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Abstract: In mathematical analysis, the Hausdorff derivatives or the fractal derivatives play an
important role. Fixed-point theorems and metric fixed-point theory have varied applications in
establishing a unique common solution to differential equations and integral equations. In the
present work, some fixed-point theorems using the extension of Meir–Keeler contraction in the
setting of bipolar metric spaces have been proved. The derived results have been supplemented
with non-trivial examples. Our results extend and generalise the results established in the past. We
have provided an application to find an analytical solution to an Integral Equation to supplement the
derived result.
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1. Introduction

Researchers in mathematics and different branches of science and technology studied
the Banach Fixed Point Theorem [1] and continued their research to find out if the theorem
was applicable to the real world. The Banach Fixed Point Theorem is still popular among
computer scientists, physicists, applied mathematicians, as well as people with medical
expertise in the 21st century for attempting to apply the theorem to real-life issues. Metric
spaces play a significant role in Real Analysis and Functional Analysis due to their most
general space that possibly allows one to rethink real-life applications. It is always inter-
esting as well as challenging for mathematicians to understand and apply the concept of
topological properties to normed linear spaces as well as metric space in various fields. In
the sequel of various generalisations, Meir–Keeler [2] established fixed-point results using
weakly uniformly strict contraction in the setting of complete metric spaces.

In addition, metric fixed point theory has a wide range of applications—in dynamic
programming, variational inequalities, fractal dynamics, dynamical systems of mathemat-
ics, as well as the deployment of satellites in their appropriate orbits in space science, to
name a few. It also ensures that patients receive the most appropriate diagnosis, and it
examines the intensity of spread of contagious diseases in a variety of cities.

In mathematics, new discoveries of space and their properties are always of interest
to researchers. As a result, Gahler [3] introduced the idea of 2-metric spaces in his series
of papers, giving us the notion of new dimensions for ordinary metric spaces. The metric
adopted here is non-negative real (i.e., [0,+∞)), which has a wide range of applications in
this study.
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The notion of probabilistic metric spaces, in which the probabilistic distance between
two points is examined, has provided a new dimension to the subject and interest in learning
more about stars in the cosmos. Similarly, Grabiec [4] and Michalek [5] investigated fuzzy
metric spaces, taking into account the degree of agreement and disagreement. It is evident
that most of the work was based on real numbers, be it 2-metric, fuzzy metric, modular
metric, etc.

Let X be a nonempty set and let d : X×X → R,‖.‖ : X → R, d : X×X×X → R and
M(x, y, t) : X × X × [0, 1] → [0, 1]. “What happens if we replace R with some other sets
that are not totally ordered sets like R?” was a reasonable question. The response of the re-
searchers resulted in various types of metrics, such as the cone metric, the partially ordered
metric, the modular metric, and more recently the complex-valued metrics proposed by
Huang and Zhang [6], Matthew [7], Azam et al. [8], and Murthy et al. [9]. For more details
on the topic, see [10–16]) and the references therein.

The goal of this study is to prove some fixed-point theorems in bipolar metric spaces.
In our theorems, the contraction condition is the extension of Meir–Keeler [2] in bipolar
metric spaces.

The rest of the paper is organised as follows. In Section 2, we provide some definitions
related to bipolar metric spaces, which are used in our main results. In Section 3, we present
our main result by establishing fixed-point results using an extension of Meir–Keeler type
contraction in the setting of bipolar metric spaces and supplement the derived results with
suitable examples. In Section 4, we present an application to find the analytical solution to
the integral equation to supplement the derived result.

2. Bipolar Metric Spaces

The following are required in the sequel.

Definition 1 ([10]). Let A and B be two non-empty sets and ρ : A× B→ [0,+∞) be a function.
The triplet (A, B, ρ) is called bipolar metric space and ρ is called bipolar metric on (A, B) if the
following conditions hold:

(BP1) ρ(a, b) = 0 if and only if a = b where (a, b) ∈ A× B,

(BP2) If a, b ∈ A ∩ B then ρ(a, b) = ρ(b, a),

(BP3) ρ(a1, b2) ≤ ρ(a1, b1) + ρ(a2, b1) + ρ(a2, b2) for all a1, a2 ∈ A and b1, b2 ∈ B.

