
����������
�������

Citation: Peng, L.; Zhou, Y.

Well-Posedness and Regularity

Results for Fractional Wave

Equations with Time-Dependent

Coefficients. Fractal Fract. 2022, 6, 644.

https://doi.org/10.3390/

fractalfract6110644

Academic Editors: Mokhtar Kirane,

Changpin Li, Yufeng Xu and

Ivanka Stamova

Received: 13 August 2022

Accepted: 21 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Well-Posedness and Regularity Results for Fractional Wave
Equations with Time-Dependent Coefficients
Li Peng 1 and Yong Zhou 1,2,*

1 Faculty of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
2 School of Computer Science and Engineering, Macau University of Science and Technology,

Macau 999078, China
* yzhou@xtu.edu.cn

Abstract: Fractional wave equations with time-dependent coefficients are natural generations of
classical wave equations which can be used to characterize propagation of wave in inhomogeneous
media with frequency-dependent power-law behavior. This paper discusses the well-posedness and
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1. Introduction

Fractional calculus has become an important topic thanks to its effective character-
ization of the ubiquitous power-law phenomena as well as its widespread applications
in many areas of science and engineering such as porous media, turbulence, bioscience,
geoscience, viscoelastic material, and so on. The most important mathematical equations
among such models are fractional partial differential equations, which can be more relevant
for describing the underlying anomalous features, non-local interactions, manifesting in
memory effects, sharp peaks, power law distributions, and self-similar structures. For such
kinds of equations, there is a large and rapidly growing number of publications. See the
monographs of Herrmann [1], Hilfer [2], Jin [3], Kilbas et al. [4], and Zhou [5], and the
references therein.

In this paper we consider the following fractional wave equation in a bound domain
Ω ⊂ RN(N > 2) with smooth boundary ∂Ω:

∂α
t u(t, x)−Au(t, x) = f (t, x), (t, x) ∈ (0, T]×Ω,

u(t, x) = 0, (t, x) ∈ [0, T]× ∂Ω,

u(0, x) = u0, ∂tu(0, x) = u1, x ∈ Ω,

(1)

where ∂α
t is a fractional derivative of order α ∈ (1, 2), which will be defined in the following

contexts, and

Au(t, x) =
N

∑
i,j=1

∂i
(
ai,j(t, x)∂ju(t, x)

)
+

N

∑
j=1

bj(t, x)∂ju(t, x) + c(t, x)u(t, x),
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∂i =
∂

∂xi
for i = 1, ..., N and bj ∈ L∞((0, T)×Ω), c ∈ L∞(0, T, L

2q
q−2 (Ω)) with q ∈ [2, 2N

N−2 ),
ai,j ∈ W1,∞(0, T; L∞(Ω)), and ai,j = aj,i. What is more, we assume that A is uniformly
elliptic, i.e., there exist positive constants µ, ν such that

µ|ζ|2 ≤
N

∑
i,j=1

ai,j(t, x)ζiζ j ≤ ν|ζ|2 (2)

for a.a. (t, x) ∈ [0, T]×Ω, ∀ ζ ∈ RN .
Recall that the initial boundary value problem (1) would resolve itself into fractional

diffusion equations when α ∈ (0, 1). It has attracted a growing interest due to its widespread
applications in sub-diffusive processes. The authors in [6] constructed fundamental solu-
tions to the problem using Fox’s H-functions and the Levi method, then the parametrix
estimates were established. Zacher [7] studied the well-posedness of weak solutions of ab-
stract evolutionary integro-differential equations based on the Galerkin method and energy
estimates. Later, Kubica and Yamamoto [8] used the same method to obtain well-posedness
of weak solutions of fractional diffusion equations with time-dependent coefficients. In [9],
the authors considered the problem with Caputo derivative on RN in Lq- framework and
then the uniqueness, existence, and Lq(Lp)-estimates of solutions are obtained. In [10],
the authors investigated the well-posedness for this problem with time independent elliptic
operators but general non-homogenous boundary conditions by mean of an eigenfunc-
tion representation involving the Mittag-Leffter functions. For other results for fractional
diffusion equations, we refer to [11–15] and the references therein.

Recently, problem (1) has been the focus of many studies due to its significant applica-
tion in super-diffusive models of anomalous diffusion such as diffusion in heterogeneous
media and viscoelastic problems such as the propagation of stress waves in viscoelastic
solids. More specifically, significant development has been made in well-posedness as
well as regularity results of the weak solution to fractional wave equations. For example,
in [16], the authors used Laplace transform to define weak solutions and used the Strichartz
estimate to derive its well-posedness. Later, Otárola and Salgado [17] also gave a definition
of weak solutions similar to that of inter-order cases and established the well-posedness
together with regularity estimates. In [18,19], the authors obtained results on the existence
and regularity of local and global weak solutions of semi-linear cases. In [20] the authors
used integrated cosine family to give the representation of solutions and then provided the
existence and regularity results of mild solutions. For other results for fractional wave equa-
tions, we refer to [21] for existence and regularity, [22] for the subordination principle, [23]
for the global existence of small data solutions, [24] for approximate controllability, [25] for
asymptotic behavior, [26] for well-posedness and regularity, and the references therein.

In the literature mentioned on fractional wave equations, the main technique to
construct solutions for deriving such existence and regularity results is based on Fourier
series, cosine family, or resolvent operators, and solutions are expressed by the Mittag-
Leffler functions. In fact, as it is well known, the smoothness of solutions is followed
by the properties of Mittag-Leffler functions. The main novelties of the present paper lie
in two aspects. Compared with the existing research on fractional wave equations, our
analysis is rather general and relies on Galerkin methods and energy arguments, which
can be applied to the general problem that Fourier expansive of solutions cannot be used
and cannot be converted to ordinary differential equations. Very recently, Huang and
Yamamoto [27] discussed the well-posedness of initial-boundary value problems for time
fractional diffusion-wave equations with time-dependent coefficients using the Galerkin
method. On the other hand, in contrast to the classical integer-order case, the main technical
difficulty in the rigorous analysis of the well-posedness and regularity of fractional wave
equations stems from establishing the energy estimates of the problem. This is mainly due to
the fact that integration by parts formula for integer-order derivatives cannot be generalized
directly to a fractional-order case and properties of composition and conjugation of the
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fractional Caputo derivative ∂α
t (α ∈ (1, 2)) do not exist. Therefore, we found it more

challenging in dealing with the well-posedness and regularity of fractional wave equations.
The paper is organized as follows. In Section 2 we recall some notations, definitions,

and preliminary facts used throughout this work. In Section 3 we discuss approximation
equations and show the existence of their solutions by means of mollification arguments and
the Galerkin methods, which reduce the regularity of coefficients ai,j, bj, c, f . The energy
estimates of approximation solutions are established in Section 4. Finally, we derive
the well-posedness and regularity results of fractional wave equations using the weak
compactness arguments.

2. Preliminaries

Here we recall some notations, definitions, and preliminary facts which are used
throughout this paper.

