 cosh

(
ϑ + θ

6

)]
.



(151)

Using Taylor series into (150) and (151), we obtained the closed form solution

w(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
[

1
6
(ϑ + θ − ρt)

]
, 0 ≤ σ ≤ 1.

Case [B]. Fuzzy Adomian decomposition method
Applying to (145) and the initial condition (146), we have

w(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]]
−L−1

((
w3
)

ϑ
+ 2
(

w3
)

ϑϑϑ
+ 2
(

w3
)

θθϑ

)
(σ), (152)

w(ϑ, θ, t; σ) = (3.8− 0.4σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]]
−L−1

((
w3
)

ϑ
+ 2
(

w3
)

ϑϑϑ
+ 2
(

w3
)

θθϑ

)
(σ). (153)

From the decomposition series for w̃(ϑ, θ, t; σ), with (152) and (153), we get

∞

∑
j=0

wj(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]]

−L−1

((
∞

∑
j=0
Aj(σ)

)
+ 2

(
∞

∑
j=0
B j(σ)

)
+ 2

(
∞

∑
j=0
C j(σ)

))
, (154)

∞

∑
j=0

wj(ϑ, θ, t; σ) = (3.8− 0.4σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]]

−L−1

((
∞

∑
j=0
Aj(σ)

)
+ 2

(
∞

∑
j=0
B j(σ)

)
+ 2

(
∞

∑
j=0
C j(σ)

))
. (155)

The nonlinear terms (w2)ϑ, (w2)ϑϑϑ and (w2)θθϑ, are represented by Adomian polynomials
Aj,Bj and Cj, respectively. We can derive the recursive relation from (154) as follows

w0(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]]
w1(ϑ, θ, t; σ) = −L−1(A0 + 2B0 + 2C0)(σ),

wj+1(ϑ, θ, t; σ) = −L−1
(
Aj + 2B j + 2C j

)
(σ), j > 1.

(156)

Assume m = n = j = 2 and substitute (73) into (71) to get Adomian polynomials Aj,Bj and
Cj, as follows
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A0(σ) =

(
w3

0

)
ϑ
, A1(σ) =

(
3w1w2

0

)
ϑ
, A2(σ) =

(
3w2w2

0 + 3w0w2
1

)
ϑ
, ...,

B0(σ) =
(

w3
0

)
ϑϑϑ

, B1(σ) =
(

3w1w2
0

)
ϑϑϑ

, B2(σ) =
(

3w2w2
0 + 3w0w2

1

)
ϑϑϑ

, ...,

C0(σ) =
(

w3
0

)
θθϑ

, C1(σ) =
(

3w1w2
0

)
θθϑ

, C2(σ) =
(

3w2w2
0 + 3w0w2

1

)
θθϑ

, ...

(157)

Substituting (157) into (156) gives

w0(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

ϑ + θ

6

]]
w1(ϑ, θ, t; σ) = (3.1 + 0.3σ)n

[
−1

4
ρ2t cosh

[
ϑ + θ

6

]]
w2(ϑ, θ, t; σ) = (3.1 + 0.3σ)n

[
1

48
ρ3t2 sinh

[
ϑ + θ

6

]]
w3(ϑ, θ, t; σ) = (3.1 + 0.3σ)n

[
1

864
ρ4t3 cosh

[
ϑ + θ

6

]]
....

(158)

Next, we can get the series solutions

w(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

ϑ + θ

6

]
− 1

4
ρ2t cosh

[
ϑ + θ

6

]
+

1
48

ρ3t2 sinh
[

ϑ + θ

6

]
− 1

864
ρ4t3 cosh

[
ϑ + θ

6

]
+ ...

]
. (159)

Similarly, the series solution of w(ϑ, θ, t; σ) on Formula (155) can be derived as follows:

w(ϑ, θ, t; σ) = (3.8− 0.4σ)n
[

3
2

ρ sinh
[

ϑ + θ

6

]
− 1

4
ρ2t cosh

[
ϑ + θ

6

]
+

1
48

ρ3t2 sinh
[

ϑ + θ

6

]
− 1

864
ρ4t3 cosh

[
ϑ + θ

6

]
+ ...

]
. (160)

According to Taylor series into (158), we obtain

w(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
[

1
6
(ϑ + θ − ρt)

]
, 0 ≤ σ ≤ 1.

Case [C]. Fuzzy Homotopy perturbation method
Taking the fuzzy HPM to (145), we get

H(v(σ), p) = (1− p)
[

∂v(σ)
∂t
− ∂w0(σ)

∂t

]
+ p

[
∂v(σ)

∂t
+

∂

∂ϑ
v3(σ) + 2

∂3

∂ϑ3 v3(σ) + 2
∂

∂ϑ

∂2

∂θ2 v3(σ)

]
= 0̃, (161)

H(v(σ), p) = (1− p)
[

∂v(σ)
∂t
− ∂w0(σ)

∂t

]
+ p

[
∂v(σ)

∂t
+

∂

∂ϑ
v3(σ) + 2

∂3

∂ϑ3 v3(σ) + 2
∂

∂ϑ

∂2

∂θ2 v3(σ)

]
= 0̃. (162)

Consider the initial approximation that satisfies the initial condition

w(ϑ, θ, 0)(σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
[

1
6
(ϑ + θ)

]
.

Substituting (85) and (86) into Equations (161) and (162) and equating the terms with
identical powers of p, we have
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p0 :
∂v0(σ)

∂t
=

∂w0(σ)

∂t
, v0(ϑ, θ, 0)(σ) = (3.1 + 0.3σ)n

[
3
2

ρ sinh
[

1
6
(ϑ + θ)

]]
p1 :

∂v1(σ)

∂t
= − ∂

∂ϑ
v3

0(σ)− 2
∂3

∂ϑ3 v3
0(σ)− 2

∂

∂ϑ

∂2

∂θ2 v3
0(σ), v1(ϑ, θ, 0)(σ) = 0̃

p2 :
∂v2(σ)

∂t
= −3

∂

∂ϑ
v2

0v1(σ)− 6
∂3

∂ϑ3 v2
0v1(σ)− 6

∂

∂ϑ

∂2

∂θ2 v2
0v1(σ), v2(ϑ, θ, 0)(σ) = 0̃

...,

(163)

and



p0 :
∂v0(σ)

∂t
=

∂w0(σ)

∂t
, v0(ϑ, θ, 0)(σ) = (3.8− 0.4σ)n

[
3
2

ρ sinh
[

1
6
(ϑ + θ)

]]
p1 :

∂v1(σ)

∂t
= − ∂

∂ϑ
v3

0(σ)− 2
∂3

∂ϑ3 v3
0(σ)− 2

∂

∂ϑ

∂2

∂θ2 v3
0(σ), v1(ϑ, θ, 0)(σ) = 0̃

p2 :
∂v2(σ)

∂t
= −3

∂

∂ϑ
v2

0v1(σ)− 6
∂3

∂ϑ3 v2
0v1(σ)− 6

∂

∂ϑ

∂2

∂θ2 v2
0v1(σ), v2(ϑ, θ, 0)(σ) = 0̃

....