Definition 2 ([10]). Let (A, B, ρ) be a bipolar metric space. Elements of A, B and A ∩ B are called
left, right and central points, respectively. A sequence in A and a sequence in B are called left and
right sequences, respectively. By a sequence, we mean either a left or right sequence.

A sequence 〈tn〉 is said to be convergent to a point t if and only if 〈tn〉 is a left sequence,
t is a right point and lim

n→+∞
ρ(tn, t) = 0 ; or 〈tn〉 is a right sequence, t is a left point and

lim
n→+∞

ρ(t, tn) = 0.

A sequence 〈(an, bn)〉 in A × B is called a bisequence on (A, B). This sequence is simply
denoted by (an, bn). If both the sequences 〈an〉 and 〈bn〉 converge, then the bisequence (an, bn) is
said to be convergent. If both the sequences 〈an〉 and 〈bn〉 converge to a same point υ ∈ A ∩ B then
(an, bn) is called biconvergent.

If lim
n,m→+∞

d(an, bm) = 0 then the bisequence (an, bn) is called a Cauchy bisequence. In a

bipolar metric space, every convergent Cauchy bisequence is biconvergent.
A bipolar metric space is complete if every Cauchy bisequence is convergent, hence biconvergent.

Definition 3 ([10]). Let A1, B1, A2 and B2 be four sets. A function f : A1 ∪ B1 → A2 ∪ B2 is said
to be a covariant map if f (A1) ⊆ A2 and f (B1) ⊆ B2 and is denoted as f : (A1, B1) ⇒ (A2, B2).
In particular, if (A1, B1, ρ1) and (A2, B2, ρ2) are two bipolar metric spaces, then we use the notaion
f : (A1, B1, ρ1) ⇒ (A2, B2, ρ2) for covariant map f .
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Definition 4 ([10]). Let (A1, B1, ρ1) and (A2, B2, ρ2) be two bipolar metric spaces. A map f :
(A1, B1) ⇒ (A2, B2) is said to be continuous at a point a0 ∈ A1, if for any given ε > 0, there exists
δ > 0 such that b ∈ B1 and ρ1(a0, b) < δ implies that ρ2( f (a0), f (b)) < ε. It is continuous at a
point b0 ∈ B1 if for any given ε > 0, there exists δ > 0 such that a ∈ A1 and ρ1(a, b0) < δ implies
that ρ2( f (a), f (b0)) < ε. If f is continuous at each point a ∈ A1 ∪ B1, then it is called continuous.

This definition implies that a covariant map f : (A1, B1) ⇒ (A2, B2) is continuous if and
only if {tn} converges to t on (A1, B1, ρ1) implies { f (tn)} converges to f (t) on (A2, B2, ρ2).

Definition 5 ([15]). Let (A, B, ρ) be a bipolar metric space and let S, T : (A, B) ⇒ (A, B) be
two covariant maps; then the pair (S, T) is said to be compatible if and only if d(TSan, STbn)→ 0
and d(STan, TSbn) → 0, whenever (an, bn) is a sequence in A× B such that limn→+∞ San =
limn→+∞ Tan = limn→+∞ Sbn = limn→+∞ Tbn = ξ for some ξ ∈ A ∩ B.

Definition 6 ([15]). If S and T commute at all their coincidence points, then S and T are called
weakly compatible.

Definition 7. Let (A, B, ρ) be a bipolar metric space and let F, S, G, T : (A, B) ⇒ (A, B)
be four covariant maps then the quadruple (F, S, G, T) is said to be compatible if and only if
ρ(TFan, FTbn) and ρ(GSan, SGbn) converge to 0, whenever (an, bn) is a sequence in A × B
such that

lim
n→+∞

Fan = lim
n→∞

San = lim
n→∞

Gbn = lim
n→∞

Tbn = ξ

for some ξ ∈ A ∩ B.

3. Main Results

We begin this section with some propositions as follows.

