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Abstract: In the present work, we address a nonlinear boundary value problem that models frictional
contact with prescribed normal stress between a deformable body and a foundation. The body
is nonlinearly elastic, the constitutive law being a subdifferential inclusion. We deliver a three-
field variational formulation by means of a new variational approach governed by the theory of
bipotentials combined with a Lagrange-multipliers technique. In this new approach, the unknown of
the mechanical model is a triple consisting of the displacement field, a Lagrange multiplier related to
the friction force and the Cauchy stress tensor. We obtain existence, uniqueness, boundedness and
convergence results.
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1. Introduction

Everywhere around us we can see deformable bodies in interaction. However, even
though very common, the contact phenomenon is not a trivial one; in addition, in en-
gineering, handling the interactions between deformable bodies and obstacles is very
important and requires advanced applied mathematics. The contact phenomenon can
be mathematically modeled by means of boundary value problems governed by partial
differential equations. Actually, the topic is very complex, involving continuum mechanics,
differential equations, function spaces, calculus of variations, nonlinear analysis, control
theory and numerical analysis. The importance and the abundance of the applications of
contact problems in the real world has motivated a large number of scientists to investigate
this kind of model. It is worth underlining that, due to their complexity, contact models
do not have classical solutions. Thus, the variational methods play a crucial role in the
qualitative and quantitative analysis.

In the present paper, we focus on the well-posedness and approximation results ad-
dressing a stationary frictional contact problem with prescribed normal stress, for materials
governed by a multi-valued elastic operator. Using the bipotential theory, we deliver a
variational formulation of the mechanical model in a form of a variational system consisting
of three inequalities. Placing us in an appropriate functional setting governed by Lebesgue
and Sobolev spaces for vector functions including fractional spaces on the boundary, we
apply the saddle point theory and a minimization technique in order to prove the existence
of at least one solution. We also pay attention to the uniqueness of the solution. Firstly, we
draw attention to a partial uniqueness result related to the uniqueness in the first compo-
nent. Subsequently, we discuss a global uniqueness result, not for the original problem,
but for a perturbed version of it. After we investigate the boundedness of the solution of
the perturbed problem, we prove a convergence result allowing an approximation of a
weak solution of the contact model under consideration. The present study can be seen
as a continuation of [1]; there, a two-field variational formulation for the same model was
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delivered; with the well-posedness of the model being studied under a more restrictive
hypothesis for the prescribed normal stress. In [1], the weak solution is a pair consisting
of the displacement vector and the Cauchy stress tensor. In the present study, the weak
solution is a triple by considering a Lagrange multiplier related to the friction force as a
component of the weak solution, in addition to the displacement vector and the Cauchy
stress tensor. From the mathematical point of view, the new study is more complex. Besides
the theory of bipotentials and the minimization techniques, the present study requires a
saddle point technique, fractional Lebesgue and Sobolev spaces, weak topologies and a
convergence of the Mosco type. It is worth emphasizing that the variational approach we
propose leads to a new class of variational problems governed by Lagrange multipliers.
From the mechanical point of view, the new variational approach we propose is important
because it makes possible an estimation of the friction force, even a numerical computation,
after passing from the qualitative study to the quantitative analysis in a future investigation.

Let us specify some helpful references for background knowledge: for the mechanics
of deformable solids/contact mechanics see, e.g., [2–9]; for bipotential theory, we refer to,
e.g., [10–15]; for the saddle point theory see, e.g., [16–20]; and for the functional spaces the
reader can consult, e.g., [21–27]. For recent results related to the topic of the present work,
we refer, for instance, to [28–30]. However, in order to increase the clarity of the exposure,
we specify herein some mathematical tools that will play a crucial role.

Let (X, (·, ·)X , ‖ · ‖X) be a Hilbert space.

Definition 1. A bipotential is a function B : X× X → (−∞, ∞] with the following three properties:

(i) B is convex and lower semicontinuous in each argument;

(ii) For each x, y ∈ X, we have B(x, y) ≥ (x, y)X ;

(iii) For each x, y ∈ X, y ∈ ∂B(·, y)(x)⇔ x ∈ ∂B(x, ·)(y)⇔ B(x, y) = (x, y)X .

Recall that the Fenchel conjugate of a functional φ : X → (−∞, ∞] is the functional

φ∗ : X → (−∞, ∞], φ∗(x∗) = sup
x∈X
{(x∗, x)− φ(x)}.

Always, the Fenchel conjugate is a convex and lower semicontinuous functional, see,
e.g., [22].

Theorem 1. Let φ : X → (−∞, ∞] be a proper, convex, lower semicontinuous functional. Then:

(i) For each x, y ∈ X, we have φ(x) + φ∗(y) ≥ (x, y)X ;

(ii) For each x, y ∈ X, y ∈ ∂φ(x)⇔ x ∈ ∂φ∗(y)⇔ φ(x) + φ∗(y) = (x, y)X .

Notice that if φ is a proper, convex, lower semicontinuous functional, then its Fenchel
conjugate has all these properties too, see, e.g., [22]. For some details and additional
elements in the convex analysis, we refer to, e.g., [18,31–34].

In addition, we shall need the following theorem.

Theorem 2 (See, e.g., [35]). Let (X, ‖ · ‖X) be a reflexive Banach space and let K ⊂ X be a
nonempty, convex, closed, unbounded subset of X. Suppose ϕ : K → R is coercive, convex and
lower semicontinuous. Then, ϕ is bounded from below on K and attains its infimum in K. If ϕ is
strictly convex, then ϕ has a unique minimizer.

We recall that ϕ : K → R is coercive if, for all u ∈ K, we have ϕ(u)→ ∞ as ‖u‖X → ∞.

Theorem 3. Let (X, (·, ·)X, ‖ · ‖X), (Y, (·, ·)Y, ‖ · ‖Y) be two Hilbert spaces and let A ⊆ X,
B ⊆ Y be nonempty, closed, convex subsets. Assume that a bifunctional L : A× B→ R satisfies
the following conditions
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v→ L(v, µ) is convex and lower semi-continuous for all µ ∈ B,

µ→ L(v, µ) is concave and upper semi-continuous for all v ∈ A.

Moreover, we assume that

A is bounded or lim
‖v‖X→∞, v∈A

L(v, µ0) = ∞ for some µ0 ∈ B

and

B is bounded or lim
‖µ‖Y→∞, µ∈B

inf
v∈A
L(v, µ) = −∞.

Then:

(a) The bifunctional L(·, ·) has at least one saddle point;
(b) The set A0 × B0 of the saddle points of L is convex, where A0 ⊂ A and B0 ⊂ B;
(c) If v→ L(v, µ) is strictly convex f or all µ ∈ B, then A0 contains at most one point;
(d) If µ→ L(v, µ) is strictly concave f or all v ∈ A, then B0 contains at most one point.

For a proof of (a), see [18] (p. 176). For a proof of (b), (c), (d), see [18] (p. 169).
The rest of the paper has the following structure. In Section 2 we provide the functional

setting we use. In Section 3 we describe the mechanical model and deliver its three-field
variational formulation. In Section 4 we obtain existence, uniqueness, boundedness and
convergence results. The last section provides some conclusions and final comments.