(164)

Successive solution of (163) yields

v0(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]]
,

v1(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[
−3ρ3 sinh2

[
1
6
(ϑ + θ)

]
cosh

1
6
[(ϑ + θ)]t

−3
8

ρ3 cosh3
[

1
6
(ϑ + θ)

]
t
]

,

v2(ϑ, θ, t; σ) = (3.1 + 0.3σ)n

×
[

9
128

tρ3
(

135tρ2 sinh
1
6
(ϑ + θ) cosh4

[
1
6
(ϑ + θ)

]
−153tρ2 sinh

[
1
6
(ϑ + θ)

]
cosh2

[
1
6
(ϑ + θ)

]
+24tρ2 sinh

[
1
6
(ϑ + θ)

]
−72 cosh3

[
1
6
(ϑ + θ)

]
+ 56 cosh

[
1
6
(ϑ + θ)

])]
,

....

Consequently, the solution of (145) when p→ 1, yields

v(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]
− 3ρ3 sinh2

[
1
6
(ϑ + θ)

]
cosh

[
1
6
(ϑ + θ)

]
t

−3
8

ρ3 cosh3
[

1
6
(ϑ + θ)

]
t +

9
128

tρ3
(

135tρ2 sinh
[

1
6
(ϑ + θ)

]
cosh4

[
1
6
(ϑ + θ)

]
−153tρ2 sinh

[
1
6
(ϑ + θ)

]
cosh2

[
1
6
(ϑ + θ)

]
+ 24tρ2 sinh

[
1
6
(ϑ + θ)

]
−72 cosh3

[
1
6
(ϑ + θ)

]
+ 56 cosh

[
1
6
(ϑ + θ)

])]
.

(165)
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Similarly, the series solution of v(ϑ, θ, t; σ) on equation (164) can be obtained as:

v(ϑ, θ, t; σ) = (3.8− 0.4σ)n
[

3
2

ρ sinh
[

1
6
(ϑ + θ)

]
− 3ρ3 sinh2

[
1
6
(ϑ + θ)

]
cosh

[
1
6
(ϑ + θ)

]
t

−3
8

ρ3 cosh3
[

1
6
(ϑ + θ)

]
t +

9
128

tρ3
(

135tρ2 sinh
[

1
6
(ϑ + θ)

]
cosh4

[
1
6
(ϑ + θ)

]
−153tρ2 sinh

[
1
6
(ϑ + θ)

]
cosh2

[
1
6
(ϑ + θ)

]
+ 24tρ2 sinh

[
1
6
(ϑ + θ)

]
−72 cosh3

[
1
6
(ϑ + θ)

]
+ 56 cosh

[
1
6
(ϑ + θ)

])]
.

(166)

Thus, we obtained the closed form solution as:

w(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
[

1
6
(ϑ + θ − ρt)

]
, 0 ≤ σ ≤ 1.

Case [D]. Fuzzy Homotopy analysis method
To analyze the exact solution of (145), we use the linear operator

L[=(ϑ, θ, t, q)] =
∂=(ϑ, θ, t, q)

∂t
, (167)

with the property

L[c1 + tc2] = 0,

where c1 and c2 are integral constants. The expression for the inverse operator L−1 is defined by

L−1(·) =
∫ t

0
(·)dt, (168)

depending on (145), we derive the nonlinear operator as

N [=(ϑ, θ, t, q)] =
∂=(ϑ, θ, t, q)

∂t
⊕ (=(ϑ, θ, t, q)3)ϑ ⊕ 2(=(ϑ, θ, t, q)3)ϑϑϑ ⊕ 2(=(ϑ, θ, t, q)3)θθϑ. (169)

To use the preceding formulation, we develop the zeroth-order deformation equation:

(1− q)L[ψ(ϑ, θ, t, q; σ)− w0(ϑ, θ, t; σ)] = qh̄H(ϑ, θ, t)[ψ(ϑ, θ, t, q; σ)], (170)

(1− q)L[ψ(ϑ, θ, t, q; σ)− w0(ϑ, θ, t; σ)] = qh̄H(ϑ, θ, t)[ψ(ϑ, θ, t, q; σ)], (171)

Clearly, we have

ψ(ϑ, θ, t, 0)(σ) = w0(ϑ, θ, t; σ), ψ(ϑ, θ, t, 1)(σ) = w(ϑ, θ, t; σ), (172)

ψ(ϑ, θ, t, 0)(σ) = w0(ϑ, θ, t; σ), ψ(ϑ, θ, t, 1)(σ) = w(ϑ, θ, t; σ). (173)

Consequently, we obtain the m-th order deformation:

L[wm(ϑ, θ, t, q; σ)−Nmwm−1(ϑ, θ, t, q; σ)] = h̄H(ϑ, θ, t)Rm(
−−−→wm−1(ϑ, θ, t, q; σ)), m ≥ 1, (174)

L[wm(ϑ, θ, t, q; σ)−Nmwm−1(ϑ, θ, t, q; σ)] = h̄H(ϑ, θ, t)Rm(
−−−→
wm−1(ϑ, θ, t, q; σ)), m ≥ 1, (175)

where

−−−→wm−1(ϑ, θ, t, q; σ) = {w0(t), w1(t), ..., wn(t)}, (176)
−−−→
wm−1(ϑ, θ, t, q; σ) = {w0(t), w1(t), ..., wn(t)}, (177)

with
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R
(−−−→wm−1(ϑ, θ, t, q; σ)

)
=w′m−1(ϑ, θ, t, q; σ) +

m−1

∑
j=0

(
℘

∑
j=0

(
w℘

)
ϑ

(
w℘−j

)
ϑ

(
wm−1−℘

)
ϑ
(σ)

)

+ 2
m−1

∑
j=0

(
℘

∑
j=0

(
w℘

)
ϑϑϑ

(
w℘−j

)
ϑϑϑ

(
wm−1−℘

)
ϑϑϑ

(σ)

)

+ 2
m−1

∑
j=0

(
℘

∑
j=0

(
w℘

)
θθϑ

(
w℘−j

)
θθϑ

(
wm−1−℘

)
θθϑ

(σ)

)
,

(178)

and

R
(−−−→

wm−1(ϑ, θ, t, q; σ)
)
=w′m−1(ϑ, θ, t, q; σ) +

m−1

∑
j=0

(
℘

∑
j=0

(wc)ϑ

(
w℘−j

)
ϑ

(
wm−1−℘

)
ϑ
(σ)

)

+ 2
m−1

∑
j=0

(
℘

∑
j=0

(w℘)ϑϑϑ

(
w℘−j

)
ϑϑϑ

(
wm−1−℘

)
ϑϑϑ

(σ)

)

+ 2
m−1

∑
j=0

(
℘

∑
j=0

(w℘)θθϑ

(
w℘−j

)
θθϑ

(
wm−1−℘

)
θθϑ

(σ)

)
.