Let X be a Banach space and v : [0, ∞) → X. The left Riemann–Liouville fractional
integral of order α > 0 for the function v is defined as

0 Iα
t v(t) = (gα ∗ v)(t), t > 0,

where gα(t) = tα−1

Γ(α) and ∗ denotes the convolution.

Further, L∂α
t v and ∂α

t v represent the left Riemann–Liouville fractional derivative and
Caputo fractional derivative of order α > 0 for the function v, respectively, which are
defined by

L∂α
t v(t) =

dn

dtn [0 In−α
t v(t)] and ∂α

t v(t) = L∂α
t

[
v(t)−

n−1

∑
k=0

v(k)(0)
k!

tk
]

, t > 0,

where n = [α] + 1, [α] denotes the integer part of α.
Here we denote by ACn([0, T], X) the space of functions v that v ∈ Cn−1([0, T], X)

and v(n−1) ∈ AC([0, T], X). In particular, AC1([0, T], X) = AC([0, T], X). It is worth
mentioning that if v ∈ ACn([0, T], X), then the Caputo fractional derivative ∂α

t v(t) exists
almost everywhere on [0, T], which is represented by

∂α
t v(t) = [gn−α ∗ v(n)](t) for t ∈ [0, T].

For more insight into the topic, see Kilbas et al. [4] and Zhou [5].

Lemma 1 ([4]). If v ∈ AC2([0, T], X) and α ∈ (1, 2], then 0 Iα
t ∂α

t v(t) = v(t)− v(0)− v′(0)t
and ∂α

t 0 Iα
t v(t) = v(t).

Lemma 2. Let α ∈ (1, 2). If v ∈ AC2([0, T], X), then we have

∂α
t v(t) =

d
dt

∂α−1
t v(t)− v′(0)g2−α(t) = ∂α−1

t v′(t)

for a.e. t ∈ (0, T).
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Proof. If v ∈ AC2([0, T], X), then v′(t) exists for a.e. t ∈ (0, T). From the definition of ∂α
t

we know that

∂α
t v(t) =

d2

dt2

∫ t

0
g2−α(s)[v(t− s)− v(0)− v′(0)(t− s)]ds

=
d
dt

∫ t

0
g2−α(s)[v′(t− s)− v′(0)]ds

=
d
dt

∫ t

0
g2−α(t− s)[v′(s)− v′(0)]ds

=
d
dt

∂α−1
t v(t)− v′(0)g2−α(t).

On the other hand, since α− 1 ∈ (0, 1), we see that d
dt

∫ t
0 g2−α(t− s)[v′(s)− v′(0)]ds =

L∂α−1
t [v′(t)− v′(0)] = ∂α−1

t v′(t). Thus, the proof is complete.

Before proceeding further, we state an important lemma, which is a direct consequence
of an estimate borrowed from [7].

Lemma 3. Let T > 0 and H be a real Hilbert space with a scalar product (·, ·). Assume
k ∈ L1(0, T), k′ ∈ L1,loc(0, T), k ≥ 0, k′ ≤ 0. Then for any v ∈ H1(0, T, H), there holds∫ t

0

(
d
ds

(k ∗ v)(s), v(s)
)

ds ≥ 1
2
(k ∗ ‖v‖2)(t) +

1
2

∫ t

0
k(s)‖v(s)‖2ds

for any t ∈ [0, T].

Next, a very significant example is provided which will play a crucial role in the proof
of energy estimates.

Example 1. For α ∈ (1, 2), we choose k(t) = g2−α(t). Then for any v ∈ H2(0, T, H) and
t ∈ [0, T], there holds∫ t

0

( d
ds

[∂α−1
s v(s)], v′(s)

)
ds ≥ 1

2
(g2−α ∗ ‖v′‖2)(t) +

∫ t

0

g2−α(s)
2
‖v′(s)‖2ds.

The following property presents the lower bound of the uniformly elliptic operator if
the function has enough regularity, which was proved by [28] (see also [8]).

Lemma 4. Assume that Ω ⊂ RN is a bounded domain with the boundary of C2 class and (2) holds.
If u ∈ H3(Ω) and u|∂Ω = 0 and ∆u|∂Ω = 0, then

µ

4
‖∇2u‖2 − C‖∇u‖2 ≤

N

∑
i,j=1

∫
Ω

∂i(ai,j(t, x)∂ju)∆udx,

where C depends continuously on maxi,j ‖∇ai,j(t, x)‖L∞ and the C2-norm of ∂Ω, and
∇2u = {uxixj}N

i,j=1.

We consider the space

0H2(0, T) = {v ∈ H2(0, T) : v(0) = 0, v′(0) = 0}.

Next, we introduce the definition of the weak solution of Equation (1).
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Definition 1. Let T ∈ (0, ∞) and f ∈ L2(0, T, L2(Ω)). For given functions u0 and u1, we say
a function

u ∈ L2(0, T, H1
0(Ω)) with 0 I2−α

t (u− u0 − u1t) ∈ 0H2(0, T, H−1(Ω))

is a weak solution of Equation (1) provided

∂2

∂t2

∫
Ω

0 I2−α
t (u(t, x)− u0 − u1t)ω(x)dx +

∫
Ω

N

∑
i,j=1

ai,j(t, x)∂ju(t, x) · ∂iω(x)dx

=
∫

Ω

N

∑
j=1

bj(t, x)∂ju(t, x)ω(x)dx +
∫

Ω
c(t, x)u(t, x)ω(x)dx +

∫
Ω

f (t)ω(x)dx

for each ω ∈ H1
0(Ω) and a.e. t ∈ [0, T].

The vectors u0 and u1 can be regarded as initial data for u(t) and u′(t) at least in a
weak sense, respectively. If, for example, u ∈ AC2([0, T], H−1(Ω)), then the condition
0 I2−α

t (u− u0 − u1t) ∈ 0H2(0, T, H−1(Ω)) implies u(0) = u0 and ∂tu(0) = u1.

Remark 1. In view of Definition 1, we know u′ ∈ C([0, T], H−1(Ω)) for α > 3
2 .

Proof. Indeed, for t1, t2 ∈ [0, T] with t1 < t2, it follows from Lemma 2 and Hölder’s
inequality that

‖u′(t2)− u′(t1)‖H−1

=

∥∥∥∥ ∫ t2

0
gα−1(t2 − s)∂α

s u(s)ds−
∫ t1

0
gα−1(t1 − s)∂α

s u(s)ds
∥∥∥∥

H−1

≤
∫ t2

t1

gα−1(t2 − s)‖∂α
s u(s)‖H−1 ds +

∫ t1

0
[gα−1(t1 − s)− gα−1(t2 − s)]‖∂α

s u(s)‖H−1 ds

≤ (t2 − t1)
α− 3

2

(2α− 3)
1
2 Γ(α− 1)

‖∂α
t u‖L2(0,T,H−1)

+ ‖∂α
t u‖L2(0,T,H−1)

( ∫ t1

0
[gα−1(t1 − s)− gα−1(t2 − s)]2ds

) 1
2

.