2. Functional Setting

Let Ω ⊂ RN (N > 1) be a bounded domain with a regular enough boundary denoted
by Γ. We use standard notation for Lp(Ω), W1,p(Ω), Lp(Γ), H1(Ω), see, e.g., [21–27].

Let 2 ≤ p < ∞. Recall that, according to the trace theorem—see, e.g., [6] (p. 34)—there
exists a unique linear continuous operator γ : W1,p(Ω)→ Lp(Γ) such that

(a) γ u = u|Γ if u ∈ C1(Ω);
(b) ‖γ u‖Lp(Γ) ≤ ctr‖u‖W1,p(Ω) with ctr = ctr(p, Ω) > 0;

(c) If 1 < p < ∞, then γ(W1,p(Ω)) = W1−1/p,p(Γ);
(d) If 1 < p < N, then γ : W1,p(Ω)→ Lr(Γ) is compact for any r such that 1 ≤ r < N p−p

N−p .

The function γ u is called the trace of the scalar function u on Γ and the operator
γ : W1,p(Ω)→ Lp(Γ) is called the trace operator. The trace operator is neither an injection,
nor a surjection from W1,p(Ω) to Lp(Γ). However, according to, e.g., Theorem 1.5.1.2
in [23], there exists a unique linear continuous and surjective operator from W1,p(Ω) to
γ(W1,p(Ω)) = W1−1/p,p(Γ). Therefore, there are some d̄ = d̄(p, Ω), such that

‖γu‖
W1− 1

p ,p
(Γ)
≤ d̄‖u‖W1,p(Ω) for all u ∈W1,p(Ω).

Furthermore, there exists a map called the right inverse of γ, denoted here by `,

` : W1−1/p,p(Γ)→W1,p(Ω), γ(`(ζ)) = ζ for all ζ ∈W1−1/p,p(Γ);

see, e.g., [36]. Notice that the right inverse operator is a linear and continuous map.
The space

W1−1/p,p(Γ) = {u ∈ Lp(Γ) | ∃ v ∈W1,p(Ω) such that u = γv a.e. on Γ}

is a normed space endowed with the following norm

‖u‖W1−1/p,p(Γ) =

(
‖u‖p

Lp(Γ) +
∫

Γ

∫
Γ

|u(x)− u(y)|p
‖x− y‖N+p−2 ds(x)ds(y)

)1/p
,
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see, e.g., [26], (p. 43). Actually, the space (W1−1/p,p(Γ), ‖ · ‖W1−1/p,p(Γ)) is a Banach space,
see, e.g., [24], (p. 332).

If p = 2, γ(H1(Ω)) = H1/2(Γ). The space H1/2(Γ) is a Hilbert space endowed with
the inner product

(v, w)H1/2(Γ) = (v, w)L2(Γ) +
∫

Γ

∫
Γ

(v(x)− v(y))(w(x)− w(y))
‖x− y‖N dΓ(x)dΓ(y)

and the corresponding Sobolev–Slobodeckij norm

‖v‖H1/2(Γ) =

(
‖v‖2

L2(Γ) +
∫

Γ

∫
Γ

(v(x)− v(y))2

‖x− y‖N dΓ(x)dΓ(y)
)1/2

.

Notice that
‖u‖L2(Γ) ≤ ‖u‖H1/2(Γ) for all u ∈ H1/2(Γ),

so H1/2(Γ) is continuously embedded in L2(Γ). The space H1/2(Γ) is called the image of
H1(Ω) by the trace operator γ.

To proceed, we consider N = 3. The fields in R3 will be typeset in boldface. The inner
product and the Euclidean norm on R3 will be denoted by · and ‖ · ‖, respectively.

Let us introduce the vector spaces

L2(Ω;R3) = {w = (wi) | wi ∈ L2(Ω), 1 ≤ i ≤ 3};
H1(Ω;R3) = {w = (wi) | wi ∈ H1(Ω), 1 ≤ i ≤ 3};

H1/2(Γ;R3) = γ(H1(Ω;R3)) = {w = (wi) | wi ∈ H1/2(Γ), 1 ≤ i ≤ 3}.

The spaces L2(Ω;R3) and H1(Ω;R3) are Hilbert spaces endowed with the inner
products

(u, v)L2(Ω;R3) =
3

∑
i=1

∫
Ω

uivi dx, (u, v)H1(Ω;R3) =
3

∑
i=1

(ui, vi)H1(Ω),

and the associated norms ‖ · ‖L2(Ω;R3) =
√
(·, ·)L2(Ω;R3) and ‖ · ‖H1(Ω;R3) =

√
(·, ·)H1(Ω;R3),

respectively. The space H1/2(Γ;R3) is also a Hilbert space endowed with the inner product

(v, w)H1/2(Γ;R3) =
3

∑
i=1

(vi, wi)H1/2(Γ)

=
3

∑
i=1

(vi, wi)L2(Γ) +
3

∑
i=1

∫
Γ

∫
Γ

(vi(x)− vi(y))(wi(x)− wi(y))
‖x− y‖3 dΓ(x)dΓ(y)

and the corresponding Sobolev–Slobodeckij norm

‖w‖H1/2(Γ;R3) =

(
‖w‖2

L2(Γ;R3) +
∫

Γ

∫
Γ

‖w(x)−w(y)‖2

‖x− y‖3 dΓ(x)dΓ(y)
)1/2

.

We easily observe that

‖u‖L2(Γ;R3) ≤ ‖u‖H1/2(Γ;R3) for all u ∈ H1/2(Γ;R3), (1)

so H1/2(Γ;R3) is continuously embedded in L2(Γ;R3).
The trace operator for vector functions γ : H1(Ω;R3)→ L2(Γ;R3) is a linear, continu-

ous and compact operator, but it is neither an injection nor a surjection; see, e.g., [37].

‖γ u‖L2(Γ;R3) ≤ c̄tr‖u‖H1(Ω;R3) for all u ∈ H1(Ω;R3) (c̄tr > 0).
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Notice that
γ : H1(Ω;R3)→ H1/2(Γ;R3)

is a linear, continuous operator but it is not a compact operator. Let us point out that there
are some c̃ > 0 such that

‖γu‖H1/2(Γ;R3) ≤ c̃‖u‖H1(Ω;R3) for all u ∈ H1(Ω;R3). (2)

Furthermore, there exists a linear, continuous operator ` : H1/2(Γ;R3)→ H1(Ω;R3)
such that

γ(`(ξ)) = ξ for all ξ ∈ H1/2(Γ;R3).

The operator ` is called the right inverse of the trace operator γ.
Let S3 be the space of second-order symmetric tensors on R3. Every field in S3 is

typeset in boldface. By : and ‖ · ‖S3 we denote the inner product and the Euclidean norm
on S3.

We introduce now two tensor Lebesgue spaces, as follows.

L2(Ω;S3) = {µ = (µij) : µij ∈ L2(Ω) for all i, j ∈ {1, 2, 3}};
L2

s (Ω;S3) = {µ = (µij) : µij ∈ L2(Ω), µij = µji for all i, j ∈ {1, 2, 3}}.