(179)

Consequently, the solution of mth order deformation (178) for m ≥ 1, yields

wm(ϑ, θ, t; σ) = χmwm−1(ϑ, θ, t; σ) + h̄H(ϑ, θ, t)L−1[Rm
(−−−→wm−1(ϑ, θ, t; σ)

)]
, (180)

we choose the initial step w0(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2 ρ sinh 1

6 (ϑ + θ) this
causes a specific boundary condition to (145). First, we investigate the solution to (145) with the
boundary condition:

w0(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
1
6
(ϑ + θ). (181)

Putting (181) into (180), we obtain

w1(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[
−0.01562547116ρ3 cosh3 1

6
(ϑ + θ)t

]
w2(ϑ, θ, t; σ) = (3.1 + 0.3σ)nρ5

[
0.07812735578 sinh

1
6
(ϑ + θ) cosh4 1

6
(ϑ + θ)

+0.1259803612 sinh3 1
6
(ϑ + θ) cosh2 1

6
(ϑ + θ)

+0.002929775842 sinh5 1
6
(ϑ + θ)

]
t2

2!
....

(182)

Next, we can obtain the series solutions as

w1(ϑ, θ, t; σ) = (3.1 + 0.3σ)n
[

3
2

ρ sinh
1
6
(ϑ + θ)− 0.01562547116ρ3 cosh3 1

6
(ϑ + θ)t

+ρ5
[

0.07812735578 sinh
1
6
(ϑ + θ) cosh4 1

6
(ϑ + θ)

+0.1259803612 sinh3 1
6
(ϑ + θ) cosh2 1

6
(ϑ + θ)

+0.002929775842 sinh5 1
6
(ϑ + θ)

]
t2

2!
...
]

.

(183)
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Similarly, we can achieve the series solution of w(ϑ, θ, t; σ) on (179) as:

w1(ϑ, θ, t; σ) = (3.8− 0.4σ)n
[

3
2

ρ sinh
1
6
(ϑ + θ)− 0.01562547116ρ3 cosh3 1

6
(ϑ + θ)t

+ρ5
[

0.07812735578 sinh
1
6
(ϑ + θ) cosh4 1

6
(ϑ + θ)

+0.1259803612 sinh3 1
6
(ϑ + θ) cosh2 1

6
(ϑ + θ)

+0.002929775842 sinh5 1
6
(ϑ + θ)

]
t2

2!
...
]

.

(184)

Thus, we obtained the closed form solution as follows:

w(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ sinh
[

1
6
(ϑ + θ − ρt)

]
, 0 ≤ σ ≤ 1.

The experience of applying ADM, as well as results reported in the literature, indicate
that ADM may generate divergent sequences when the time moment is large, so the issue
of convergence of the ADM for large t is, in general, rather delicate. In this work, we also
get that the solution of example 5 for ADM shows convergence till time t = 414 but for
t > 414, the solutions tend to infinity and show divergence. Similarly, in example 6, we
also get a convergent solution for ADM till t = 4354.

In Figure 1, we plotted 2D and 3D graphs of the ZK(2, 2, 2) equation. Figure 1a shows
that for ϑ = 30, θ = 45 and ρ = 1 using n = 1 at t = 0.001 the ZK(2, 2, 2) equation is
bounded and closed. Furthermore, the blue + sign shows increasing functions and red ∗
presents decreasing functions on the σ-level set of w. To discuss the concept of the σ-level
set, one can see Figure 2a, which shows that the σ-level set of ZK(2,2,2) equation is bounded
and closed for ϑ = 30 and 0 < θ ≤ 2π. Similarly, in Figure 2, we can observe the same
explanation of σ-level set closedness and boundedness for example 6.

(a) (b)

Figure 1. The exact lower and upper solutions of Equation (111) at ϑ = 30, θ = 45, t = 60,
ρ = 1, n = 1. (a) 2D figure for exact solution of fuzzy ZK(2, 2, 2) equation of w in Example 5. 1905;
(b) 3D figure for exact solution of fuzzy ZK(2,2,2) equation of w in Example 5.
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(a) (b)

Figure 2. The exact lower and upper solutions of Equation (145) at ϑ = 60, θ = 90, t = 200,
ρ = 1, n = 2. (a) 2D figure for exact solution of fuzzy ZK(3, 3, 3) equation of w in Example 6. 1923;
(b) 3D figure for exact solution of fuzzy ZK(3, 3, 3) equation of w in Example 6.

4. Fuzzy Fractional Partial Differential Equations

In this section, we present the solution of fuzzy fractional partial differential equations
via fuzzy (n + 1)-dimensional fractional RDTM.

4.1. Fuzzy Fractional Calculus

We regard to CF [a, b] as the space of all continuous fuzzy-valued functions on [a, b].
Also, we denote the space of all Lebesgue integrable fuzzy-valued functions on the bounded
interval [a, b] ⊂ R by LF [a, b], refs. [71].

Definition 10 ([71]). Let f (ϑ) ∈ CF [a, b] ∩ LF [a, b]. The fuzzy Riemann-Liouville integral of
fuzzy function f is defined as:

(Iα
a+ f )(ϑ) =

1
Γ(α)

∫ ϑ

a

f (t)dt
(ϑ− t)1−α

, ϑ > a, 0 < α 6 1.

Assume that the σ-level expression of a fuzzy-valued function f as f (ϑ; σ) = [ f (ϑ; σ), f̄ (ϑ; σ)], for
0 6 σ 6 1.

Definition 11 ([71]). Let f (ϑ) ∈ CF [a, b] ∩ LF [a, b], then the fuzzy Riemann-Liouville integral
of fuzzy-valued function f is defined as:

(Iα
a+ f )(ϑ; σ) = [(Iα

a+ f )(ϑ; σ), (Iα
a+ f )(ϑ; σ)],

where 0 ≤ σ ≤ 1 and

(Iα
a+ f )(ϑ; σ) =

1
Γ(α)

∫ ϑ

a

f (t; σ)dt

(ϑ− t)1−α
, 0 ≤ σ ≤ 1,

(Iα
a+ f )(ϑ; σ) =

1
Γ(α)

∫ ϑ

a

f (t; σ)dt
(ϑ− t)1−α

, 0 ≤ σ ≤ 1.

Definition 12 ([28,71]). Let f̃ ∈ C1[a, b] be fuzzy-valued function and 0 < α ≤ 1. Then f̃ is said
to be Caputo’s gH-differentiable at ϑ when

CDα
a f̃ (ϑ; σ) =

1
Γ(1− α)

∫ ϑ

ϑ0

(ϑ− t)−α f̃ ′(t; σ)dt.

Note that later we indicate CDα
0 f̃ (t; σ) using CDα f̃ (t; σ).

Theorem 3 ([28]). Let f̃ ∈ CF [a, b] ∩ LF [a, b], ϑ0 ∈ (a, b) and 0 < α ≤ 1. Then
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(i) if f̃ is (i)-differentiable fuzzy-valued function, then(
C
i Dα

ϑ0

)
f (ϑ; σ) =

[(
CDα

ϑ0

)
f (ϑ; σ),

(
CDα

ϑ0

)
f (ϑ; σ)

]
, 0 ≤ σ ≤ 1,

(ii) if f̃ is (ii)-differentiable fuzzy-valued function, then(
C
iiDα

ϑ0

)
f (ϑ; σ) =

[(
CDα

ϑ0

)
f (ϑ; σ),

(
CDα

ϑ0

)
f (ϑ; σ)

]
, 0 ≤ σ ≤ 1.