Proposition 1. Let (A, B, ρ) be a bipolar metric space, and let f , g, S, T : (A, B, ρ) ⇒ (A, B, ρ)
be four covariant maps satisfying the following conditions:

For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(Sx, Ty) < ε + δ implies ρ( f x, gy) < ε (1)

and Sx = Ty implies f x = gy (2)

then

ρ( f x, gy) < ρ(Sx, Ty) if Sx 6= Ty and (3)

ρ( f x, gy) ≤ ρ(Sx, Ty) for all x ∈ A, y ∈ B. (4)

Proof. Let Sx 6= Ty then d(Sx, Ty) = ε for some ε > 0 and from condition (1) we have
d( f x, gy) < ε and so (3) holds. From (2) and (3) we get (4).

Proposition 2. Let (A, B, ρ) be a bipolar metric space, and let S, T : (A, B, ρ) ⇒ (A, B, ρ) be
two covariant maps satisfying the condition

ρ(Tx, Ty) ≤ ρ(Sx, Sy) for all x ∈ A, y ∈ B. (5)

If S is a continuous function, then T is also a continuous function.

Proof. Let a left sequence {an} converge to a right point b ∈ B, then d(San, Sb) tends to
zero as S is continuous and so by (5) d(Tan, Tb) tends to zero, that is, {Tan} converges to
Tb. Similarly, we can show that if the right sequence {bn} converges to the left point a ∈ X,
then {Tbn} converges to Ta. So, T is also continuous.
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Proposition 3. Let (A, B, ρ) be a bipolar metric space and let S, T : (A, B, ρ) ⇒ (A, B, ρ) be
two covariant maps that are compatible. If ξ is a coincidence point of S and T (i.e., Tξ = Sξ) then
TSξ = STξ. That is, a compatible map is weakly compatible.

Proof. This can be easily proved by taking an = bn = ξ in the Definition 5.

Proposition 4. Let (A, B, ρ) be a bipolar metric space and let f , g, S, T : (A, B, ρ) ⇒ (A, B, ρ) be
four covariant maps such that the quadruple ( f , S, g, T) is compatible. If ξ is a coincidence point of
all these four mappings, then T f ξ = f Tξ and gSξ = Sgξ.

We now prove a lemma that will be used in proving our main theorems.

Lemma 1. Let (A, B, ρ) be a complete bipolar metric space and (un, vn) is a bisequence in A× B
satisfying the condition: For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(un, vm) < ε + δ implies ρ(un+1, vm+1) < ε (6)

and un = vm implies un+1 = vm+1 (7)

then the bisequence (un, vn) is the Cauchy bisequence.

Proof. Let αn = ρ(un, vn) and βn = ρ(un, vn+1) then from given condition 〈αn〉 and 〈βn〉
both are monotonic non-increasing bounded below sequences. Hence,

αn → ε+ where ε ≥ 0. (8)

If ε > 0, then for this ε there exists δ > 0 such that (6) holds.
Using (8), we can find n0 ∈ N such that for each n ≥ n0

ε ≤ αn < ε + δ

ε ≤ ρ(un, vn) < ε + δ.

This implies from (6) that

ρ(un+1, vn+1) < ε

αn+1 < ε.

This contradicts (8). So, ε = 0 and

αn → 0+ as n→ +∞. (9)

Similarly
βn → 0+ as n→ +∞. (10)

Claim: (un, vn) is Cauchy. Suppose not. So, there exists ε > 0 such that

lim sup
n,m→+∞

ρ(un, vm) > 2ε. (11)

For this ε there exists δ > 0 so that (6) holds.
Let δ

′
= min(δ, ε). So, we have

ε ≤ ρ(un, vm) < ε + δ
′

implies ρ(un+1, vm+1) < ε. (12)
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Using (9), (10) and (11), we can find integers m, n, M such that,

m, n > M, αM = ρ(uM, vM) <
δ
′

6
and βM = ρ(uM, vM+1) <

δ
′

6
(13)

ρ(um, vn) > 2ε ≥ ε + δ
′
. (14)

Now, we consider two cases.
If n > m, then for j ∈ [m, n] ∩N we have by (B3)

ρ(um, vj) ≤ ρ(um, vj+1) + ρ(uj, vj+1) + ρ(uj, vj)

ρ(um, vj)− ρ(um, vj+1) ≤ ρ(uj, vj+1) + ρ(uj, vj) = β j + αj.