In view of the inequality ξσ
1 − ξσ

2 ≤ (ξ1 − ξ2)
σ for ξ1, ξ2 > 0 and 0 ≤ σ ≤ 1, we

calculate the integral∫ t1

0
[gα−1(t1 − s)− gα−1(t2 − s)]2ds ≤ 1

Γ2(α− 1)

∫ t1

0
(t1 − s)2(α−2) − (t2 − s)2(α−2)ds

≤ (t2 − t1)
2α−3

(2α− 3)Γ2(α− 1)
.

The second term is bounded by ‖∂α
t u‖L2(0,T,H−1)

(t2−t1)
α− 3

2

(2α−3)
1
2 Γ(α−1)

. This ensures

‖u′(t2)− u′(t1)‖H−1 → 0 as t1 → t2.

The proof is complete.
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3. Approximation Solution

In this section we provide the Galerkin approximate scheme and derive the corre-
sponding existence results. We will suppose initially that

A ∈ (W1,∞(0, T; L∞(Ω)))N×N , bj ∈ L∞((0, T)×Ω),

c ∈ L∞(0, T, L
2q

q−2 (Ω)), f ∈ L2(0, T, L2(Ω))
(3)

for q ∈ [2, 2N
N−2 ), where A(t, x) = {ai,j(t, x)}N

i,j=1 and b = (b1, b2, ..., bN).
Let $ε be the standard mollifier satisfying

$ε ∈ C∞(R), supp $ε = {t : |t| < ε

T
},

∫
R

$ε(t)dt = 1.

Then we introduce the mollification vε of the function v ∈ L1,loc(R) as

vε(t) = ($ε ∗ v)(t).

We note first that vε ∈ C∞(R) and if v ∈ Lp(R) for p ≥ 1, then vε → v in Lp(R).
Moreover, we denote an

i,j, bn
j , cn, f 1

n
by the mollification of ai,j, bj, c, f , which are de-

fined by

an
i,j(t, x) =

(
$ 1

n
∗ ai,j(·, x)

)
(t), bn

j (t, x) =
(
$ 1

n
∗ bj(·, x)

)
(t),

cn(t, x) =
(
$ 1

n
∗ c(·, x)

)
(t), f 1

n
(t) =

(
$ 1

n
∗ f (·, x)

)
(t),

where ai,j is the continuation by even reflection to (−T, T) and zero elsewhere, bj and c are
the continuation by zero for t /∈ (0, T), and f is the continuation by odd reflection to (−T, T)
and zero elsewhere. Then limn→∞ an

i,j(t) = ai,j in L2((0, T)×Ω) for ai,j ∈ L∞((0, T)×Ω)

(due to (2)).
Next, we seek approximate solutions un(t, x) for Equation (1) in the form:

un(t, x) =
n

∑
k=1

dn,k(t)ek(x) for n ∈ N, (4)

where {ek} denotes the complete orthonormal system of eigenfunctions which forms an
orthogonal basis of L2(Ω) ∩ H1

0(Ω) such that

−∆ek = λkek in Ω, ek|∂Ω = 0, k = 1, 2, ...

For the sake of selecting dn,k(t), one considers the following approximate equation:{
∂α

t un(t, x)−Anun(t, x) = f n(t), (t, x) ∈ (0, T]×Ω,

un(0, x) = un0, ∂tun(0, x) = un1,
(5)

where

Anun(t, x) =
N

∑
i,j=1

∂i
(
an

i,j(t, x)∂jun(t, x)
)
+

N

∑
j=1

bn
j (t, x)∂jun(t, x) + cn(t, x)un(t, x),

f n(t, x) =
n

∑
k=1

(
f 1

n
(t, ·), ek(·)

)
ek(x),

un0(t, x) =
n

∑
k=1

(
u0(·), ek(·)

)
ek(x), un1(t, x) =

n

∑
k=1

(
u1(·), ek(·)

)
ek(x).
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Let us introduce the time-dependent bilinear form

Bn[u, v; t] :=
∫

Ω

N

∑
i,j=1

an
i,j(t, x)∂ju · ∂iv−

N

∑
j=1

bn
j (t, x)∂juv− cn(t, x)uvdx.

Taking the scalar product of (5) with el for l = 1, ..., n, we obtain{(
∂α

t un(t, ·), el
)
+ Bn[un, el ; t] = ( f 1

n
(t), el),

(un(0, ·), el) = (un0, el), (∂tun(0, ·), el) = (un1, el).
(6)

More precisely, we write

dn(t) =
(
dn,1(t), · · · , dn,n(t)

)
,

Ln(t) = {Ln
k,l(t)

}n
k,l=1, Ln

k,l(t) = B
n[el , ek; t],

Fn(t) =
(

f 1
n
(t), el

)n
l=1,

dn0 =
(
u0, el

)n
l=1, dn1 =

(
u1, el

)n
l=1.

Then (6) can be reduced to the following linear differential system for the functions dn:{
∂α

t dn(t) + Ln(t)dn(t) = Fn(t) for t ∈ (0, T],

dn(0) = dn0, d′n(0) = dn1.
(7)

Now we consider the nonlinear integral system for the functions

dn(t) = dn0 + dn1t +
[
gα ∗

(
Ln(·)dn(·)

)]
(t) +

[
gα ∗ Fn](t) for t ∈ [0, T]. (8)

We shall show that system (8) has a unique solution dn which belongs to AC2[0, T].
By Lemma 1, then the solution dn of Equation (8) is also the solution of Equation (7). To
accomplish this, we introduce the space

ET =
{

d ∈ C1([0, T],Rn) : d(0) = dn0, d′(0) = dn1, t2−αd′′(t) ∈ C([0, T],Rn)
}

,

and define a metric on ET as

‖d‖ET = ‖d‖C[0,T] + ‖d′‖C[0,T] + ‖t2−αd′′‖C[0,T].

It is easy to show that (ET , ‖ · ‖ET ) is a complete metric space. We notice that
ET ⊂ AC2([0, T],Rn).

Theorem 1. Let T ∈ (0, ∞) and (3) hold. For every n ∈ N, Equation (8) has a unique solution
in ET .

Proof. Consider the operator T : ET → ET given by

T d(t) = dn0 + dn1t +
[
gα ∗

(
Ln(·)d(·)

)]
(t) +

(
gα ∗ Fn)(t), for t ∈ [0, T].

Then it is well-defined. Indeed, let d ∈ ET , then T d(0) = dn0. Further, we immediately
take the first and second derivatives of T d with respect to t to obtain

(T d)′(t) = dn1 + gα(t)
[
Ln(0)d(0) + Fn(0)

]
+
[
gα ∗

(
Ln(·)d(·) + Fn(·)

)′]
(t) for t ∈ [0, T],
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and

(T d)′′(t) =gα−1(t)
[
Ln(0)d(0) + Fn(0)

]
+ gα(t)

[
(Ln)′(0)d(0) + Ln(0)d′(0) + (Fn)′(0)

]
+ gα ∗

[
Ln(t)d(t) + Fn(t)

]′′ for t ∈ (0, T].