4.2. Fuzzy (N + 1)-Dimensional Fractional Reduced Differential Transform

We consider the theory of fuzzy (n + 1)-dimensional fractional RDTM, at which
uncertainty can be expressed by fuzzy concepts.

Definition 13. Let us consider X = (ϑ1, ϑ2, ..., ϑn) be a vector of fuzzy (n + 1)-dimensional
fractional reduced differential transformed form of ϑς(t) = (x1, x2, ..., xn), respectively, where ϑς(t)
be differentiable of order αl over time domain T, then

X ς(l; σ) =

[
∂αlϑς(t; σ)

∂tαl

]
t=0

, ∀αl ∈ K = {0, 1, 2, 3, ...},

X ς(l; σ) =

[
∂αlϑς(t; σ)

∂tαl

]
t=0

, ∀αl ∈ K = {0, 1, 2, 3, ...},

 (185)

when x(t) is (i)-differentiable with

X ς(l; σ) =
∂αlϑς(t; σ)

∂tαl

∣∣∣∣∣
t=0

, αl is odd,

X ς(l; σ) =
∂αlϑς(t; σ)

∂tαl

∣∣∣∣∣
t=0

, αl is odd,


(186)

and

X ς(l; σ) =
∂αlϑς(t; σ)

∂tαl

∣∣∣∣∣
t=0

, αl is even,

X ς(l; σ) =
∂αlϑς(t; σ)

∂tαl

∣∣∣∣∣
t=0

, αl is even,


(187)

when ϑς(t) is (ii)-differentiable.
Notice that X ς(l; σ) and X ς(l; σ) denote the lower and upper spectrum of ϑς(t) at

t = 0, respectively.
Thus, if ϑς(t) be (i)-differentiable, then ϑς(t) can be expressed as:

ϑς(t; σ) =
∞

∑
l=0

X (l; σ)tαl

Γ(αl + 1)
, αl ∈ K, 0 ≤ σ ≤ 1, (188)

ϑς(t; σ) =
∞

∑
l=0

X (l; σ)tαl

Γ(αl + 1)
, αl ∈ K, 0 ≤ σ ≤ 1, (189)

and if ϑς(t) be (ii)-differentiable, then ϑς(t) can be expressed as:

ϑς(t; σ) =
∞

∑
l=1,odd

X (l; σ)tαl

Γ(αl + 1)
+

∞

∑
l=0,even

X (l; σ)tαl

Γ(αl + 1)
, 0 ≤ σ ≤ 1, (190)

ϑς(t; σ) =
∞

∑
l=1,odd

X (l; σ)tαl

Γ(αl + 1)
+

∞

∑
l=0,even

X (l; σ)tαl

Γ(αl + 1)
, 0 ≤ σ ≤ 1. (191)
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The mentioned equations are considered as the inverse transformation of X (l; σ). If
X (l; σ) is defined as

X (l; σ) = P(l)

∂αl
(

ϑς(t; σ)
)

∂tαl


t=0

, ∀αl ∈ K,

X (l; σ) = P(l)

∂αl
(

ϑς(t; σ)
)

∂tαl


t=0

, ∀αl ∈ K,


(192)

when ϑς(t) (i)-differentiable with

X (l; σ) = P(l)

[
∂αl(ϑς(t; σ))

∂tαl

]
t=0

, αl is odd

X (l; σ) = P(l)

[
∂αl(ϑς(t; σ))

∂tαl

]
t=0

, αl is odd


(193)

and

X (l; σ) = P(l)

[
∂αl(ϑς(t; σ))

∂tαl

]
t=0

, αl is even

X (l; σ) = P(l)

[
∂αl(ϑς(t; σ))

∂tαl

]
t=0

, αl is even


(194)

then ϑς(t) is (ii)-differentiable.
The function ϑς(t) can be expressed as:

ϑς(t; σ) =
∞

∑
l=0

tαl

Γ(αl + 1)
X (l; σ)

P(l)
, αl ∈ K, 0 ≤ σ ≤ 1, (195)

ϑς(t; σ) =
∞

∑
l=0

tαl

Γ(αl + 1)
X (l; σ)

P(l)
, αl ∈ K, 0 ≤ σ ≤ 1, (196)

moreover if ϑς(t) is (i)-differentiable then, the function ϑς(t) can be (ii)-differentiable.
Hence we get

ϑς(t; σ) =

[
∞

∑
l=1,odd

tαl

Γ(αl + 1)
X (l; σ)

P(l)
+

∞

∑
l=0,even

tαl

Γ(αl + 1)
X (l; σ)

P(l)

]
, 0 ≤ σ ≤ 1, (197)

ϑς(t; σ) =

[
∞

∑
l=1,odd

tαl

Γ(αl + 1)
X (l; σ)

P(l)
+

∞

∑
l=0,even

tαl

Γ(αl + 1)
X (l; σ)

P(l)

]
, 0 ≤ σ ≤ 1, (198)

where P(l) > 0, P(l) denote the weighting factor. In this work P(l) = Cαl

Γ(αl+1) is implemented
where C is the time horizon on interest. Consequently, if ϑς(t) be (i)-differentiable, then

X (l; σ) =
Cαl

Γ(αl + 1)
∂αlϑς(t; σ)

∂tαl , αl ∈ K, 0 ≤ σ ≤ 1, (199)

X (l; σ) =
Cαl

Γ(αl + 1)
∂αlϑς(t; σ)

∂tαl , αl ∈ K, 0 ≤ σ ≤ 1, (200)
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and if ϑς(t) be (ii)-differentiable, then

X (l; σ) =
Cαl

Γ(αl + 1)
∂αlϑς(t; σ)

∂tαl , αl is odd, 0 ≤ σ ≤ 1,

X (l; σ) =
Cαl

Γ(αl + 1)
∂αlϑς(t; σ)

∂tαl , αl is odd, 0 ≤ σ ≤ 1,

 (201)

and

X (l; σ) =
Cαl

Γ(αl + 1)
∂αlϑς(t; σ)

∂tl , αl is odd, 0 ≤ σ ≤ 1,

X (l; σ) =
Cαl

Γ(αl + 1)
∂αlϑς(t; σ)

∂tl , αl is odd, 0 ≤ σ ≤ 1.