Using (13) and (14) above, the inequality implies

ρ(um, vj)− ρ(um, vj+1) <
δ
′

3
.

Similarly, we can prove that

ρ(um, vj+1)− ρ(um, vj) <
δ
′

3
.

So that we obtain ∣∣ρ(um, vj)− ρ(um, vj+1)
∣∣ < δ

′

3
. (15)

This implies, since ρ(um, vm) < ε and ρ(um, vn) > ε+ δ
′
, that there exists j ∈ [m, n]∩N

such that

ε +
2δ
′

3
≤ ρ(um, vj) < ε + δ

′
. (16)

This implies (12) that
ρ(um+1, vj+1) < ε.

Now

ρ(um, vj) ≤ ρ(um, vm+1) + ρ(um+1, vm+1) + ρ(um+1, vj+1) + ρ(uj, vj+1)

+ ρ(uj, vj)

<
δ
′

6
+

δ
′

6
+ ε +

δ
′

6
+

δ
′

6
= ε +

2δ
′

3
.

This contradicts (16). Similarly, we get the contradiction if n ≤ m. Therefore, (un, vn)
is Cauchy.

Our first main result is as follows:

Theorem 1. Let (A, B, ρ) be a complete bipolar metric space and let S, T : (A, B, ρ) ⇒ (A, B, ρ)
be two covariant maps satisfying the following conditions

1. S and T are compatible mappings.
2. S is continuous.
3. T(A ∪ B) ⊆ S(A ∪ B).
4. For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(Sa, Sb) < ε + δ implies ρ(Ta, Tb) < ε (17)

and Sa = Sb implies Ta = Tb (18)

where a ∈ A and b ∈ B. Then the functions S and T have a unique common fixed point.
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Proof. Let a0 ∈ A, b0 ∈ B and choose a1 ∈ A and b1 ∈ B such that Ta0 = Sa1 = u1 and
Tb0 = Sb1 = v1. This can be done since T(A ∪ B) ⊆ S(A ∪ B). In general, we can choose
(an, bn) ∈ A× B such that Tan−1 = San = un and Tbn−1 = Sbn = vn for all n ∈ N.

If San = un = vm = Sbm for some n, m ∈ N then this implies by a given condition that
un+1 = Tan = Tam = vm+1 and if ε ≤ ρ(un, vm) = ρ(San, Sbm) < ε + δ then this implies by
condition (17) that ρ(un+1, vm+1) < ε. So, by Lemma 1 (αn, βn) is a Cauchy bisequence, and
as (A, B, ρ) is complete, (un, vn) converges and, thus, biconverges to a point ξ ∈ A ∩ B. Hence

lim
n→+∞

San = lim
n→+∞

Tan = lim
n→+∞

Sbn = lim
n→+∞

Tbn = ξ.

Since S and T are compatible, hence

ρ(TSan, STbn)→ 0 and ρ(STan, TSbn)→ 0.

Now, by Proposition 2, both the functions S and T are continuous, so we have

Tan → ξ implies STan → Sξ and

Sbn → ξ implies TSbn → Tξ.

By the compatibility of S and T, we have

ρ(Sξ, Tξ) = lim
n→∞

ρ(STan, TSbn) = 0

and this implies Sξ = Tξ

this implies TSξ = STξ.

Let Sξ = Tξ = u, then we will show that u is a common fixed point of S and T.
Let Su 6= u then

ρ(Tu, u) = ρ(TSξ, Tξ) < ρ(SSξ, Sξ)

= ρ(Su, u) = ρ(STξ, Sξ)

= ρ(TSξ, Sξ) = ρ(Tu, u)

which is a contradiction. So Su = u

i.e., SSξ = STξ = Sξ = Tξ = TSξ implies Tu = u.

So u is a common fixed point of S and T.
Uniqueness: Let us assume that u and v be two distinct common fixed points of S and

T. If Su 6= Sv, then

ρ(Tu, Tv) < ρ(Su, Sv)

⇒ ρ(u, v) < ρ(u, v)

which is a contradiction. So Su = Sv, and this implies u = v, and the proof is complete.