The space L2(Ω;S3) is a Hilbert space endowed with the inner product

(µ, τ)L2(Ω;S3) =
∫

Ω

3

∑
i,j=1

µij(x)τij(x) dx;

the space L2
s (Ω;S3) is a Hilbert space endowed with the inner product

(µ, τ)L2
s (Ω;S3) = (µ, τ)L2(Ω;S3).

Next, we introduce the following space,

H1 = {u ∈ L2(Ω;R3) | ε(u) ∈ L2
s (Ω;S3)},

where
ε : H1(Ω;R3)→ L2(Ω;S3)

is the linear operator

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i);

the index that follows a comma indicates a weak partial derivative with respect to the
corresponding component of the independent variable.

The space H1 is a real Hilbert space endowed with the inner product

(u, v)H1 = (u, v)L2(Ω;R3) + (ε(u), ε(v))L2
s (Ω;S3).

The associated norm on the space H1 is denoted by ‖ · ‖H1 . According to, e.g., [38],
H1 = H1(Ω;R3) algebraically and the norms ‖ · ‖H1 and ‖ · ‖H1(Ω;R3) are equivalent.

Notice that ε is a linear and continuous operator from H1(Ω;R3) to L2
s (Ω;S3).

Let Γ1 be a measurable part of Γ with positive surface measure.
We consider the space

V = { v ∈ H1 | γv = 0 almost everywhere on Γ1}. (3)
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This is a closed subspace of H1(Ω;R3), so (V, (·, ·)H1(Ω;R3), ‖ · ‖H1(Ω;R3)) is a
Hilbert space.

Let us recall Korn’s inequality: there exists cK = cK(Ω, Γ1) > 0 such that

‖ε(v)‖L2
s (Ω;S3) ≥ cK‖v‖H1 for all v ∈ V;

see, e.g., [38,39]. Using this inequality, it can be proved that the space V is a Hilbert space
endowed with the following inner product,

(·, ·)V : V ×V → R; (u, v)V = (ε(u), ε(v))L2
s (Ω;S3) for all u, v ∈ V, (4)

and the corresponding norm

‖v‖V = ‖ε(v)‖L2
s (Ω;S3) for all v ∈ V.

Notice that, since the norms ‖ · ‖H1 and ‖ · ‖H1(Ω;R3) are equivalent, then there exists
c̃K = c̃K(Ω, Γ1) > 0 such that

‖v‖V ≥ c̃K‖v‖H1(Ω;R3) for all v ∈ V. (5)

We proceed by introducing a closed subspace of H1/2(Γ;R3) as follows:

γ(V) = {ṽ ∈ H1/2(Γ;R3) | ṽ = γv for some v ∈ V}. (6)

According to [40], the space γ(V) is a closed subspace of HΓ = H1/2(Γ;R3). Thus,
γ(V) is a Hilbert space endowed with the inner product

(·, ·)γ(V) : γ(V)× γ(V)→ R, (ζ, φ)γ(V) = (ζ, φ)H1/2(Γ;R3) for all ζ, φ ∈ γ(V).

We note that
γ(`(γv)) = γv for all v ∈ V.

As

`(ζ) ∈ V for all ζ ∈ γ(V),

we can introduce an operator as follows

R : γ(V)→ V, R(ζ) = `(ζ).

The operator R is a linear and continuous operator. Hence, there are some c̄ > 0
such that

‖Rṽ‖V ≤ c̄‖ṽ‖H1/2(Γ;R3) for all ṽ ∈ γ(V). (7)

3. The Model and Its Three-Field Variational Formulation

The physical setting is as follows: a deformable body occupies a bounded domain
Ω ⊂ R3 with smooth enough boundary Γ, partitioned in three measurable parts Γ1, Γ2 and
Γ3 with positive surface measures. The body is clamped on Γ1, body forces of density f 0 act
on Ω, surface tractions of density f 2 act on Γ2 while on Γ3 the body is in frictional contact
with a foundation.

According to this physical setting, we state the following boundary value problem.

Problem 1. Find u : Ω̄→ R3 and σ : Ω̄→ S3, such that
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Div σ(x) + f 0(x) = 0 in Ω, (8)

σ(x) ∈ ∂ω(ε(u)(x)) in Ω, (9)

u(x) = 0 on Γ1, (10)

σ(x)ν(x) = f 2(x) on Γ2, (11)

−σν(x) = F(x) on Γ3, (12)

‖στ(x)‖ ≤ k(x) |σν(x)|, στ(x) = − k(x) |σν(x)| uτ(x)
‖uτ(x)‖ if uτ(x) 6= 0 on Γ3. (13)

As usual, u = (ui) denotes the displacement field, ε = ε(u) = (εij(u)) denotes the in-
finitesimal strain tensor, σ = (σij) denotes the Cauchy stress tensor, ω is a constitutive map,
ν stands for the unit outward normal to Γ, the normal and the tangential components of the
displacement vector on the boundary are defined by the formulas uν = u · ν, uτ = u− uνν
and the normal and the tangential components of the Cauchy vector on the boundary are
defined by σν = (σν) · ν, στ = σν− σνν.

Due to the condition
−σν = F,

according to the engineering literature, the frictional contact model we treat is a bilateral
frictional contact problem. In this context, we have to mention that the bilateral frictional
contact phenomenon can be found in many components of mechanical equipment. Thus,
many real-world examples can be envisaged. The mathematical and the engineering litera-
ture contains relevant applications of bilateral frictional contact models; see, e.g., [41,42].
Referring to the behavior of the materials, for significant examples of nonlinearly elastic
constitutive laws described by means of subdifferential inclusions for various constitutive
maps ω, see, e.g., [38] and the references therein. For the convenience of the reader, we
indicate here an example of such a constitutive map:

ω : S3 → R, ω(τ) =
1
2
Aτ : τ +

k
2
‖τ −PKτ‖2

S3 , (14)

where A : S3 → S3, A = (Aijkl), Aijkl = λ0δijδkl + µ0(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ 3, with
λ0, µ0 and k small enough positive material coefficients, and PK : S3 → K denotes the
projection operator on the closed and convex set K ⊂ S3 which contains 0S3 .

In order to study Problem 1, we make the following assumptions.

Assumption 1. ω : S3 → R is a convex and lower semicontinuous functional. In addition, there
exist α, β such that 1 > β ≥ α > 0 and β‖ε‖2

S3 ≥ ω(ε) ≥ α‖ε‖2
S3 for all ε ∈ S3.

Assumption 2.
f 0 ∈ L2(Ω;R3) and f 2 ∈ L2(Γ2;R3).

Assumption 3. F ∈ L
2−δ
1−δ (Γ3) (0 < δ < 1) and F(x) ≥ 0 a.e. x ∈ Γ3.

Assumption 4. The coefficient of friction satisfies k ∈ L∞(Γ3) and k(x) ≥ 0 a.e. x ∈ Γ3.