 (202)

Unitizing the fuzzy (n + 1)-dimensional fractional RDTM, a fuzzy fractional PDEs
within the domain of interest can be transformed to an algebraic equation in the domain K
and ϑς(t) can be expressed as the finite-term Taylor series plus a reminder as:

ϑς(t; σ) =
n

∑
l=0

tαl

Γ(αl + 1)
X (l; σ)

P(l)
+ Rn+1(t) =

n

∑
l=0

(
t
C

)αlX (l; σ)

P(l)
+ Rn+1(t), αl ∈ K, 0 ≤ σ ≤ 1, (203)

ϑς(t; σ) =
n

∑
l=0

tαl

Γ(αl + 1)
X (l; σ)

P(l)
+ Rn+1(t) =

n

∑
l=0

(
t
C

)αlX (l; σ)

P(l)
+ Rn+1(t), αl ∈ K, 0 ≤ σ ≤ 1, (204)

when ϑς(t) is (i)-differentiable and

ϑς(t; σ) =
∞

∑
l=0,odd

(
t
C

)αlX (l; σ)

P(l)
+ Rn+1(t) +

∞

∑
l=0,even

(
t
C

)αlX (l; σ)

P(l)
+ Rn+1(t), 0 ≤ σ ≤ 1, (205)

ϑς(t; σ) =
∞

∑
l=0,odd

(
t
C

)αlX (l; σ)

P(l)
+ Rn+1(t) +

∞

∑
l=0,even

(
t
C

)αlX (l; σ)

P(l)
+ Rn+1(t), 0 ≤ σ ≤ 1, (206)

when ϑς(t) is (ii)-differentiable.
In this section, we will give the solution of fuzzy fractional PDEs at the equally spaced

grid points [t0, t1, ..., tn] where tς = a + ςl∗ for each (ς = 0, 1, 2, ...n), and l∗ = b−a
n . That

is, the domain of interest are divided to n is sub-domain, and the fuzzy approximation
functions in each sub-domain are ϑς(t; σ) for ς = 0, 1, 2, ..., n− 1, respectively. Taking the
initial conditions, we obtain

X (0; σ) = ϑς(0; σ), X (0; σ) = ϑς(0; σ), 0 ≤ σ ≤ 1.

In the first sub-domain, ϑς(t; σ) and ϑς(t; σ) can be described by ϑς(0; σ) = ϑ0(σ) and
ϑς(0; σ) = ϑ0(σ), respectively. They can be expressed in terms of their n-th order bivariate
Taylor series with respect to t0 = 0. That is

ϑς(t0; σ) = X 0(0; σ) +X 0(1; σ)t +X 0(2; σ)t2 + ... +X 0(n; σ)tn,

and

ϑς(t0; σ) = X 0(0; σ) +X 0(1; σ)t +X 0(2; σ)t2 + ... +X 0(n; σ)tn.
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Additionally, using Taylor series for ϑς(tς; σ), the solution on the grid points tς+1 can
be obtained as:

ϑς(tς+1; σ) = X ς(tς+1; σ) = X ς(0; σ) +X ς(1; σ)(tς+1 − tς) +X ςι(2; σ)(tς+1 − tς)
2

+ ... +X ς(n; σ)(tς+1 − tς)
n

=
n

∑
i=0
X ς(i; σ)hi,

and

ϑς(tς+1; σ) = X ς(tς+1; σ) = X ς(0; σ) +X ς(1; σ)(tς+1 − tς) +X ςι(2; σ)(tς+1 − tς)
2

+ ... +X ς(n; σ)(tς+1 − tς)
n

=
n

∑
i=0
X ς(i; σ)hi.

The Properties of Fuzzy (N + 1)-Dimensional Fractional Reduced Differential Transform

We investigate some mathematical operations of fuzzy (n + 1)-dimensional fractional
reduced differential transform.

Lemma 5. Let us consider u(X , t) and v(X , t) are fuzzy-valued functions and their fuzzy (n + 1)-
dimensional fractional RDTM denoted by Uαl(X ) and Vαl(X ), respectively. Then

• If f (X , t) = u(X , t)⊕ v(X , t), then Fαl(X ) = Uαl(X )⊕Vαl(X ), αl ∈ K
• If f (X , t) = u(X , t)	gH v(X , t), then Fαl(X ) = Uαl(X )	gH Vαl(X ), αl ∈ K
• If f (X , t) = c� u(X , t), then Fαl(X ) = c�Uαl(X ), αl ∈ K, where c is a constant,

proposed the generalized Hukuhara difference (gH-difference) exists.

Proof. According to Definition (13), the proof is obvious.

Lemma 6. Let w∈ E1 and f (X , t) = ∂αw(X ,t)
∂tα , then we obtain Fαl(X ) = Γ(α(l+1)+1)

Γ(αl+1) Wαl(X ), l ≥
1 where Fαl(X ) and Wαl(X ) are the fuzzy (n + 1)-dimensional fractional reduced differential trans-
formations of fuzzy-valued functions f and w, respectively.

Proof. Using Definition (13), we obtain for 0 ≤ σ ≤ 1

Fαl(X ; σ) =
1

Γ(α + 1)

[
∂αl

∂tαl

(
∂α

∂tα
w(X , t; σ);

∂α

∂tα
w(X , t; σ)

)]
t=0

=
1

Γ(α + 1)

[
∂α(l+1)

∂tα(l+1)
w(X , t; σ);

∂α(l+1)

∂tα(l+1)
w(X , t; σ)

]
t=0

=
Γ(α(l + 1) + 1)

Γ(αl + 1)Γ(α(l + 1) + 1)

[
∂α(l+1)

∂tα(l+1)
w(X , t; σ);

∂α(l+1)

∂tα(l+1)
w(X , t; σ)

]
t=0

.

Using definition of fuzzy fractional RDTM, we obtain

Fαl(X ; σ) =
Γ(α(l + 1) + 1)

Γ(αl + 1)
Wαl(X ; σ), 0 ≤ σ ≤ 1,

the proof is completed.

Theorem 4. Let us consider f (X , t) = ϑ℘1
1 .ϑ℘2

2 ...ϑ℘n
n .ts, then Fαl(X ) = ϑ℘1

1 .ϑ℘2
2 ...ϑ℘n

n .δ(αl − s)
where
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δ(αl − s) =

{
1, i f αl = s,

0, i f αl 6= s,
is the (n + 1)-dimensional fuzzy fractional RDTM of f .

Proof. According to definition of (n + 1)-dimensional fuzzy fractional RDTM, for any
σ ∈ [0, 1],

Fαl(X ; σ) =
1

Γ(αl + 1)

[
Dαl f (X , t; σ), Dαl f (X , t; σ)

]
t=0

=
1

Γ(αl + 1)

[
ϑ℘1

1 .ϑ℘2
2 ...ϑ℘n

n ts ∂αl

∂tαl

]
t=0

,

this implies that

1. If αl > s or αl < s, then Fαl(X ; σ) = 0.
2. If αl = s, then Fαl(X ; σ) = (ϑ℘1

1 .ϑ℘2
2 ...ϑ℘n

n )(σ).

This implies Fαl(X ; σ) = ϑ℘1
1 .ϑ℘2

2 ...ϑ℘n
n δ(αl − s)(σ).

Lemma 7. Let us consider g∈ E1 and f (X , t) = ∂g(X ,t)
∂ϑς

, then we obtain Fαl(X ) = ∂Gαl(X )
∂ϑς

, l ≥ 1
where Fαl(X ) and Gαl(X ) are (n + 1)-dimensional fuzzy fractional reduced differential transfor-
mations of fuzzy-valued functions f and g, respectively.