For convenience we let Gd(t) = Ln(t)d(t) + Fn(t). Then G′d(t) = (Ln)′(t)d(t) +
Ln(t)d′(t) + (Fn)′(t) and Gd, G′d ∈ C([0, T],Rn). We can easily check that T d and (T d)′ are
continuous on C([0, T],Rn), which also ensures that (T d)′(0) = dn1. Therefore it remains
to consider the continuity of t2−α(T d)′′(t). It is easy to verify the continuity of the first two
components. To deal with the third one we estimate for 0 ≤ t1 < t2 ≤ T∣∣∣∣t2−α

2

∫ t2

0
gα(s)G′′d (t2 − s)ds− t2−α

1

∫ t1

0
gα(s)G′′d (t1 − s)ds

∣∣∣∣
≤|t2−α

2 − t2−α
1 |

∫ t2

0
gα(s)|G′′d (t2 − s)|ds + t2−α

1

∫ t2

t1

gα(s)|G′′d (t2 − s)|ds

+ t2−α
1

∫ t1

0
gα(s)|G′′d (t2 − s)− G′′d (t1 − s)|ds

= : I1(t1, t2) + I2(t1, t2) + I3(t1, t2).

On the other hand, from the definition of Gd and d ∈ ET , it follows that

G′′d (t) = (Ln)′′(t)d(t) + 2(Ln)′(t)d′(t) + Ln(t)d′′(t) + (Fn)′′(t).

From the representation of Ln(t) and Fn, we know that Ln and Fn belong to the space
ET , which yields that Gd ∈ ET and

|G′′d (t)| ≤ ‖Gd‖ET tα−2. (9)

Thus one can immediately calculate I1(t1, t2) and I2(t1, t2) as follows

I1(t1, t2) ≤‖Gd‖ET |t
2−α
2 − t2−α

1 |
∫ t2

0
gα(s)(t2 − s)α−2ds

=
‖Gd‖ET

Γ(α)
B(α, α− 1)tα

2

[
1−

( t1

t2

)2−α]
→ 0, as t2 → t1,

and

I2(t1, t2) ≤‖Gd‖ET t2−α
1

∫ t2

t1

gα(s)(t2 − s)α−2ds

≤
‖Gd‖ET

Γ(α)
tα
2

( t1

t2

)2−α ∫ 1

t1/t2

sα−1(1− s)α−2ds→ 0, as t2 → t1.

Finally, for I3(t1, t2), choosing a δ ∈ (0, t1) sufficient small for t1 > 0, one can derive
from the increasing property of gα and (9) that

I3(t1, t2)

=t2−α
1

∫ t1−δ

0
gα(s)|G′′d (t2 − s)− G′′d (t1 − s)|ds + t2−α

1

∫ t1

t1−δ
gα(s)|G′′d (t2 − s)− G′′d (t1 − s)|ds

≤t2−α
1 gα(t1 − δ)

∫ t1−δ

0
|G′′d (t2 − s)− G′′d (t1 − s)|ds + 2‖Gd‖ET t2−α

1

∫ t1

t1−δ
gα(s)(t1 − s)α−2ds

≤t2−α
1 gα(t1)

∫ t1

δ
|G′′d (t2 − t1 + s)− G′′d (s)|ds +

2‖Gd‖ET

Γ(α)
tα
1

∫ 1

1−δ/t1

sα−1(1− s)α−2ds.

It is clear that the second term tends to zero for some sufficient small δ. Then we
choose one of such δ, it follows from the uniform continuity of G′′ (due to the continuity
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of G′′d on [δ, T]) that for any ε > 0, there exists δ′ < δ with |t2 − t1| < δ′ such that
|G′′d (t2 − t1 + s) − G′′d (s)| < ε. Thus, this yields that the first term can be bounded by
εt2−α

1 gα(t1)(t1 − δ), which together with I3(0, t2) = 0 shows that I3(t1, t2) → 0 as t2 → t1
for 0 ≤ t1 < t2 ≤ T.

Therefore, we have T d ∈ ET for d ∈ ET .
Moreover, for d1, d2 ∈ ET , we have

|T d1(t)− T d2(t)| ≤
[

gα ∗
∣∣Gd1(·)− Gd2(·)

∣∣](t)
≤‖L

n‖
Γ(α)

‖d1 − d2‖ET

∫ t

0
(t− s)α−1ds

≤ ‖L
n‖tα

Γ(1 + α)
‖d1 − d2‖ET ,

(10)

where we have used∣∣Gd1(s)− Gd2(s)
∣∣ ≤|Ln(s)||d1(s)− d2(s)|
≤‖Ln‖‖d1 − d2‖
≤‖Ln‖‖d1 − d2‖ET for s ∈ [0, t].

(11)

Similarly, in view of∣∣G′d1
(s)− G′d2

(s)
∣∣ ≤|(Ln)′(s)||d1(s)− d2(s)|+ |Ln(s)||d′1(s)− d′2(s)|
≤‖(Ln)′‖‖d1 − d2‖+ ‖Ln‖‖d′1 − d′2‖
≤2‖Ln‖C1[0,T]‖d1 − d2‖ET for s ∈ [0, t],

(12)

we proceed to estimate (T d1)
′ − (T d2)

′ as follows:

|(T d1)
′(t)− (T d2)

′(t)| ≤gα(t)
∣∣Gd1(0)− Gd2(0)

∣∣+ [gα ∗
∣∣G′d1

(·)− G′d2
(·)
∣∣](t)

≤
2‖Ln‖C1[0,T]

Γ(α)
‖d1 − d2‖ET

∫ t

0
(t− s)α−1ds

≤
2‖Ln‖C1[0,T]

Γ(1 + α)
tα‖d1 − d2‖ET ,

(13)

where it is easy to show that Gd1(0)− Gd2(0) = 0 due to d1(0)− d2(0) = 0 and (11).
Finally, we will estimate t2−α(T d1)

′′ − t2−α(T d2)
′′. Taking account of the follow-

ing inequality∣∣G′′d1
(s)− G′′d2

(s)
∣∣ ≤|(Ln)′′(s)||d1(s)− d2(s)|+ 2|(Ln)′(s)||d′1(s)− d′2(s)|

+ |Ln(s)||d′′1 (s)− d′′2 (s)|
≤‖(Ln)′′‖‖d1 − d2‖+ 2‖(Ln)′‖‖d′1 − d′2‖
+ sα−2‖Ln‖‖s2−αd′′1 − s2−αd′′2 ‖
≤3‖Ln‖C2[0,T](1 + sα−2)‖d1 − d2‖ET for s ∈ (0, t],
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it holds that

|t2−α(T d1)
′′(t)− t2−α(T d2)

′′(t)|
≤t2−αgα−1(t)

∣∣Gd1(0)− Gd2(0)
∣∣+ t2−αgα(t)

∣∣G′d1
(0)− G′d2

(0)
∣∣

+ t2−α
[
gα ∗

∣∣G′′d1
(·)− G′′d2

(·)
∣∣](t)

≤
3‖Ln‖C2[0,T]

Γ(α)
‖d1 − d2‖ET t2−α

∫ t

0
(t− s)α−1(1 + sα−2)ds

≤3‖Ln‖C2[0,T]

(
t2

Γ(1 + α)
+

Γ(α− 1)
Γ(2α− 1)

tα

)
‖d1 − d2‖ET ,

(14)

where we know from (12) that G′d1
(0)− G′d2

(0) = 0.
For the sake of convenience, we let

M(t) =3tα‖Ln‖C2[0,T]

(
1

Γ(1 + α)
+

Γ(α− 1)
Γ(2α− 1)

)
+ ‖Ln‖C2[0,T]

3t2

Γ(1 + α)
.