Notice that the example in (14) fulfills Assumption 1.
Let (u, σ) be a pair of smooth-enough functions that verify Problem 1. Using

Green’s formula

(σ, ε(v))L2(Ω;S3) + (Div σ, v)L2(Ω;R3) =
∫

Γ
σ(x)ν(x) · γv(x) dΓ for all v ∈ H1(Ω;R3),

(see, e.g., [3], (p. 145)), by taking into account (8), (10) and (11) we obtain, for all v ∈ V
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(σ, ε(v))L2(Ω;S3) = ( f 0, v)L2(Ω;R3) +
∫

Γ2

f 2(x) · γv(x) dΓ +
∫

Γ3

σ(x)ν(x) · γv(x) dΓ, (15)

where V is the space defined in (3).
As

σ(x)ν(x) · γv(x) = σν(x)vν(x) + στ(x) · vτ(x) a.e. on Γ,

then by (15) we infer that

(σ, ε(v))L2(Ω;S3) = ( f 0, v)L2(Ω;R3) +
∫

Γ2

f 2(x) · v(x) dΓ +
∫

Γ3

στ(x) · vτ(x) dΓ−
∫

Γ3

F(x)vν(x) dΓ.

Herein and everywhere below, vν(x) = γv(x) · ν(x) and vτ(x) = γv(x)− vν(x)ν(x)
a.e. x ∈ Γ. By taking into consideration H3, H4, using the trace theorem for N = 3 and
p = 2 and the Hölder’s inequality, it follows that F(·)vν(·) ∈ L1(Γ3) for all v ∈ V.

Since

V 3 v→ ( f 0, v)L2(Ω;R3) +
∫

Γ2

f 2(x) · γv(x) dΓ−
∫

Γ3

F(x)vν(x)dΓ ∈ R

is a linear and continuous map, according to Riesz’s representation theorem, there exists a
unique element f ∈ V such that

( f , v)V = ( f 0, v)L2(Ω;R3) +
∫

Γ2

f 2(x) · γv(x)dΓ−
∫

Γ3

F(x)vν(x)dΓ for all v ∈ V.

Therefore,
(σ, ε(v))L2(Ω;S3) = ( f , v)V +

∫
Γ3

στ(x) · vτ(x) dΓ. (16)

Let D be the dual of the space γ(V) defined in (6).
We define λ ∈ D such that

〈λ, ṽ〉 = −
∫

Γ3

στ(x) · ṽτ(x) dΓ, for all ṽ ∈ γ(V), (17)

where 〈·, ·〉 denotes the duality pairing between D and γ(V) and

ṽτ(x) = ṽ(x)− ṽν(x)ν(x), ṽν(x) = ṽ(x) · ν(x) a.e. x ∈ Γ3. (18)

Furthermore, we define a form c(·, ·) as follows,

c : V × D → R, c(v, µ) = 〈µ, γv〉, for all v ∈ V, µ ∈ D. (19)

Important properties of the form c(·, ·) are given by the following lemma.

Lemma 1. The form c(·, ·) is bilinear. In addition,

• c(·, ·) is continuous of rank Mc > 0 i.e.,

|c(v, ζ)| ≤ Mc‖v‖V‖ζ‖D for all v ∈ V, ζ ∈ D,

• c(·, ·) verifies the inf-sup property:

inf
ζ∈D,ζ 6=0D

sup
v∈V,v 6=0V

c(v, ζ)

‖v‖V ‖ζ‖D
≥ αc for some αc > 0.

Proof. The bilinearity of c(·, ·) is obvious keeping in mind the linearity of the trace operator γ.
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Let v ∈ V and ζ ∈ D be arbitrarily given.

|c(v, ζ)| ≤ ‖ζ‖D‖γv‖H1/2(Γ;R3)

≤ c̃‖ζ‖D‖v‖H1(Ω;R3)

≤ c̃
c̃K
‖ζ‖D‖v‖V .

We can consider Mc =
c̃

c̃K
where c̃ > 0 appears in (2) and c̃K > 0 appears in (5).

Next, we prove that c(·, ·) verifies the inf-sup property, or equivalently, there are some

αc>0 such that ‖ζ‖D ≤ 1
αc

supv∈V, v 6=0V

c(v,ζ)
‖v‖V

for all ζ ∈ D, ζ 6= 0D.
Indeed, let ζ ∈ D, ζ 6= 0D.

‖ζ‖D = sup
w̃∈γ(V), w̃ 6=0γ(V)

< ζ, w̃ >

‖w̃‖H1/2(Γ;R3)

.

As 〈ζ, w̃〉 = 〈ζ, γ(`w̃)〉 = 〈ζ, γ(Rw̃))〉, then

‖ζ‖D = sup
w̃∈γ(V), w̃ 6=0γ(V)

〈ζ, γ(Rw̃))〉
‖w̃‖H1/2(Γ;R3)

= sup
w̃∈γ(V), w̃ 6=0γ(V)

c(Rw̃, ζ)

‖w̃‖H1/2(Γ;R3)

= sup
w̃∈γ(V),Rw̃ 6=0V

c(Rw̃, ζ)

‖w̃‖H1/2(Γ;R3)

.

Using (7), we can write

‖ζ‖D ≤ c̄ sup
w̃∈γ(V), Rw̃ 6=0V

c(Rw̃, ζ)

‖Rw̃‖V
≤ c̄ sup

v∈V, v 6=0V

c(v, ζ)

‖v‖V
.

Thus, we can take αc =
1
c̄

.

Using the hypotheses H3, H4, as γv ∈ L2−δ(Γ;R3) and ‖vτ(x)‖ ≤ ‖γv(x)‖ a.e. x ∈ Γ,
we deduce that k(·) F(·) ‖vτ(·)‖ ∈ L1(Γ3) for all v ∈ V using the generalized Hölder’s
inequality.

Let us introduce the following subset of D,

Λ =
{

ζ ∈ D : 〈ζ, ṽ〉 ≤
∫

Γ3

k(x) F(x) ‖ṽτ(x)‖ dΓ for all ṽ ∈ γ(V)
}

; (20)

see (18) for the definition of ṽτ .
It is easy to observe that λ ∈ Λ by using (17) and (20).

Lemma 2. The set Λ is a closed convex bounded subset of D that contains 0D.

Proof. It is easy to observe that 0D ∈ Λ. In addition, the convexity can be easily obtained
by means of the definition of the convex sets.

Let (ζn) ⊂ Λ be a convergent sequence,

ζn → ζ in D as n→ ∞.

We have to prove that ζ ∈ Λ. As the sequence (ζn) converges strongly to ζ, then
ζn ⇀ ζ in D as n→ ∞ and then

ζn ⇀∗ ζ in D as n→ ∞.

Using the definition of the weak* convergence, we infer that

〈ζn, ṽ〉 → 〈ζ, ṽ〉 as n→ ∞ for all ṽ ∈ γ(V).
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Since (ζn) ⊂ Λ, then

〈ζn, ṽ〉 ≤
∫

Γ3

k(x) F(x) ‖ṽτ(x)‖ dΓ for all ṽ ∈ γ(V).

Passing to the limit n→ ∞ in the previous inequality, we conclude that ζ ∈ Λ. As a
result, Λ is a closed set.

Let ζ ∈ Λ be arbitrarily fixed.

‖ζ‖D = sup
ṽ∈γ(V), ṽ 6=0γ(V)

〈ζ, ṽ〉
‖ṽ‖H1/2(Γ;R3)

.