Proof. From definition (13), we obtain for 0 ≤ σ ≤ 1

f (X , t; σ) =
∂g(X , t; σ)

∂ϑς
=

[
∂g(X , t; σ)

∂ϑς
,

∂g(X , t; σ)

∂ϑς

]
. (207)

The (n + 1)-dimensional fuzzy fractional RDTM function is written as:

Gαl(X ; σ) =
1

Γ(αl + 1)

[
∂αl g(X , t; σ)

∂tαl ,
∂αl g(X , t; σ)

∂tαl

]∣∣∣∣∣
t=0

. (208)

Using differentiating the right side of the mentioned equality with respect to ϑς,
we obtain

∂Gαl(X ; σ)

∂ϑς
=

∂

(
1

Γ(αl+1)

[
∂αl g(X ,t;σ)

∂tαl , ∂αl g(X ,t;σ)
∂tαl

]∣∣∣∣
t=0

)
∂ϑς

=
1

Γ(αl + 1)

∂αl
[

∂g(X ,t;σ)
∂t , ∂g(X ,t;σ)

∂t

]
∂ϑς


∣∣∣∣∣∣∣∣
t=0

= Fαl(X ; σ), 0 ≤ σ ≤ 1,

the proof is completed.

Lemma 8. Let us consider g∈ E1 and f (X , t) = ∂℘1+℘2+...+℘n+η g(X ,t)
∂ϑ

℘1
1 ,∂ϑ

℘2
2 ,...,∂ϑ℘n

n ∂tη
, s− 1 < η ≤ s then we

obtain Fαl(X ) = Γ(αl+η+1)
Γ(αl+1)

∂℘1+℘2+...+℘n Gαl+η(X )

∂ϑ
℘1
1 ,∂ϑ

℘2
2 ,...,∂ϑ℘n

n
, l ≥ n where Fαl(X ) and Gαl(X ) are the fuzzy

(n + 1)-dimensional fractional reduced differential transformations of fuzzy-valued functions f and
g, respectively.



Fractal Fract. 2022, 6, 656 38 of 47

Proof. Using definition (13), we obtain for 0 ≤ σ ≤ 1

Fαl(X; σ) =
1

Γ(αl + 1)

[
∂αl

∂tαl

(
∂℘1+℘2+...+℘n+η g(X , t; σ)

∂ϑ℘1
1 , ∂ϑ℘2

2 , ..., ∂ϑ℘n
n ∂tη

,
∂℘1+℘2+...+℘n+η g(X , t; σ)

∂ϑ℘1
1 , ∂ϑ℘2

2 , ..., ∂ϑ℘n
n ∂tη

)]
t=0

.

Applying the calculus, we derive

Fαl(X ; σ) =
1

Γ(αl + 1)
∂℘1+℘2+...+℘n

∂ϑ℘1
1 ∂ϑ℘1

1 ...∂ϑ℘n
n

[
∂αl+η g(X , t; σ)

∂tαl+η
,

∂αl+η g(X , t; σ)

∂tαl+η

]
t=0

.

Using definition of fuzzy fractional RDTM on ∂η

∂tη g(X , t; σ) and ∂η

∂tη g(X , t; σ) are

Fαl(X ; σ) =
1

Γ(αl + η + 1)

[
∂αl+η g(X , t; σ)

∂tαl+η
,

∂αl+η g(X , t; σ)

∂tαl+η

]
t=0

,

thus, we obtain

Fαl(X ; σ) =
Γ(αl + η + 1)

Γ(αl + 1)
∂℘1+℘2+...+℘n Gαl+η(X ; σ)

∂ϑ℘1
1 , ∂ϑ℘2

2 , ..., ∂ϑ℘n
n

, 0 ≤ σ ≤ 1.

the proof is completed.

Note: Assuming η = nα, then the expression above can be represented as follows:

Fαl(X ; σ) =
Γ(α(l + n) + 1)

Γ(αl + 1)
∂℘1+℘2+...+℘n Gα(l+n)(X ; σ)

∂ϑ℘1
1 , ∂ϑ℘2

2 , ..., ∂ϑ℘n
n

, 0 ≤ σ ≤ 1.

Lemma 9. Let g∈ E1 and f (X , t) = ϑ℘1
1 , ϑ℘2

2 , ..., ϑ℘n
n tη g(X ; t), then Fαl(X ) = ϑ℘1

1 , ϑ℘2
2 , ...,

ϑ℘n
n ∑l

℘=0 δ(α℘− η)Gα(l−℘)(X ), where Fαl(X ) and Gαl(X ) are the fuzzy (n + 1)-dimensional
fractional RDTM of f and g, respectively.

Proof. Suppose that w(X , t) = ϑ℘1
1 , ϑ℘2

2 , ..., ϑ℘n
n tη , i.e., f (X , t) = w(X , t)g(X , t) then by

Definition (13) of f (X , t), we have

Fαl(X ; σ) =
l

∑
℘=0

Wα℘(X ) · Gα(l−℘)(X ; σ),

Fαl(X ; σ) =
l

∑
℘=0

Wα℘(X ) · Gα(l−℘)(X ; σ),

Hence, using Theorem (4), we get

Wαl(X ) = ϑ℘1
1 , ϑ℘2

2 , ..., ϑ℘n
n δ(α℘− η),

where

δ(αc− η) =

{
1, i f α℘ = η,

0, i f α℘ 6= η,

so, we obtain

Fαl(X ; σ) = ϑ℘1
1 , ϑ℘2

2 , ..., ϑ℘n
n

l

∑
℘=0

δ(α℘− η)Gα(l−℘)(X ; σ),
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This completes our desired result.

Theorem 5. Let us consider u ∈ R and f (X , t) = u(X )g(X , t), then Fαl(X ) = u(X )Gαl(X ),
where Fαl(X ) and Gαl(X ) are the fuzzy (n + 1)-dimensional fractional reduced differential trans-
formations of real-valued functions f and g, respectively.

Proof. Using definition (13), we obtain for 0 ≤ σ ≤ 1

Fαl(X ; σ) =
1

Γ(αl + 1)

[
∂αlu(X ) · g(X , t; σ)

∂tαl ,
∂αlu(X ) · g(X , t; σ)

∂tαl

]∣∣∣∣∣
t=0

= u(X )
1

Γ(αl + 1)

[
∂αl g(X , t; σ)

∂tαl ,
∂αl g(X , t; σ)

∂tαl

]∣∣∣∣∣
t=0

thus, we obtain

Fαl(X ; σ) = u(X ) · Gαl(X ; σ), 0 ≤ σ ≤ 1,

the proof is accomplished.

4.3. Examples

We propose some examples to illustrate this method is a powerful mathematical tool
for solving fuzzy fractional partial differential equations.