Then one can choose a T1 ∈ (0, T) small enough which ensures that M(T1) < 1.
Therefore, combining (10), (13) with (14), we deduce that

‖T d1 − T d2‖ET1
≤ M(T1)‖d1 − d2‖ET .

This also shows that the operator T is a strict contraction on E(T1). It follows that T
has a fixed point, thus Equation (8) has a unique solution in ET1 .

Now, we will deal with the continuation of the solution to the interval [0, T]. Let
us make the assumption that we have obtained the solution d̄ of Equation (8) on the
interval [0, Tl ] for Tl > 0. We shall define the solution for t ∈ [Tl , Tl+1] with Tl+1 > Tl .
To accomplish this, we introduce the complete space

ĒTl+1 =
{

d ∈ C2((0, Tl+1],Rn) : d(t) = d̄(t) for t ∈ [0, Tl ]
}

,

with the distance ‖d‖ĒTl+1
= ‖d‖C2[Tl ,Tl+1]

. Let d ∈ ĒTl+1 , then d ∈ ETl+1 . According to the

previous proof, we know that T d ∈ ETl+1 , which implies that T d ∈ C1([0, Tl+1],Rn) and
t2−α(T d)′′ ∈ C([0, Tl+1],Rn). It holds that (T d)′′ ∈ C((0, Tl+1],Rn) and then T d ∈ ĒTl+1 .

Next, we will show that the operator T is also a strict contraction on ĒTl+1 when
Tl+1 − Tl is sufficiently small. We shall rewrite T in the following form:

T d(t) = dn0 + dn1t +
1

Γ(α)

∫ Tl

0
gα(t− s)Gd(s)ds +

1
Γ(α)

∫ t

Tl

gα(t− s)Gd(s)ds.

For d1, d2 ∈ ĒTl+1 , we have d1(t)− d2(t) = 0 and Gd1(t)−Gd2(t) = 0 for t ∈ [0, Tl ]. Then

T d1(t)− T d2(t) =
1

Γ(α)

∫ t

Tl

gα(t− s)[Gd1(s)− Gd2(s)]ds.

This follows from (11) that

‖T d1 − T d2‖C[Tl ,Tl+1]
≤ ‖Ln‖

Γ(1 + α)
‖d1 − d2‖C[Tl ,Tl+1]

(Tl+1 − Tl)
α.

Similarly, we obtain

‖(T d1)
′ − (T d2)

′‖C[Tl ,Tl+1]

≤ 1
Γ(1 + α)

(
‖(Ln)′‖‖d1 − d2‖C[Tl ,Tl+1]

+ ‖Ln‖‖d′1 − d′2‖C[Tl ,Tl+1]

)
(Tl+1 − Tl)

α,
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and

‖(T d1)
′′ − (T d2)

′′‖C[Tl ,Tl+1]
≤ (Tl+1 − Tl)

α

Γ(1 + α)

[
‖(Ln)′′‖‖d1 − d2‖C[Tl ,Tl+1]

+ 2‖(Ln)′‖‖d′1 − d′2‖C[Tl ,Tl+1]
+ ‖Ln‖‖d′′1 − d′′2 ‖C[Tl ,Tl+1]

]
.

Therefore,

‖T d1 − T d2‖ĒTl+1
≤

4‖Ln‖C2[0,T]

Γ(1 + α)
‖d1 − d2‖ĒTl+1

(Tl+1 − Tl)
α.

Moreover, we can choose one Tl+1 ∈
(

Tl , Tl +
(

Γ(1+α)
4‖Ln‖C2 [0,T]

) 1
α

)
such that Tl+1 − Tl is

small enough. It also ensures that

0 <
4‖Ln‖C2[0,T]

Γ(1 + α)
(Tl+1 − Tl)

α < 1.

Hence, the operator T is a strict contraction on ĒTl+1 , this also shows that Equation (8)
has a unique solution on the interval [Tl , Tl+1]. We proceed to repeat the process on the
intervals [Tl+1, Tl+2], · · · , until Equation (8) has a unique solution on the interval [0, T].
The claim then follows.

4. Energy Estimates

The purpose of this section is to establish some a priori estimates of approximation
solutions through a mathematical analysis, which plays an important role in obtaining the
main results. We can accomplish this with the following lemma.

Lemma 5. Assume that u0 ∈ H1
0(Ω), u1 ∈ L2(Ω) and recall the condition imposed to the

parameters ai,j, bj, c, and f . Then, for every n ∈ N and t ∈ (0, T] the approximate solution un
given by (4) and (8) satisfies the inequality

0 I2−α
t ‖∂tun(t, ·)‖2 +

∫ t

0
‖∂sun(s, ·)‖2ds + ‖∇un(t, ·)‖2

≤M̃1
(
‖un0‖2

H1
0
+ ‖un1‖2t2−α

)
+ M̃2

∫ t

0
‖ f 1

n
(s, ·)‖2ds,

where M̃1 and M̃2 are positive constants.

Proof. Multiply Equation (6) by d′n,l(t), sum it up from 1 to n and recall (4) to discover{(
∂α

t un(t, ·), ∂tun(t, ·)
)
+ Bn[un, ∂tun; t] =

(
f 1

n
(t, ·), ∂tun(t, ·)

)
, (t, x) ∈ (0, T]×Ω,

un(0, ·) = un0, ∂tun(0, ·) = un1.
(15)

Taking into account Lemma 2, we have

∂α
t un(t, ·) =

∂

∂t
[∂α−1

t un(t, ·)]−
un1

Γ(2− α)
t1−α.
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Using Example 1, it follows that∫ t

0

(
∂α

s un(s, ·), ∂sun(s, ·)
)
ds

=
∫ t

0

( ∂

∂s
[∂α−1

s un(s, ·)], ∂sun(s, ·)
)
ds−

∫ t

0

( un1

Γ(2− α)
s1−α, ∂sun(s, ·)

)
ds

≥1
2 0 I2−α

t ‖∂tun(t, ·)‖2 +
1
2

∫ t

0
g2−α(s)‖∂sun(s, ·)‖2ds− 1

Γ(2− α)

∫ t

0
s1−α

(
un1, ∂sun(s, ·)

)
ds.