In the above theorem, if we take S as an identity mapping, then we get the
following corollary.

Corollary 1. Let (A, B, ρ) be a complete bipolar metric space and let T : (A, B, ρ) ⇒ (A, B, ρ) be
a covariant map that satisfies the following condition.

For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(a, b) < ε + δ implies ρ(Ta, Tb) < ε

then the function T has a unique fixed point.
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In the above corollary, if we take A = B, then we get the main result of Meir and
Keeler [2].

In our next result, we do not require the continuity of S and we have used weakly
compatible maps in place of compatible maps.

Theorem 2. Let (A, B, ρ) be a bipolar metric space, and let S, T : (A, B, ρ) ⇒ (A, B, ρ) be
two covariant maps satisfying the following conditions

1. S and T are weakly compatible maps.
2. S(A ∪ B) is complete
3. S is injective
4. T(A ∪ B) ⊆ S(A ∪ B).
5. For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(Sa, Sb) < ε + δ implies ρ(Ta, Tb) < ε (19)

and Sa = Sb implies Ta = Tb (20)

where a ∈ A and b ∈ B. Then the functions S and T have a unique common fixed point.

Proof. Let the bisequence (un, vn) be as in the proof of Theorem 1, then by the same
theorem the bisequence (un, vn) is a Cauchy bisequence and hence biconverges to a point
t ∈ S(A) ∩ S(B) = S(A ∩ B). Hence ξ = Su for some u ∈ A ∩ B. So,

lim
n→+∞

San = lim
n→+∞

Tan = lim
n→+∞

Sbn = lim
n→+∞

Tbn = ξ = Su. (21)

Now, by using Proposition 1, we have the following.

lim
n→+∞

ρ(Tan, Tu) ≤ lim
n→+∞

ρ(San, Su) = 0.

So,
lim

n→+∞
Tan = Tu. (22)

By (21) and (22), we have

Su = Tu = ξ (23)

implies STu = TSu (by weakly compatibility of S and T). (24)

Again from (23), we have STu = Sξ and TSu = Tξ. So Sξ = Tξ. Thus, u and ξ are
two coincidence points of S and T. We will prove that ξ = u. Suppose not. Then Sξ 6= Su
and we get

ρ(Tξ, Tu) < ρ(Sξ, Su)

ρ(Tξ, Tu) < ρ(Tξ, Tu).

This is a contradiction. So ξ = u and hence Su = Tu = u.
So, u is a common fixed point of S and T. Uniqueness can be proved as in Theorem 1.

The following example supplements the derived results of Theorem 2.

Example 1. Let X be the class of singleton subsets of R2 and Y be the class of nonempty bounded
subsets of the metric space (R2, d) where d(x, y) = |x1 − y1|+ |x2 − y2|, for all x = (x1, x2),
y = (y1, y2) ∈ R2. We define a function ρ : X×Y → [0, ∞) by ρ({x}, A) = sup{d(x, y) : y ∈
A}. We will show that (X, Y, ρ) is a bipolar metric space.

(B1) It is clear that ρ({x}, {x}) = 0, for every {x} ∈ X = X ∩ Y. Let ρ({x}, A) = 0, then
sup{d(x, y) : y ∈ A} = 0. This implies A = {x}.

(B2) ρ({x}, {y}) = ρ({y}, {x}) for all {x}, {y} ∈ X ∩Y.
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(B3) Let x = (x1, x2), w = (w1, w2) ∈ R2 and A, B ∈ Y, then ρ({x}, A) = sup{d(x, y) :
y ∈ A} ≤ sup{d(x, z) + d(z, w) + d(w, y) : y ∈ A, z ∈ B} ≤ sup{d(x, z) : z ∈ B}+
sup{d(w, z) : z ∈ B}+ sup{d(w, y) : y ∈ A} = ρ({x}, B) + ρ({w}, B) + ρ({w}, A).
Therefore, (X, Y, ρ) is a bipolar metric space.