Let ṽ ∈ γ(V), ṽ 6= 0γ(V).

〈ζ, ṽ〉
‖ṽ‖H1/2(Γ;R3)

≤
∫

Γ3
k(x)F(x)‖ṽτ(x)‖ dΓ

‖ṽ‖H1/2(Γ;R3)

≤
∫

Γ3
k(x)F(x)‖ṽ(x)‖ dΓ

‖ṽ‖H1/2(Γ;R3)

≤
‖k‖L∞(Γ3)

‖F‖
L

2−δ
1−δ (Γ3)

‖ṽ‖L2−δ(Γ;R3)

‖ṽ‖H1/2(Γ;R3)

≤
‖k‖L∞(Γ3)

‖F‖
L

2−δ
1−δ (Γ3)

c(meas(Γ), δ)‖ṽ‖L2(Γ;R3)

‖ṽ‖H1/2(Γ;R3)

.

As
‖ṽ‖H1/2(Γ;R3) ≥ ‖ṽ‖L2(Γ;R3),

see (1), then
〈ζ, ṽ〉

‖ṽ‖H1/2(Γ;R3)

≤ ‖k‖L∞(Γ3)
‖F‖

L
2−δ
1−δ (Γ3)

c(meas(Γ), δ).

As a result,

‖ζ‖D = sup
ṽ∈γ(V), ṽ 6=0γ(V)

〈ζ, ṽ〉
‖ṽ‖H1/2(Γ;R3)

≤ ‖k‖L∞(Γ3)
‖F‖

L
2−δ
1−δ (Γ3)

c(meas(Γ), δ).

Therefore, Λ is a bounded set.

Next, we claim that

c(u, λ) =
∫

Γ3

k(x) F(x) ‖uτ(x)‖dΓ. (21)

Indeed, since c(u, λ) = 〈λ, γu〉 = −
∫

Γ3
στ(x) · uτ(x) dΓ, in order to justify (21), we

have to prove that

− στ(x) · uτ(x) = k(x)F(x)‖uτ(x)‖ a.e. on Γ3. (22)

To prove (22), we consider x ∈ Γ3 arbitrarily fixed.

• If uτ(x) = 0 then 0 = 0 and, thus, (22) holds true.
• If uτ(x) 6= 0 then

−στ(x) · uτ(x) = k(x)F(x)
uτ(x) · uτ(x)
‖uτ(x)‖ = k(x)F(x)‖uτ(x)‖.

Hence, (22) holds true in this situation too.
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As a result, (21) is fulfilled.
On the other hand, by (20),

c(u, ζ) ≤
∫

Γ3

k(x)F(x)‖uτ(x)‖ dΓ for all ζ ∈ Λ. (23)

Therefore, by (21) and (23), we obtain

c(u, ζ − λ) ≤ 0 for all ζ ∈ Λ. (24)

Let ω∗ be the Fenchel conjugate of the constitutive function ω,

ω∗ : S3 → (−∞, ∞], ω∗(τ) = sup
ξ∈S3

{τ : ξ −ω(ξ)}.

This is a proper, convex and lower semicontinuous functional.
Notice that

(1− β)‖τ‖2 ≤ ω∗(τ) ≤ 1
4α
‖τ‖2 for all τ ∈ S3, (25)

where α, β are the constants in the hypothesis H1; see [43] for a proof of (25).
Due to (25),

ω∗(τ(·)) ∈ L1(Ω) for all τ ∈ L2(Ω;S3), (26)

and, due to the hypothesis H1,

ω(τ(·)) ∈ L1(Ω) for all τ ∈ L2(Ω;S3).

Thus,
ω(ε(v(·))) ∈ L1(Ω) for all v ∈ V. (27)

Let us introduce the bifunctional B : S3 × S3 → R,

B(τ, µ) = ω(τ) + ω∗(µ) for all τ, µ ∈ S3. (28)

Using Theorem 1 for X = S3 and φ = ω, we deduce that B(·, ·) is a bipotential in the
sense of Definition 1.

By (27) and (26) we are lead to

B(ε(v(·)), τ(·)) ∈ L1(Ω) for all v ∈ V, τ ∈ L2
s (Ω;S3).

This regularity allows us to define a form b(·, ·) as follows,

b : V × L2
s (Ω;S3)→ R b(v, µ) =

∫
Ω

B(ε(v(x)), µ(x)) dx. (29)

Since σ(x) ∈ ∂ω(ε(u)(x)) in Ω and B(·, ·) defined in (28) is a bipotential, then a.e.
x ∈ Ω,

B(ε(u)(x), σ(x)) = σ(x) : ε(u)(x),

B(ε(v)(x), µ(x)) ≥ µ(x) : ε(v)(x).

After integration over Ω, we obtain

b(u, σ) = (σ, ε(u))L2
s (Ω;S3), (30)

b(v, µ) ≥ (µ, ε(v))L2
s (Ω;S3) for all v ∈ V, µ ∈ L2

s (Ω;S3). (31)

In particular, setting in (31) v = u and µ = σ, respectively, the following inequalities
can be written:
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b(u, µ) ≥ (µ, ε(u))L2
s (Ω;S3) for all µ ∈ L2

s (Ω;S3); (32)

b(v, σ) ≥ (σ, ε(v))L2
s (Ω;S3) for all v ∈ V. (33)

Hence, by (32) and (30), we arrive at

b(u, µ)− b(u, σ) ≥ (µ− σ, ε(u))L2
s (Ω;S3). (34)

Consider now a variable subset of L2
s (Ω;S3) defined as follows: given ζ ∈ Λ,

Σ(ζ) = {µ ∈ L2
s (Ω;S3) : (µ, ε(v))L2

s (Ω;S3) + c(v, ζ) = ( f , v)V for all v ∈ V}.

Lemma 3. Let ζ ∈ Λ. The set Σ(ζ) is a nonempty, convex, closed, unbounded subset of L2
s (Ω;S3).

Proof. Let ζ ∈ Λ and let us define

ϕζ : V → R, ϕζ(v) = c(v, ζ).

As c(·, ·) is a bilinear form, then the linearity of ϕζ is obvious. Let us prove its
continuity. In order to do this, we have to prove that there exists K > 0 such that

|ϕζ(v)| ≤ K‖v‖V for all v ∈ V.

Indeed, let v ∈ V.

|ϕζ(v)| = |c(v, ζ| ≤ c̃
c̃K
‖ζ‖D‖v‖V .

We can set K = c̃
c̃K

, where c̃ is the constant in (2) and c̃K is the constant in (5). As a
result, ϕζ is a linear and continuous map. Then, due to Riesz’s representation theorem,
there exists a unique Gζ ∈ V such that

c(v, ζ) = (Gζ , v)V for all v ∈ V.

Hence,
( f , v)V − c(ζ, v) = ( f , v)V − (Gζ , v)V = ( f −Gζ , v)V ,

and keeping in mind the definition of the inner product on V, (4), actually we can write

( f , v)V − c(ζ, v) = (ε( f −Gζ), ε(v))L2
s (Ω;S3).

Let us take µ = ε( f − Gζ) to conclude that Σ(ζ) is a nonempty subset of L2
s (Ω;S3).