Therefore, we integrate the first equality of Equation (15) with respect to the time
variable from 0 to t to obtain that

1
2 0 I2−α

t ‖∂tun(t, ·)‖2 +
1
2

∫ t

0
g2−α(s)‖∂sun(s, ·)‖2ds

+
N

∑
i,j=1

∫ t

0

∫
Ω

an
i,j(s, x)∂jun(s, x)∂i∂sun(s, x)dxds

≤
N

∑
j=1

∫ t

0

∫
Ω

bn
j (s, x)∂jun(s, x)∂sun(s, x)dxds +

∫ t

0

∫
Ω

cn(s, x)un(s, x)∂sun(s, x)dxds

+
∫ t

0

(
f 1

n
(s, ·), ∂sun(s, ·)

)
ds +

1
Γ(2− α)

∫ t

0
s1−α

(
un1, ∂sun(s, ·)

)
ds

= : J1(t) + J2(t).

(16)

First, we estimate the third term of the left-hand side of the above inequality. Using
the integration by parts with respect to s, we derive that

N

∑
i,j=1

∫ t

0

∫
Ω

an
i,j(s, x)∂jun(s, x)∂i∂sun(s, x)dxds

=
N

∑
i,j=1

∫
Ω

an
i,j(s, x)∂jun(s, x)∂iun(s, x)dx

∣∣∣∣t
0

−
N

∑
i,j=1

∫ t

0

∫
Ω
[∂san

i,j(s, x)∂jun(s, x) + an
i,j(s, x)∂j∂sun(s, x)]∂iun(s, x)dxds.

It follows from an
i,j = an

j,i that
N

∑
i,j=1

∫ t

0

∫
Ω

an
i,j(s, x)∂jun(s, x)∂i∂sun(s, x)dxds

=
N

∑
i,j=1

∫ t

0

∫
Ω

an
i,j(s, x)∂j∂sun(s, x)∂iun(s, x)dxds.

In addition, in view of the definition of an
i,j, we know that ∂san

i,j(s, x) =
(
$ 1

n
∗ ∂tai,j(·, x)

)
(s);

this yields

|∂san
i,j(s, x)| ≤ ‖A‖W1,∞ .

Therefore, using (2) again, one can obtain that
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N

∑
i,j=1

∫ t

0

∫
Ω

an
i,j(s, x)∂jun(s, x)∂i∂sun(s, x)dxds

=
1
2

N

∑
i,j=1

∫
Ω

an
i,j(s, x)∂jun(s, x)∂iun(s, x)dx

∣∣∣∣t
0

− 1
2

N

∑
i,j=1

∫ t

0

∫
Ω

∂san
i,j(s, x)∂jun(s, x)∂iun(s, x)dxds

≥µ

2

∫
Ω
|∇un(t, x)|2dx− ν

2

∫
Ω
|∇un(0, x)|2dx

− 1
2
‖A‖W1,∞

∫ t

0

∫
Ω

N

∑
i,j=1
|∂jun(s, x)∂iun(s, x)|dsdx

≥µ

2
‖∇un(t, ·)‖2 − ν

2
‖∇un(0, ·)‖2 − 1

2
‖A‖W1,∞

∫ t

0
‖∇un(s, ·)‖2ds.

Next we estimate the upper bound of the right-handed side of (16). For J1(t), we use
Hölder’s inequality and Young’s inequality to obtain

J1(t) =
N

∑
j=1

∫ t

0

∫
Ω

bn
j (s, x)∂jun(s, x)∂sun(s, x)dxds +

∫ t

0

∫
Ω

cn(s, x)un(s, x)∂sun(s, x)dxds

≤
∫ t

0
‖∇un(s, ·)‖‖∂sun(s, ·)‖‖bn(s, ·)‖L∞ ds

+
∫ t

0
‖un(s, ·)‖Lq‖∂sun(s, ·)‖‖cn(s, ·)‖

L
2q

q−2
ds

≤Cε

2

∫ t

0
‖∇un(s, ·)‖2ds +

ε

2

∫ t

0
‖∂sun(s, ·)‖2‖bn(s, ·)‖2

L∞ ds

+
ε

2

∫ t

0
‖∂sun(s, ·)‖2ds +

Cε

2

∫ t

0
‖un(s, ·)‖2

Lq‖cn(s, ·)‖2

L
2q

q−2
ds

≤Cε

2
(1 + C2(q, N, ∂Ω)‖cn‖2

L∞(0,T,L
2q

q−2 )

)
∫ t

0
‖∇un(s, ·)‖2ds

+
ε

2

(
‖bn‖2

L∞((0,T)×Ω) + 1
) ∫ t

0
‖∂sun(s, ·)‖2ds,

where we have used ‖un(s, ·)‖Lq ≤ C(q, N, Ω)‖∇un(s, ·)‖ for q ∈ [2, 2N
N−2 ) obtained by

Evans [29]. Moreover, J2(t) can be estimated by Young’s inequality

J2(t) =
∫ t

0

(
f 1

n
(s), ∂sun(s, ·)

)
ds +

1
Γ(2− α)

∫ t

0
s1−α

(
un1, ∂sun(s, ·)

)
ds

≤
∫ t

0
‖ f 1

n
(s, ·)‖‖∂sun(s, ·)‖ds +

1
Γ(2− α)

∫ t

0
s1−α‖un1‖‖∂sun(s, ·)‖ds

≤
∫ t

0
(

Cε

2
‖ f 1

n
(s, ·)‖2 +

ε

2
‖∂sun(s, ·)‖2)ds

+
1

Γ(2− α)

∫ t

0
s1−α(

Cε

2
‖un1‖2 +

ε

2
‖∂sun(s, ·)‖2)ds

≤Cε

2
‖un1‖2

Γ(3− α)
t2−α +

Cε

2

∫ t

0
‖ f 1

n
(s, ·)‖2ds +

ε

2

∫ t

0
(g2−α(s) + 1)‖∂sun(s, ·)‖2ds.

Let

Qn = ‖bn‖2
L∞((0,T)×Ω) + 2 and Q̃n = 1 + C2(q, N, Ω)‖cn‖2

L∞(0,T,L
2q

q−2 )

.
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Then Qn ≤ C
(
‖b‖2

L∞((0,T)×Ω)
+ 2
)

:= Q and Q̃n ≤ C
(

1 + C2(q, N, Ω)‖c‖2

L∞(0,T,L
2q

q−2 )

)
:= Q̃

for each n.
We use the above inequalities in (16) and the decreasing property of g2−α to obtain that

1
2 0 I2−α

t ‖∂tun(t, ·)‖2 +
(1− ε)g2−α(T)

2

∫ t

0
‖∂sun(s, ·)‖2ds +

µ

2
‖∇un(t, ·)‖2

≤ν

2
‖un0‖2

H1
0
+

Cε

2
‖un1‖2

Γ(3− α)
t2−α +

1
2
(
CεQ̃ + ‖A‖W1,∞

) ∫ t

0
‖∇un(s, ·)‖2ds

+
εQ
2

∫ t

0
‖∂sun(s, ·)‖2ds +

Cε

2

∫ t

0
‖ f 1

n
(s, ·)‖2ds.