Let S, T : X ∩Y ⇒ X ∪Y be two covariant maps defined by

T{(x1, x2)} = {(
x1

4
,

x2

4
)}

T(A) =
{
(

x1

4
,

x2

4
) : (x1, x2) ∈ A

}
S{(x1, x2)} = {(

x1

2
,

x2

2
)}

S(A) =
{
(

x1

2
,

x2

2
) : (x1, x2) ∈ A

}
for every {(x1, x2)} ∈ X and A ∈ Y. Here we observe the following:

• S and T are weakly compatible maps for let Tu = Tu for some u ∈ X ∪Y, then u = (0, 0), so
STu = TSu.

• S(X ∪Y) = X ∪Y is complete.
• S is injective.
• T(X ∪Y) ⊂ S(X ∪Y) = X ∪Y.
• for any given ε > 0, if we choose δ with 0 < δ < 3ε and ({x}, A) ∈ X ∪ Y with

ε ≤ ρ(S({x}), S(A)) < ε + δ then this implies that 1
2 ρ({x}, A) < ε + δ. So we get

ρ(T({x}), T(A)) = 1
4 ρ({x}, A) < 1

4 (ε + δ) < ε.
• If S({x}) = S(A) then {x} = A as S is injective, so T({x}) = T(A).

Therefore, all the conditions of Theorem 2 are satisfied, so S and T have a unique common
fixed point.

Remark 1. In the above example, one can easily see that (X, Y, ρ) cannot be a metric space as
X 6= Y and the triangle inequality is meaningless.

For a common fixed point of four mappings, we have the following theorem:

Theorem 3. Let (A, B, ρ) be a complete bipolar metric space and let S, T, f , g : (A, B, ρ) ⇒
(A, B, ρ) be four covariant maps satisfying the following conditions

1. The quadruple (f, S, g, T) is compatible.
2. All four mappings are continuous.
3. f (A ∪ B) ⊆ S(A ∪ B) and g(A ∪ B) ⊆ T(A ∪ B)
4. For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(Sa, Tb) < ε + δ implies ρ( f a, gb) < ε (25)

and Sa = Tb implies f a = gb, (26)

where a ∈ A and b ∈ B. Then the functions S, T, f and g have a unique common fixed point.

Proof. Let a0 ∈ A, b0 ∈ B and choose a1 ∈ A and b1 ∈ B such that f a0 = Sa1 = u0 and
gb0 = Tb1 = v0. This can be done since f (X ∪ B) ⊆ S(A∪ B) and g(A∪ B) ⊆ T(A∪ B). In
general, we can choose (an, bn) ∈ A× B such that f an = San+1 = un and gbn = Tbn+1 =
vn for all n ∈ N∪ {0}.

Let ε > 0 and ε ≤ ρ(un, vm) = ρ(San+1, Tbm+1) ≤ ε + δ. Then by condition
4 of the theorem we have ρ(un+1, vm+1) = ρ( f an+1, gbm+1) < ε and if ρ(un, vm) =
ρ(Sxn+1, Tym+1) = 0, then again by condition 4 of the theorem we have ρ(un+1, vm+1) =
ρ( f xn+1, gym+1) = 0.
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So, by Lemma 1, the sequence (un, vn) is a Cauchy bisequence. Since (A, B, ρ) is
complete, the sequence (un, vn) biconverges to some point ξ ∈ A ∩ B. So f an, San, gbn and
Tbn converge to ξ.

Since the quadruple ( f , S, g, T) is compatible, we have ρ(T f an, f Tbn) → 0 and ρ(gSan,
Sgbn) → 0. As all four functions f , g, S and T are continuous, this implies ρ(Tξ, f ξ) = 0
and ρ(gξ, Sξ) = 0. So Tξ = f ξ and gξ = Sξ. Let Sξ 6= Tξ then ρ( f ξ, gξ) < ρ(Sξ, Tξ) =
ρ(gξ, f ξ) = ρ( f ξ, gξ). This is a contradiction. So,

Tξ = Sξ = Bξ = Aξ = u (say).

By compatibility, this implies T f ξ = f Tξ and gSξ = Sgξ that is, Tu = f u and gu = Su.
If Su 6= Tu then ρ( f u, gu) < ρ(Su, Tu) = ρ(gu, f u) = ρ( f u, gu). This is a contradiction. So,

Su = Tu = f u = gu.