The convexity can be easily proved by using the definition of the convex sets.
In order to prove that Σ(ζ) is a closed subset of L2

s (Ω;S3), we consider (µn) ⊂ Σ(ζ)
such that µn → µ in L2

s (Ω;S3) as n→ ∞ and we prove that µ ∈ Σ(ζ). As

(µn, ε(v))L2
s (Ω;S3) + c(v, ζ) = ( f , v)V for all v ∈ V (35)

and
(µn, ε(v))L2

s (Ω;S3) → (µ, ε(v))L2
s (Ω;S3) as n→ ∞ for each v ∈ V

then, passing to the limit n→ ∞ in (35), we obtain

(µ, ε(v))L2
s (Ω;S3) + c(v, ζ) = ( f , v)V for all v ∈ V.

Hence, µ ∈ Σ(ζ) and, thus, Σ(ζ) is a closed set.
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Finally, let us prove that Σ(ζ) is an unbounded subset. Indeed, there exist at least
one sequence (µn)n ⊂ Λ such that ‖µn‖L2

s (Ω;S3) → ∞ as n → ∞. We can construct such a

sequence as follows: we take τ ∈ ε(V)⊥ and for each positive integer n we define

µn = ε( f −Gζ) + nτ, (36)

where ε(V)⊥ = {τ ∈ L2
s(Ω;S3) | (τ, σ)L2

s(Ω;S3) = 0 for all σ ∈ ε(V)}, with ε(V) = {ε(v) |v ∈ V}.
Recall that ε(V) and ε(V)⊥ are closed subspaces of the space L2

s (Ω;S3) and
L2

s (Ω;S3) = ε(V)⊕ ε(V)⊥, see, e.g., Theorem 1.16 in [8]. As f − Gζ ∈ V and τ ∈ ε(V)⊥,
by using (36) it follows that µn ∈ L2

s (Ω;S3) for all positive integer n. Moreover,

(µn, ε(v))L2
s (Ω;S3) + 〈ζ, γv〉 = (ε( f ), ε(v))L2

s (Ω;S3).

Taking into consideration (4) we can write

(µn, ε(v))L2
s (Ω;S3) + 〈ζ, γv〉 = ( f , v)V .

Thus, (µn)n ⊂ Σ(ζ).
Furthermore, ‖µn‖L2

s (Ω;S3) → ∞ as n→ ∞. Indeed,

‖µn‖L2
s (Ω;S3) = n

∥∥∥∥ ε( f )− ε(Gζ)

n
+ τ

∥∥∥∥
L2

s (Ω;S3)

and (
ε( f )− ε(Gζ)

n
+ τ

)
is a bounded sequence. Therefore, the subset Σ(ζ) is unbounded.

We observe that σ ∈ Σ(λ).
Let µ ∈ Σ(λ). Then, (µ, ε(u))L2

s (Ω;S3) = (ε( f )− ε(Gλ), u)V = (σ, ε(u))L2
s (Ω;S3). Hence,

(µ− σ, ε(u))L2
s (Ω;S3) = 0.

By (34), we obtain

b(u, µ)− b(u, σ) ≥ 0 for all µ ∈ Σ(λ). (37)

On the other hand, by (33) and (30) combined with (16), (17) and (19), we can write

b(v, σ)− b(u, σ) ≥ (σ, ε(v)− ε(u))L2
s (Ω;S3)

= ( f , v− u)V − 〈λ, γv− γu〉
= ( f , v− u)V − c(v− u, λ).

As a consequence,

b(v, σ)− b(u, σ) + c(v− u, λ) ≥ ( f , v− u)V for all v ∈ V. (38)

Keeping in mind (38), (24) and (37), we are led to the following variational problem.

Problem 2. Find u ∈ V, λ ∈ Λ, σ ∈ Σ(λ) such that

b(v, σ)− b(u, σ) + c(v− u, λ) ≥ ( f , v− u)V for all v ∈ V

c(u, ζ − λ) ≤ 0 for all ζ ∈ Λ

b(u, µ)− b(u, σ) ≥ 0 for all µ ∈ Σ(λ).
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Each solution (u, λ, σ) ∈ V×Λ×Σ(λ) of Problem 2 is called a weak solution of Problem 1.
Keeping in mind (29) and (28), the bifunctional b(·, ·) can be written by means of two

functionals J(·) and J∗(·) as follows,

b(v, µ) = J(v) + J∗(µ),

where
J : V → R, J(v) =

∫
Ω

ω(ε(v)(x)) dx

and
J∗ : L2

s (Ω;S3)→ R, J∗(µ) =
∫

Ω
ω∗(µ(x)) dx.

Then, we observe that

b(v, σ)− b(u, σ) = J(v)− J(u),

b(u, µ)− b(u, σ) = J∗(µ)− J∗(σ).

In consequence, Problem 2 can be equivalently written as follows.

Problem 3. Find u ∈ V, λ ∈ Λ, σ ∈ Σ(λ) such that

J(v)− J(u) + c(v− u, λ) ≥ ( f , v− u)V for all v ∈ V (39)

c(u, ζ − λ) ≤ 0 for all ζ ∈ Λ (40)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Σ(λ).

The weak solvability of Problem 1 will be studied by means of the variational formula-
tion stated in Problem 3.

4. Well-Posedness and a Convergence Result

This section is devoted to the solvability of Problem 3.

Theorem 4. Assume that the hypotheses H1–H4 hold true. Then, Problem 3 has at least one
solution (u, λ, σ) ∈ V ×Λ× Σ(λ). If ω is, in addition, strictly convex, there is uniqueness in the
first component.

Proof. Let us introduce the following bifunctional:

L : V ×Λ→ R , L(v, ζ) = J(v)− ( f , v)V + c(v, ζ).

A pair (u, λ) ∈ V × Λ verifies (39) and (40) if and only if it is a saddle point of the
bifunctional L(·, ·), i.e.,

L(u, ζ) ≤ L(u, λ) ≤ L(v, λ), for all v ∈ V, for all ζ ∈ Λ. (41)

Indeed, (40) is equivalent with the first inequality in the chain above. On the other
hand, using the definition of L(·, ·), by a similar technique with that used in [44], we deduce
that (39) is equivalent with the second inequality in (41).

Keeping in mind H1, we immediately conclude that J(·) is a convex lower semicontin-
uous functional such that

J(v) ≥ α‖v‖2
V for all v ∈ V.

Furthermore, according to Lemma 1, c(·, ·) is a bilinear continuous form. Therefore,
L(·, ·) fulfills the conditions in Theorem 3. Moreover, according to Lemma 2, Λ is a closed
convex bounded set which contains 0D. In addition, we note that

L(v, 0D) = J(v) + c(v, 0D)− ( f , v)X ≥ α‖v‖2
V − ‖ f‖V‖v‖V ,
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which allows us to write

lim
‖v‖V→∞

L(v, 0D) = ∞.

Therefore, applying Theorem 3, we conclude that the functional L(·, ·) has at least one
saddle point (u∗, λ∗) ∈ V ×Λ.