For fixed 0 < ε < g2−α(T)
g2−α(T)+Q , it follows that

‖∇un(t, ·)‖2 ≤M1
(
‖un0‖2

H1
0
+ ‖un1‖2t2−α

)
+ M∗1

∫ t

0
‖∇un(s, ·)‖2ds +

Cε

µ

∫ t

0
‖ f 1

n
(s, ·)‖2ds,

where M1 = max
{

ν
µ , Cε

µΓ(3−α)

}
and M∗1 = 1

µ (CεQ̃ + ‖A‖W1,∞), it results from using Gron-

wall’s inequality that

‖∇un(t, ·)‖2 ≤ M2

(
‖un0‖2

H1
0
+ ‖un1‖2t2−α +

∫ t

0
‖ f 1

n
(s, ·)‖2ds

)
for t ∈ [0, T],

where M2 is a positive constant depending on M1, M∗1 , and T. Therefore, we have for
t ∈ [0, T]

0 I2−α
t ‖∂tun(t, ·)‖2 + [(1− ε)g2−α(T)− εQ]

∫ t

0
‖∂sun(s, ·)‖2ds + µ‖∇un(t, ·)‖2

≤M1
(
‖un0‖2

H1
0
+ ‖un1‖2t2−α

)
+ Cε

∫ t

0
‖ f 1

n
(s, ·)‖2ds

+ M2t
(
CεQ̃ + ‖A‖W1,∞

)(
‖un0‖2

H1
0
+ ‖un1‖2t2−α +

∫ t

0
‖ f 1

n
(s, ·)‖2ds

)
.

The claim then follows.

Lemma 6. Assume that u0 ∈ H1
0(Ω), u1 ∈ L2(Ω) and recall the condition imposed to the

parameters ai,j, bj, c, and f . Then, for every n ∈ N and for every t ∈ (0, T] the approximate solution
un given by (4) and (8) satisfies the inequality∫ t

0
‖∂α

s un(s, ·)‖2
H−1 ds ≤ 2M̃1M2

3t
(
‖un0‖2

H1
0
+ ‖un1‖2t2−α

)
+ 2(M̃2M2

3t + 1)
∫ t

0
‖ f 1

n
(s, ·)‖2ds

for t ∈ (0, T].

Proof. For fixed v ∈ H1
0(Ω), ‖v‖H1

0
≤ 1, rewrite v = v1 + v2, where v1 ∈ span{ek}n

k=1 and
(v2, ek) = 0 (k = 1, ..., n). Observe ‖v1‖H1

0
≤ 1. Then (4) and (6) imply〈

∂α
t un(t, ·), v

〉
=
(
∂α

t un(t, ·), v
)
=
(
∂α

t un(t, ·), v1
)
= ( f 1

n
(t, ·), v1)−Bn[un, v1; t].

On the other hand, from the definition of Bn and Sobolev imbedding, we know that
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∣∣Bn[un, v1; t]
∣∣

≤‖A‖W1,∞‖∇un(t, ·)‖‖∇v1(·)‖+ ‖∇un(t, ·)‖‖v1(·)‖‖bn(t, ·)‖L∞

+ ‖un(t, ·)‖‖v1(·)‖q‖cn(t, ·)‖
L

2q
q−2

≤‖A‖W1,∞‖∇un(t, ·)‖‖v1(·)‖H1
0
+ ‖∇un(t, ·)‖‖v1(·)‖H1

0
‖bn‖L∞((0,T)×Ω)

+ ‖un(t, ·)‖‖v1(·)‖H1
0
‖cn‖

L∞(0,T,L
q

q−2 )

≤M3‖∇un(t, ·)‖‖v1(·)‖H1
0
,

(17)

where M3 = C
(
‖A‖W1,∞ + ‖b‖L∞((0,T)×Ω) + ‖c‖

L∞(0,T,L
q

q−2 )

)
. Moreover, we have

|( f 1
n
(t, x), v1)| ≤ ‖ f 1

n
(t, ·)‖‖v1‖ ≤ ‖ f 1

n
(t, ·)‖‖v1‖H1

0
. Thus,∣∣〈∂α

t un(t, ·), v
〉∣∣ ≤‖ f 1

n
(t, ·)‖+ M3‖∇un(t, ·)‖

for ‖v1‖H1
0
≤ 1. Consequently, ‖∂α

t un(t, ·)‖H−1 ≤ ‖ f 1
n
(t)‖+ M3‖∇un(t, ·)‖, from Lemma 5

we can show∫ t

0
‖∂α

s un(s, ·)‖2
H−1 ds ≤2

∫ t

0
‖ f 1

n
(s, ·)‖2ds + 2M2

3t
[
M̃1
(
‖un0‖2

H1
0
+ ‖un1‖2t2−α

)
+ M̃2

∫ t

0
‖ f 1

n
(s)‖2ds

]
.

The claim then follows.

5. Well-Posedness and Regularity

In this section, we take the limit in approximate sequences and present the existence
and uniqueness of weak solutions, and then we show the regularity results.

Theorem 2. Suppose that T > 0, u0 ∈ H1
0(Ω), u1 ∈ L2(Ω) and let ai,j, bj, c, and f satisfy (3).

Then there exists a weak solution u ∈ C([0, T], L2(Ω)) ∩ L∞(0, T, H1
0(Ω)) of Equation (1) sat-

isfying u′ ∈ L2(0, T, L2(Ω)), ∂α
t u ∈ L2(0, T, H−1(Ω)). Moreover, u also satisfies the follow-

ing estimate

max
t∈[0,T]

‖u(t)‖H1
0
+ ‖∂tu‖L2(0,T,L2) + ‖∂α

t u‖L2(0,T,H−1)

≤M̃
(
‖u0‖2

H1
0
+ ‖u1‖2 + ‖ f ‖L2(0,T,L2)

)
,

(18)

where M̃ is a positive constant.

Proof. Step 1. According to the energy estimate in Lemma 5, we see that the sequence
{un(t)} is bounded in H1

0(Ω) for t ∈ [0, T], {∂tun} is bounded in L2(0, T, L2(Ω)), and
Lemma 6 implies that the sequence ∂α

t un is bounded in L2(0, T, H−1(Ω)). This also im-
plies that 0 I2−α

t (u − u0 − u1t) is uniformly bounded in 0H2(0, T, H−1(Ω)). As a con-
sequence there exist u ∈ C([0, T], L2(Ω)) ∩ L∞(0, T, H1

0(Ω)) with u′ ∈ L2(0, T, L2(Ω)),
v ∈ L2(0, T, H−1(Ω)), and a subsequence of {un}, still denoted by {un}, such that

un → u in C([0, T], L2(Ω)), un(t) ⇀ u(t) in L2(0, T, H1
0(Ω)),

∂tun ⇀ ∂tu in L2(0, T, L2(Ω)), ∂α
t un ⇀ v in L2(0, T, H−1(Ω)).