Example 7. We take into account the fuzzy (3+ 1)-dimensional time-fractional wave-like equations
[1,2]

∂βw
∂tβ

= (ϑ2 + θ2 + φ2)⊕ 1
2

(
ϑ2 � wϑϑ ⊕ θ2 � wθθ ⊕ φ2 � wφφ

)
, t > 0, 1 < β ≤ 2, (209)

with the initial conditions

w(ϑ, θ, φ, 0) = 0̃, wt(ϑ, θ, φ, 0) = [(0.5σ)n, (1− 0.5σ)n]⊕ (ϑ2 + θ2 − φ2), (210)

where n = 1, 2, 3, ..., β = nα, and 0̃ ∈ E1.
Using the properties of fuzzy (n + 1)-dimensional fractional RDTM, we have

Wα(l+n)(ϑ, θ, φ; σ) =
Γ(αl + 1)

Γ(α(l + n) + 1)

((
ϑ2 + θ2 + φ2

)
δ(αl)

+
1
2

(
ϑ2 ∂2Wαl

∂ϑ2 + θ2 ∂2Wαl
∂θ2 + φ2 ∂2Wαl

∂φ2

))
, (211)

and

Wα(l+n)(ϑ, θ, φ; σ) =
Γ(αl + 1)

Γ(α(l + n) + 1)

((
ϑ2 + θ2 + φ2

)
δ(αl)

+
1
2

(
ϑ2 ∂2Wαl

∂ϑ2 + θ2 ∂2Wαl
∂θ2 + φ2 ∂2Wαl

∂φ2

))
. (212)
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Taking the initial conditions (210), we have

W0 = 0̃,

Wαl =

{
(0.5σ)n +

(
ϑ2 + θ2 − φ2), if αl = 1

0, if αl 6= 1, l = 0, 1, 2, . . . , n− 1,

(213)

and

W0 = 0̃,

Wαl =

{
(1− 0.5σ)n +

(
ϑ2 + θ2 − φ2), if αl = 1

0, if αl 6= 1, l = 0, 1, 2, . . . , n− 1,

(214)

for β = 1.5, i.e., n = 3, α = 1
2 , and l = 0, 1, 2, 3, ... (214) into (211), we have

w(ϑ, θ, φ, t; σ) = (0.5σ)n +

[(
ϑ2 + θ2

)(
t +

t3/2

Γ((3/2) + 1)
+

Γ(2)t5/2

Γ((5/2) + 1)
+

t3

Γ(4)
+ ...

)

+φ2

(
t +

t3/2

Γ((3/2) + 1)
+

Γ(2)t5/2

Γ((5/2) + 1)
+

t3

Γ(4)
+ ...

)]
,

(215)

and

w(ϑ, θ, φ, t; σ) = (1− 0.5σ)n +

[(
ϑ2 + θ2

)(
t +

t3/2

Γ((3/2) + 1)
+

Γ(2)t5/2

Γ((5/2) + 1)
+

t3

Γ(4)
+ ...

)

+φ2

(
t +

t3/2

Γ((3/2) + 1)
+

Γ(2)t5/2

Γ((5/2) + 1)
+

t3

Γ(4)
+ ...

)]
.

(216)

For β = 2, i.e., n = 2, α = 1, and l = 0, 1, 2, 3, ... (214) into (211), we have

w(ϑ, θ, φ, t; σ) = (0.5σ)n +

[(
ϑ2 + θ2

)(
t +

t2

Γ(3)
+

Γ(2)t3

Γ(4)
+

t4

Γ(5)
+ ...

)
+φ2

(
−t +

t2

Γ(3)
− Γ(2)t3

Γ(4)
+

t4

Γ(5)
+ ...

)]
,

and

w(ϑ, θ, φ, t; σ) = (1− 0.5σ)n +

[(
ϑ2 + θ2

)(
t +

t2

Γ(3)
+

Γ(2)t3

Γ(4)
+

t4

Γ(5)
+ ...

)
+φ2

(
−t +

t2

Γ(3)
− Γ(2)t3

Γ(4)
+

t4

Γ(5)
+ ...

)]
.

thus, we can obtained the exact solution as:

w(ϑ, θ, φ, t; σ) = [(0.5σ)n, (1− 0.5σ)n]⊕
(
−
(

ϑ2 + θ2 + φ2
)
+
(

ϑ2 + θ2
)

et + φ2e−t
)

, 0 ≤ σ ≤ 1.

The results corresponding to example 7 are shown in Figure 3 at different values of β. But, if we
compare it with others methods in [1,2] shows that although the result of these methods implemented
the same at β = 2. But, unlike fuzzy ADM or the generation of correction functionals using general
Lagranges multiplication in fuzzy VIM. The fuzzy (n + 1)-dimensional fractional RDTM does not
call for additional algorithms and complicated calculations.

Table 1 shows the error term between exact and approximate solutions of example 7 for σ
between 0 and 1. We have also checked and verified the convergence for time t in this example, which
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shows that example 7 exhibit convergent solutions till time t = 709 and as the value of t exceeds
709, the solutions tend to infinity and show divergence.

Table 1. Table for the error term between exact solutions (ES) and approximate solutions (AS).

σ Lower ES Lower AS Lower Error Upper ES Upper AS Upper Error

0 −3.1552 × 10−5 0.00011003 −0.00014158 0.99997 1.0001 −0.00014158
0.1 −3.124 × 10−5 0.00011034 −0.00014158 0.77375 0.77389 −0.00014158
0.2 −2.1552 × 10−5 0.00012003 −0.00014158 0.59046 0.5906 −0.00014158
0.3 4.4385 × 10−5 0.00018597 −0.00014158 0.44367 0.44382 −0.00014158
0.4 0.00028845 0.00043003 −0.00014158 0.32765 0.32779 −0.00014158
0.5 0.00094501 0.0010866 −0.00014158 0.23727 0.23741 −0.00014158
0.6 0.0023984 0.00254 −0.00014158 0.16804 0.16818 −0.00014158
0.7 0.0052206 0.0053622 −0.00014158 0.116 0.11614 −0.00014158
0.8 0.010208 0.01035 −0.00014158 0.077728 0.07787 −0.00014158
0.9 0.018421 0.018563 −0.00014158 0.050297 0.050438 −0.00014158
1 0.031218 0.03136 −0.00014158 0.031218 0.03136 −0.00014158

In Figure 3a, we have compared solutions of fuzzy wave-like equations based on integer as well
as fractional order derivatives. It can be seen that red ? and blue colored � are for exact solution
using β = 2, while orange and purple colored dashed-dotted lines are for fractional order at β = 1.5.
For specific values of ϑ = 0.02, θ = 0.002, φ = 0.03 the solution of fuzzy fractional wave-like
equations at β = 1.5 and 2 are same. Therefore, for a detailed study, we plot a three-dimensional
Figure 3b in which we fix all the parameters except θ. Here, one can observe in detail that at the
start there exists an error in the exact and approximate solution which reduces time and finally the
approximate solution overlaps the exact solution.

Example 8. Consider the following fuzzy time-fractional ZK(2, 2, 2) equation

∂αw
∂tα
⊕ (w2)ϑ ⊕

1
8
� (w2)ϑϑϑ ⊕

1
8
� (w2)θθϑ = 0, 0 < α ≤ 1, (217)

subject to the initial condition

w(ϑ, θ, 0) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]	gH
4
3

ρ cosh2(ϑ + θ), (218)

where n = 1, 2, 3, ..., and ρ is an arbitrary constant.
Using the properties of fuzzy (n + 1)-dimensional fractional RDTM, we have

Wα(l+1)(ϑ, θ; σ) = − Γ(αl + 1)
Γ(α(l + 1) + 1)

 l

∑
℘=0

∂
(

Wα℘Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ

+
1
8

l

∑
℘=0

∂3
(

Wα℘Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ3 +
1
8

l

∑
℘=0

∂3
(

Wα℘Wα(l−℘)(ϑ, θ; σ)
)

∂θ2∂ϑ

,

(219)

and

Wα(l+1)(ϑ, θ; σ) = − Γ(αl + 1)
Γ(α(l + 1) + 1)

 l

∑
℘=0

∂
(

Wα℘Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ

+
1
8

l

∑
℘=0

∂3
(

Wα℘Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ3 +
1
8

l

∑
℘=0

∂3
(

Wα℘Wα(l−℘)(ϑ, θ; σ)
)

∂θ2∂ϑ

.