Now let Su 6= u that is STξ 6= Tξ then ρ( f u, u) = ρ( f Tξ, gξ) < ρ(STξ, Tξ) =
ρ(Su, u) = ρ(gu, u) = ρ( f u, u). This is a contradiction. So Su = u = Tu = f u = gu. Thus,
u is a common fixed point of f , g, S and T.

For uniqueness, assume that u and v are two fixed points of f , g, S and T. If Su 6= Tv
such that with u 6= v. Then ρ( f u, gv) < d(Su, Tv). This implies ρ(u, v) < ρ(u, v), a
contradiction. So Su = Tv, that is, u = v.

Remark 2. In the above theorem, taking S = T and f = g, we get Theorem 1 as a corollary.

Example 2. Let A = [0, 1
3 ] ∪ {

5n
6 : n ∈ N} and B = [0, 1

3 ] ∪ {
5

18 (3n + 1) : n ∈ N} and the
distance function ρ : A× B→ [0,+∞) is defined by ρ(a, b) = |a− b| for all a ∈ A and b ∈ B.

Then (A, B, ρ) is a complete bipolar metric space.
Let us consider two covariant maps S and T : (A, B, ρ) ⇒ (A, B, ρ) defined by Ta = a

2 , Sa = 5a
6

for all a ∈ [0, 1
3 ] and T( 5n

6 ) = 5n
18(n+1) , S( 5n

6 ) = 5n
6 , T( 5

18 (3n + 1)) = 0, S( 5
18 (3n + 1)) =

5
18 (3n + 1) for all n ∈ N. We can see that

T(A ∪ B) = [0,
1
6
] ∪ { 5n

18(n + 1)
: n ∈ N}

and
S(A ∪ B) = [0,

5
18

] ∪ {5n
6

: n ∈ N} ∪ { 5
18

(3n + 1) : n ∈ N}.

So, T(A ∪ B) ⊆ S(A ∪ B), S and T are continuous functions.
Now we are going to verify the compatibility of S and T.
For this, let (an, bn) be a sequence in A× B such that limn→+∞ San = limn→+∞ Tan =

limn→+∞ Sbn = limn→+∞ Tbn = ξ for some ξ ∈ A ∩ B = [0, 1
3 ].

Without loss of generality, we can assume that an, bn ∈ [0, 1
3 ].

So, San = 5an
6 and Tan = an

2 . Both San and Tan converge to ξ, so ξ = 0.
Now limn→+∞ ρ(TSan, STbn) = limn→+∞ ρ(Tξ, Sξ) = 0. Similarly, we have limn→+∞

ρ(STan, STbn) = 0. Hence S and T are compatible.
Now we show that S and T satisfy condition 4 of Theorem 1.
For this, let ε > 0 be given. Then the maximum value of δ is given by

δ =


2ε
3 , if ε ∈ (0, 1

6 ] ∪ [ 5
18 , 1

2 ] ∪ [ 5
6 , ∞];

5
18 − ε, if ε ∈ ( 1

6 , 5
18 );

5
6 − ε, if ε ∈ ( 1

2 , 5
6 ).

Let us verify the above condition for ε ∈ (0, 1
6 ]. For this ε, we take δ = 2ε

3 . Let ε ≤ d(Sx, Sy) <
ε + δ. This implies ε ≤ ρ(Sa, Sb) < 5ε

3 . This is possible only if x, y ∈ [0, 1
3 ] so that 5

6 |x− y| < 5ε
3 .
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This gives 1
2 |x− y| < ε and hence d(Tx, Ty) < ε. For other values of ε, one can verify in a

similar way.
Therefore, all the conditions stipulated in Theorem 1 are satisfied and 0 is the unique common

fixed point of S and T.