Let us introduce the set Σ(λ∗). According to Lemma 3, this is a nonempty closed
convex unbounded subset of L2

s (Ω;S3). Moreover, due to (25), we infer that J∗(·) is convex,
lower semicontinuous and

J∗(µ) ≥ (1− β)‖µ‖2
L2

s (Ω;S3)
.

Using Theorem 2, we conclude that J∗(·) has a unique minimizer σ∗ on Σ(λ∗). Conse-
quently, the triple (u∗, λ∗, σ∗) ∈ V ×Λ× Σ(λ∗) is a solution of Problem 3.

Finally, if ω is, in addition, strictly convex, using Theorem 3 we immediately conclude
that Problem 3 has at least one solution which is unique in its first component.

In order to obtain a global uniqueness result, one option could be to perturb Problem 3
as follows.

Problem 4. Let ε > 0. Find uε ∈ V, λε ∈ Λ, σε ∈ Σ(λε) such that

J(v)− J(uε) + c(v− uε, λε) ≥ ( f , v− uε)V for all v ∈ V (42)

c(uε, ζ − λε)− ε(‖ζ‖2
D − ‖λε‖2

D) ≤ 0 for all ζ ∈ Λ (43)

J∗(µ)− J∗(σε) ≥ 0 for all µ ∈ Σ(λε). (44)

Let us introduce the following perturbed bifunctional.

Lε : V ×Λ→ R , L(v, ζ) = J(v)− ( f , v)V + c(v, ζ)− ε‖ζ‖2
D (ε > 0).

Using similar techniques with those used in [44], it can be verified that a pair (uε, λε) ∈
V × λ verifies (42) and (43) if and only if it is a saddle point of the bifunctional Lε(·, ·), i.e.,

Lε(uε, ζ) ≤ Lε(uε, λε) ≤ Lε(v, λε), for all v ∈ V, ζ ∈ Λ.

We observe that Lε(·, ·) is strictly concave in the second argument.

Theorem 5. Let ε > 0. Assume H1–H4 hold true. In addition, we assume that ω and ω∗ are
strictly convex functionals. Then, Problem 4 has a unique solution (uε, λε, σε) ∈ V ×Λ× Σ(λε).
Moreover, if ω is Lipschitz continuous of rank L then

‖uε‖V ≤ ‖ f‖V
α

; (45)

‖λε‖D ≤ ‖ f‖V + L
αc

; (46)

‖σε‖L2
s (Ω;S3) ≤

1√
4α(1− β)

(
‖ f‖V +

Mc(‖ f‖V + L)
αc

)
. (47)

Proof. Let ε > 0. We observe that Lε(·, ·) is strictly convex in the first argument and strictly
concave in the second argument. We apply Theorem 3 in order to conclude that there exists
a unique (u∗ε , λ∗ε) ∈ V ×Λ such that (42) and (43) are fulfilled. Let Σ(λ∗ε). As J∗(·) is strictly
convex, lower semicontinuous and coercive we deduce that it has a unique minimizer
σ∗ε ∈ Σ(λ∗ε). The triple (u∗ε , λ∗ε , σ∗ε) ∈ V ×Λ× Σ(λ∗ε) is the unique solution of Problem 4.
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In order to prove the boundedness of the solution, let us set v = 0V in (42) and ζ = 0D
in (43). With this choice, (42) and (43) lead us to

J(uε) ≤ ( f , uε)V ,

since, due to H1, J(0V) = 0. Additionally, from this,

α‖uε‖2
V ≤ ‖ f‖V‖uε‖V .

Hence, (45) holds true.
By (42), setting v = uε −w with w ∈ V arbitrarily chosen, we immediately obtain

c(w, λε) ≤ ( f , w)V + J(uε −w)− J(uε).

As ω is Lipschitz continuous of rank L, J is Lipschitz continuous of the same rank L.
Therefore,

c(w, λε) ≤ (‖ f‖V + L)‖w‖V for all w ∈ V.

Let w 6= 0V . Then

sup
w∈V,w 6=0V

c(w, λε)

‖w‖V
≤ ‖ f‖V + L.

By using the inf-sup property of the form c(·, ·), we can write

αc‖λε‖D ≤ ‖ f‖V + L.

As a result, we obtain (46).
According to (44) and keeping in mind (25),

(1− β)‖σε‖2
L2

s (Ω;S3)
≤ J∗(σε) ≤ J∗(µ) ≤ 1

4α
‖µ‖2

L2
s (Ω;S3)

for all µ ∈ Σ(λε). (48)

Let Gλε
be the unique element of V such that

c(v, λε) = (Gλε
, v)V for all v ∈ V.

Using Gλε
we define

µ = ε( f )− ε(Gλε
).

Then,

‖µ‖L2
s (Ω;S3) ≤ ‖ε( f )‖L2

s (Ω;S3) + ‖ε(Gλε
)‖L2

s (Ω;S3)

= ‖ f‖V + ‖Gλε
‖V .

As

‖Gλε
‖V = supv∈V,v 6=0V

(Gλε
, v)V

‖v‖V
= supv∈V,v 6=0V

c(v, λε)

‖v‖V
≤ Mc‖λε‖D,

then

‖µ‖L2
s (Ω;S3) ≤ ‖ f‖V + Mc‖λε‖D.

and from this, keeping in mind (46), we deduce that

‖µ‖L2
s (Ω;S3) ≤ ‖ f‖V +

Mc(‖ f‖V + L)
αc

.
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Using now (48), we can write

‖σε‖L2
s (Ω;S3) ≤

1√
4α(1− β)

‖µ‖L2
s (Ω;S3).

Combining this last inequality with the previous one, we immediately obtain (47).

With these preliminaries, an approximation result can be obtained. Everywhere below,
we keep the assumptions H1, H2, H3, H4. In addition, we assume that ω and ω∗ are strictly
convex. In addition, we assume that ω is Lipschitz continuous of rank L and ω∗ is upper
semicontinuous.

Theorem 6 (A convergence result). Let ε > 0 and let (uε, λε, σε) be the unique solution of

Problem 4. Then, passing eventually to a subsequence
(
(uε′ , λε′ , σε′)

)
of the sequence

(
(uε, λε, σε)

)
,

the subsequence
(
(uε′ , λε′ , σε′)

)
is weakly convergent to a solution of Problem 3 as ε′ → 0.

Proof. Let ε > 0 and let (uε, λε, σε) be the unique solution of Problem 4. Let Gλε
be the

unique element of V such that c(v, λε) = (Gλε
, v) for all v ∈ V. As

‖Gλε
‖V = sup

v∈V,v 6=0V

(Gλε
, v)V

‖v‖V
= sup

v∈V,v 6=0V

c(v, λε)

‖v‖V
≤ Mc‖λε‖D ≤

Mc(‖ f‖V + L)
αc

,

then, (Gλε) is a bounded sequence. This conclusion together with the boundedness re-

sults (45)–(47) allow us to assert that
(
(uε, λε, σε, Gε)

)
is a bounded sequence. Thus, pass-

ing eventually to a subsequence
(
(uε′ , λε′ , σε′ , Gλε′

)
)

of the sequence
(
(uε, λε, σε, Gλε

)
)

,
we can write

uε′ ⇀ u∗ in V as ε′ → 0;

λε′ ⇀ λ∗ in D as ε′ → 0; (49)

σε′ ⇀ σ∗ in L2
s (Ω;S3) as ε′ → 0;

Gλε′
⇀ G∗ in V as ε′ → 0.