(220)
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(a)

(b)

Figure 3. Comparison of exact and approximate solution of fuzzy fractional wave-like equation
for ϑ = 0.02, θ = 0.002, φ = 0.03, t = 0.007, n = 5. (a) 2D figure for the comparison of exact and
approximate solutions of w in Example 7. (b) 3D figure for the comparison of exact and approximate
solutions of w in Example 7.

From the initial condition (218), we obtain

W0(ϑ, θ, 0)(σ) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]	gH
4
3

ρ cosh2(ϑ + θ), (221)

for l = 0, 1, 2, ... to using (221) into (219), we get

w∗m(ϑ, θ, t; σ) =
m−1

∑
l=0

Wαltαl , (222)

and the exact solution can be obtain as

w(ϑ, θ, t; σ) = lim
m→∞

w∗m(ϑ, θ, t; σ) =
∞

∑
l=0

Wαltαl , (223)
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i.e., the 3-term approximate result to (217) can obtain as:

w(ϑ, θ, t; σ) ≈
2

∑
l=0

Wαltαl . (224)

The solution of Equation (217) is represented as follows:

w(ϑ, θ, t; σ) = [(2 + 0.4σ)n, (2.8− 0.4σ)n]	gH
4
3

ρ cosh2(ϑ + θ − ρt), 0 ≤ σ ≤ 1.

Similar to previous examples, here we have also checked the convergence for time t, which
shows that example 8 exhibit convergent solutions till time t = 355 and as the value of t exceeds
355, the solutions tend to infinity and show divergence.

In Figure 4, we plotted 2D and 3D graphs of the ZK(2, 2, 2) equation but with different initial
condition. Figure 4a shows that for ϑ = 0.0001, θ = 0.05, φ = 0.6 and ρ = 1 using n = 1 at
t = 0.07 the ZK(2, 2, 2) equation become bounded and closed. Furthermore, the pink colored ? sign
shows increasing functions and blue colored � presents decreasing functions on the σ-level set of w.
To discuss the concept of the σ-level set, one can see Figure 4b, which shows that the σ-level set of
ZK(2,2,2) equation is bounded and closed for ϑ = 0.0001, 0 < θ < 1 and φ = 0.6.

(a) (b)

Figure 4. The exact lower and upper solutions of Equation (217) at ϑ = 0.0001, θ = 0.05, t = 0.07,
n = 1. (a) 2D figure for the exact solutions of fuzzy time-fractional ZK(2, 2, 2) equation of w in
Example 8. (b) 3D figure for the exact solutions of w in Example 8.

Example 9. We take into account the following fuzzy fractional ZK(3, 3, 3) equation

∂αw
∂tα
⊕ (w3)ϑ ⊕

1
8
� (w3)ϑϑϑ ⊕

1
8
� (w3)θθϑ = 0, 0 < α ≤ 1, (225)

subject to the initial condition

w(ϑ, θ, 0) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ cosh
(

ϑ + θ

6

)
, (226)

where n = 1, 2, 3, ..., for ρ is an arbitrary constant.
Using the properties of fuzzy (n + 1)-dimensional fractional RDTM, we have

Wα(l+1)(ϑ, θ; σ) = − Γ(αl + 1)
Γ(α(l + 1) + 1)

 l

∑
℘=0

℘

∑
s=0

∂
(

WαsWα(℘−s)Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ

+
1
8

l

∑
℘=0

℘

∑
s=0

∂3
(

WαsWα(℘−s)Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ3 +
1
8

l

∑
℘=0

℘

∑
s=0

∂3
(

WαsWα(℘−s)Wα(l−℘)(ϑ, θ; σ)
)

∂θ2∂ϑ

,

(227)
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and

Wα(l+1)(ϑ, θ; σ) = − Γ(αl + 1)
Γ(α(l + 1) + 1)

 l

∑
℘=0

℘

∑
s=0

∂
(

WαsWα(℘−s)Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ

+
1
8

l

∑
℘=0

℘

∑
s=0

∂3
(

WαsWα(℘−s)Wα(l−℘)(ϑ, θ; σ)
)

∂ϑ3 +
1
8

l

∑
℘=0

℘

∑
s=0

∂3
(

WαsWα(℘−s)Wα(l−℘)(ϑ, θ; σ)
)

∂θ2∂ϑ

.

(228)

From the initial condition (226), we obtain

W0(ϑ, θ; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ cosh
(

ϑ + θ

6

)
, (229)

for l = 0, 1 in (229) into (227), and using (226), yields

w(ϑ, θ, t; σ) ≈
2

∑
l=0

Wαltαl(σ). (230)

The solution of Equation (225) is obtained as follows:

w(ϑ, θ, t; σ) = [(3.1 + 0.3σ)n, (3.8− 0.4σ)n]� 3
2

ρ cosh
[

1
6
(ϑ + θ − ρt)

]
, 0 ≤ σ ≤ 1.

Finally, the convergence for example 9 shows that their solutions are convergent till time
t = 4254.

Figure 5 also satisfies the condition of σ-level set in both (two and three dimensional) cases for
example 9.

(a) (b)

Figure 5. The exact lower and upper solutions of Equation (225) at ϑ = 0.1, θ = 0.4, φ = 0.9, t = 3,
n = 1. (a) 2D figure for the exact solutions of fuzzy fractional ZK(3, 3, 3) equation of w in Example 9.
(b) 3D figure for the exact solutions of w in Example 9.

5. Conclusions

In this paper, we have successfully compared (n + 1)-dimensional fuzzy RDTM,
ADM, HPM, and fuzzy HAM to obtain the solutions of fuzzy heat-like and wave-like
equations, and fuzzy Zakharov-Kuznetsov equations. Furthermore, we investigated the
fuzzy (n + 1)-dimensional fractional RDTM to apply the solution of fuzzy fractional heat-
like and wave-like equations, and fuzzy Zakharov-Kuznetsov equations. The RDTM is
applied in an uncomplicated approach, without discretization or limiting assumptions.
Previous numerical studies demonstrated that the RDTM is occasionally more effective than
other techniques. We demonstrated that the suggested methods are highly accurate and
efficient by applying them to some of the initial value problems. Hence, we have obtained
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several new results to solve the above problems when these methods have been applied.
Moreover, we observed that our methods are strong mathematical tools for solving PDEs
and issues in physics, engineering, and other fields. In future, we are trying our best to
present new techniques for solving fuzzy fractional diffusion equations, and the numerical
technique for solving fuzzy fractional Cauchy reaction-diffusion equations as well.
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