Example 3. Let (A, B, ρ) be the bipolar metric space as in the above example. Let us consider four
covariant maps f , g, S and T : (A, B, ρ) ⇒ (A, B, ρ) defined by Ta = 6a

7 , Sa = 5a
6 , f a = a

10,000
and Ba = a

20,000 for all a ∈ [0, 1
3 ] and f ( 5n

6 ) = g( 5n
6 ) = 5n

18(n+1) , T( 5n
6 ) = S( 5n

6 ) = 5n
6 ,

f ( 5
18 (3n + 1)) = 0 = g( 5

18 (3n + 1)), T( 5
18 (3n + 1)) = S( 5

18 (3n + 1)) = 5
18 (3n + 1) for

all n ∈ N.
Then we can easily verify that all the conditions given in Theorem 3 are satisfied. Hence, A, B,

S and T have zero as a common fixed point.

4. Application

In this section, we study the existence and unique solution of an integral equation as
an application of Corollary 1.

Theorem 4. Let us consider the integral equation

a(σ) = h(σ) +
∫
Q1∪Q2

G(σ, µ, a(µ))dµ, σ ∈ Q1 ∪Q2,

where Q1 ∪Q2 is a Lebesgue measurable set. Suppose

(T1) G : (Q2
1 ∪Q2

2)× [0, ∞)→ [0, ∞) and b ∈ L∞(Q1) ∪ L∞(Q2),
(T2) there is a continuous function θ : Q2

1 ∪Q2
2 → [0, ∞) such that

|G(σ, µ, a(µ))− G(σ, µ, b(µ))| ≤ 1
2
|θ(σ, µ)|(|a(µ)− b(µ)|),

for σ, µ ∈ Q2
1 ∪Q2

2,
(T3) ||

∫
Q1∪Q2

θ(σ, µ)dµ||∞ ≤ 1 i.e supσ∈Q1∪Q2

∫
Q1∪Q2

|θ(σ, µ)|dµ ≤ 1.

Then the integral equation has a unique solution in L∞(Q1) ∪ L∞(Q2).

Proof. Let A = L∞(Q1) and B = L∞(Q2) be two normed linear spaces, where Q1,Q2 are
Lebesgue measurable sets and m(Q1 ∪Q2) < ∞.

Consider ρ : A × B → R+ to be defined by ρ(a, b) = ||a − b||∞ for all (a, b) ∈
A× B. Then (A, B, ρ) is a complete bipolar metric space. Define the covariant mapping
T : L∞(Q1) ∪ L∞(Q2)→ L∞(Q1) ∪ L∞(Q2) by

T(a(σ)) = h(σ) +
∫
Q1∪Q2

G(σ, µ, a(µ))dµ, σ ∈ Q1 ∪Q2.

For any given ε > 0 there exists δ > 0 such that

ε ≤ ρ(a, b) < ε + δ.

Now, we have
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ρ(Ta(σ), Tb(σ)) = ||Ta(σ)− Tb(σ)||

=

∣∣∣∣h(σ) + ∫
Q1∪Q2

G(σ, µ, a(µ))dµ−
(
h(σ) +

∫
Q1∪Q2

G(σ, µ, a(µ))dµ

)∣∣∣∣
≤
∫
Q1∪Q2

|G(σ, µ, a(µ))− G(σ, µ, b(µ))|dµ

≤ 1
2
(||a(µ)− b(µ)|)

∫
Q1∪Q2

|θ(σ, µ)|dµ

≤ 1
2
(||a(µ)− b(µ)|) sup

σ∈Q1∪Q2

∫
Q1∪Q2

|θ(σ, µ)|dµ

≤ 1
2
(||a(µ)− b(µ)||

=
1
2

ρ(a, b)

<
1
2
(ε + δ)

< ε.

Hence, all the conditions of a Corollary 1 are satisfied, and consequently, the integral
equation has a unique solution.

5. Conclusions

In this paper, we established some common fixed-point theorems by using the exten-
sion of Meir–Keeler type contraction in the setting of bipolar metric spaces. Our results
have been validated using nontrivial examples. Our examples illustrate that a bipolar
metric space need not be a metric space. We have supplemented the derived results to
find an analytical solution to the integral equation in the setting of Bipolar metric space.
It will be quite interesting to extend our results in the setting of bipolar p-metric space,
neutrosophic metric spaces, orthogonal metric spaces, etc.
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