To proceed, we prove that (u∗, λ∗, σ∗) is a solution of Problem 3.
Passing to the limit ε′ → 0 in (42) and (43), we observe that (u∗, λ∗) ∈ V × D

verifies (39) and the inequality in (40). Moreover, Λ being a convex and closed set, it
is weakly closed too. Therefore, λ∗ ∈ Λ. Thus, (40) is verified.

Next, we claim that
Gλε′

⇀ Gλ∗ in V as ε′ → 0, (50)

where Gλ∗ is the unique element of V such that c(v, λ∗) = (Gλ∗ , v) for all v ∈ V. In-
deed, (49) implies that λε′ ⇀ ∗λ∗. Therefore,

〈λε′ , ṽ〉 → 〈λ∗, ṽ〉 as ε′ → 0 for all ṽ ∈ γ(V).

Let v ∈ V be arbitrarily fixed. As 〈λε′ , γv〉 → 〈λ∗, γv〉 as ε′ → ∞ for all v ∈ V, then

c(v, λε′)→ c(v, λ∗) as ε′ → 0 for all v ∈ V.

and from this,
(Gλε′

, v)V → (Gλ∗ , v)V as ε′ → 0 for all v ∈ V.

Hence, (50) holds true.



Fractal Fract. 2022, 6, 651 18 of 20

Next, by (50) we can prove that

ε(Gλε′
)→ ε(Gλ∗) in L2

s (Ω;S3) as ε′ → 0. (51)

Indeed, ε being a continuous operator, it is also a lower semicontinuous and upper
semicontinuous operator. On the other hand, ε is a linear operator so it is also a convex
operator. Therefore, ε is a weakly lower semicontinuous operator and a weakly upper
semicontinuous operator as well. Hence, keeping in mind (50), we can write

lim sup ε(Gλε′
) ≤ ε(Gλ∗) ≤ lim inf ε(Gλε′

) as ε′ → 0.

As a result, (51) is true.
Let µ ∈ Σ(λ∗). Then, there exists µ0 ∈ ε(V)⊥ such that

µ = ε( f )− ε(Gλ∗) + µ0.

We claim that there exists (µε′) ⊂ L2
s (Ω;S3) such that

µε′ ∈ Σ(λε′), µε′ → µ in L2
s (Ω;S3) as ε′ → 0. (52)

Indeed, let us define
µε′ = ε( f )− ε(Gλε′

) + µ0.

Clearly, µε′ ∈ Σ(λε′).
Due to (51), we immediately observe that (52) holds true.
Passing to the superior limit ε′ → 0 in

J∗(µε′)− J∗(σε′) ≥ 0,

we obtain
J∗(µ)− J∗(σ∗) ≥ 0.

As µ was arbitrarily chosen in Σ(λ∗), we conclude that

J∗(µ)− J∗(σ∗) ≥ 0 for all µ ∈ Σ(λ∗).

It remains to justify that
σ∗ ∈ Σ(λ∗).

Indeed, as
σε′ ⇀ σ∗ as ε′ → 0,

λε′ ⇀ λ∗ as ε′ → 0,

keeping in mind the definition of Σ(λε′) and Σ(λ∗), we obtain the conclusion passing to
the limit ε′ → 0 in

(σε′ , ε(v))L2(Ω;S3) + c(v, λε′) = ( f , v)V .

5. Conclusions and Final Comments

In the present paper, we address a frictional contact model with prescribed normal
stress. We deliver a new weak formulation that is a three-field variational formulation
governed by a bipotential related to the constitutive function ω and a Lagrange multiplier
related to the friction force στ . We establish existence, uniqueness, boundedness and
convergence results. Theorem 6 indicates us that the unique solution of the perturbed
Problem 4 helps us to approximate a weak solution of Problem 1. Delivering uniqueness
results by omitting a perturbation technique is left open.

The advantage of the approach we propose is twofold. On the one hand, the new
approach allows the inclusion of the friction force in the unknown in addition to the
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displacement field and the Cauchy stress tensor. On the other hand, the qualitative analysis
we perform allows moving on to the quantitative analysis in order to efficiently approximate
the triple weak solutions.
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19. Haslinger, J.; Hlaváček, I.; Nečas, J. Numerical methods for unilateral problems in solid mechanics. In Handbook of Numerical

Analysis; Ciarlet, P.G.;, Lions, J.L., Eds.; North-Holland: Amsterdam, The Netherlands, 1996; Volume IV, pp. 313–485.
20. Hüeber, S.; Matei, A.; Wohlmuth, B. Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 2007, 29, 70–92.

[CrossRef]
21. Adams, R.A. Sobolev Spaces; Academic Press: New York, NY, USA, 1975.
22. Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010.
23. Grisvard, P. Elliptic Problems in Nonsmooth Domains; Pitman: London, UK, 1985.
24. Kufner, A.; John, O.; Fuc̆ik, S. Function Spaces; Noordhoff International Publishing: Groningen, The Netherlands, 1977.
25. Megginson, R.E. An Introduction to Banach Space Theory (Graduate Texts in Mathematics); Springer: New York, NY, USA, 1998;

Volume 183.
26. Monk, P. Numerical Mathematics and Scientific Computation. Finite Element Methods for Maxwell’s Equations; Oxford University Press:

Oxford, UK, 2003.
27. Lions, J.-L.; Magenes, E. Non-Homogeneous Boundary Value Problems and Applications I; Springer: New York, NY, USA, 1972.

http://doi.org/10.1007/s10440-014-9868-1
http://dx.doi.org/10.1007/s10440-009-9488-3
http://dx.doi.org/10.1016/S0895-7177(98)00119-8
http://dx.doi.org/10.1017/CBO9780511618635
http://dx.doi.org/10.1137/050634141


Fractal Fract. 2022, 6, 651 20 of 20

28. Han, W.; Matei, A. Minimax Principles for Elliptic Mixed Hemivariational-Variational Inequalities. Nonlinear Anal. Real World
Appl. 2022, 64, 103448. [CrossRef]

29. Matei, A.; Osiceanu, M. Two-Field Weak Solutions for a Class of Contact Models. Mathematics 2022, 10, 369. [CrossRef]
30. Matei, A.; Osiceanu, M. Two-field variational formulations for a class of nonlinear mechanical models. Math. Mech. Solids 2022,

27, 2532–2547. [CrossRef]
31. Goebel, R.; Rockafellar, R.T. Local strong convexity and local Lipschitz continuity of the gradient of convex functions. J. Convex

Anal. 2008, 15, 263–270.
32. Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach; CMS Books in Mathematics;

Springer: New York, NY, USA, 2006; Volume 23.
33. Phelps, R. Convex Functions, Monotone Operators and Differentiability, 2nd ed.; Lecture Notes in Math; Springer: Berlin/Heidelberg,

Germany, 1993; Volume 1364.
34. Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1997.
35. Struwe, M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems; Springer:

Berlin/Heidelberg, Germany, 1996.
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