(19)

Since the continuity of 0 I2−α
t in L2(0, T) implies weak continuity, it follows that

0 I2−α
t ∂tun ⇀ 0 I2−α

t ∂tu in L2(0, T, L2(Ω)). (20)
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Next we would like to prove that ∂α
t u = v in a weak sense. We take ϕ ∈ C∞

0 (0, T) and
ψ ∈ H1

0(Ω). Then

∫ T

0
ϕ(t)〈v, ψ〉H−1×H1

0
dt = lim

n→∞

∫ T

0
ϕ(t)〈∂α

t un, ψ〉H−1×H1
0
dt

= lim
n→∞

∫ T

0
ϕ(t)

〈
∂tt[0 I2−α

t (un − un0 − un1t)], ψ
〉

H−1×H1
0

dt

= lim
n→∞

∫
Ω

ψ(x)dx
∫ T

0
ϕ(t)∂tt[0 I2−α

t (un − un0 − un1t)]dt

=− lim
n→∞

∫
Ω

ψ(x)dx
∫ T

0
ϕ′(t)∂t[0 I2−α

t (un − un0 − un1t)]dt

=− lim
n→∞

∫
Ω

ψ(x)dx
∫ T

0
ϕ′(t)0 I2−α

t (∂tun − un1)dt

=−
∫ T

0
ϕ′(t)

〈
0 I2−α

t (∂tu− u1), ψ
〉

dt

=
∫ T

0
ϕ(t)〈∂α

t u, ψ〉H−1×H1
0
dt,

where we have used Lemma 2. Therefore, ∂α
t u = v in a weak sense.

Step 2. Fix an integer Λ and choose a function w ∈ H1
0(Ω) of the form

ω(x) =
Λ

∑
k=1

γkek(x), (21)

where {γk} are arbitrary numbers. We select n ≥ Λ, multiply (6) by γk and sum it up from
1 to Λ. Then we proceed to multiply the equation by $ε(t + τ) for fixed τ ∈ (0, T) and
integrate with respect to t to discover∫ T

0
$ε(t + τ)

∫
Ω

∂α
t un(t, x)ω(x)dxdt +

∫ T

0
$ε(t + τ)Bn[un, ω; t]dt

=
∫ T

0
$ε(t + τ)

∫
Ω

f 1
n
(t, x)ω(x)dxdt.

(22)

For ε < T − τ, we recall (20) to find that for a.e. τ ∈ (0, T),

lim
ε→0

lim
n→∞

∫ T

0
$ε(t + τ)

∫
Ω

∂α
t un(t, x)ω(x)dxdt

=− lim
ε→0

lim
n→∞

∫ T

0
$ε
′(t + τ)

∫
Ω

∂t[0 I2−α
t (un − un0 − un1t)]ω(x)dx dt

=− lim
ε→0

lim
n→∞

∫ T

0
$ε
′(t + τ)

∫
Ω

0 I2−α
t (∂tun − un1)ω(x)dx dt

=− lim
ε→0

∫ T

0
$ε
′(t + τ)

∫
Ω

0 I2−α
t (∂tu− u1)ω(x)dx dt

= lim
ε→0

∫ T

0
$ε(t + τ)

∫
Ω

∂α
t u(t, x)ω(x)dx dt

=
∫

Ω
∂α

t u(τ, x)ω(x)dx.
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We proceed similarly with the remaining terms. We see that $ε(t + τ)∂iω(x) is smooth
in (0, T)×Ω. From assumptions an

i,j ∈ L∞((0, T)×Ω) thus an
i,j → ai,j in L2((0, T)×Ω),

and ∂jun(x, t) ⇀ ∂ju(x, t) in L2((0, T)×Ω) when n→ ∞, we obtain

lim
ε→0

lim
n→∞

∫ T

0
$ε(t + τ)

∫
Ω

an
i,j(t, x)∂jun(t, x) · ∂iω(x)dx dt

= lim
ε→0

∫ T

0
$ε(t + τ)

∫
Ω

ai,j(t, x)∂ju(t, x) · ∂iω(x)dx dt

=
∫

Ω
ai,j(τ, x)∂ju(τ, x) · ∂iω(x)dx.

Similarly, since bn
j (t)→ bj in L∞((0, T)×Ω) and cn(t)→ c in L∞(0, T, L

2q
q−2 (Ω)), thus

bn
j (t)→ bj and cn(t)→ c in L2((0, T)×Ω), it, together with (19), follows that

lim
ε→0

lim
n→∞

∫ T

0
$ε(t + τ)

∫
Ω

bn
j (t, x)∂jun(t, x) ·ω(x)dxdt =

∫
Ω

bj(τ, x)∂ju(τ, x)ω(x)dx,

lim
ε→0

lim
n→∞

∫ T

0
$ε(t + τ)

∫
Ω

cn(t, x)un(t, x) ·ω(x)dxdt =
∫

Ω
c(τ, x)u(τ, x)ω(x)dx.

Therefore, one can find that

lim
ε→0

lim
n→∞

∫ T

0
$ε(t + τ)Bn[un, ω; t]dt = B[u, ω; τ].

Moreover, we can derive that for a.e. τ ∈ (0, T),

lim
ε→0

lim
n→∞

∫ T

0
$ε(t + τ)

∫
Ω

f 1
n
(t, x)ω(x)dxdt = lim

ε→0

∫ T

0
$ε(t + τ)

∫
Ω

f (t, x)ω(x)dxdt

=( f (τ, ·), ω).

Therefore the following equality holds

〈∂α
t u(t, ·), ω〉+ B[u, ω; t] = ( f (t, ·), ω) (23)

for ω = ∑Λ
k=1 γkek(x) and a.e. t ∈ (0, T), since functions of the form (21) are dense in

H1
0(Ω), then the above equality also holds for all ω ∈ H1

0(Ω) and a.e. t ∈ (0, T).
Finally, we note that

∫ t

0
‖ f 1

n
(s, ·)‖2ds ≤

∫ t

0
‖ f (s, ·)‖2ds +

∫ t+ 1
n

t
‖ f (s, ·)‖2ds,

by the assumption of f , we know that supt∈(0,T− 1
n )

∫ t+ 1
n

t ‖ f (s, ·)‖2ds→ 0 uniformly with
respect to t as n→ ∞. Therefore, Lemmas 5 and 6 produce estimate (18).

Remark 2. If we assume that the coefficients ai,j, bj, c ∈ C2((0, T], L∞(Ω)) and f ∈ C2((0, T], L2(Ω)),
then the mollification arguments imposed to the coefficients a, b, c, and f can be avoided. Similar to the proof
that we derived in Theorem 2, the existing result is obtained. For similar results, we also refer to [27].

Theorem 3. Under the assumptions of Theorem 2, we suppose that bj ∈ W1,∞(0, T, W1,∞(Ω)),

c ∈W1,∞(0, T, L
2q

q−2 (Ω)). Then a weak solution u of Equation (1) is unique.
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Proof. It suffices to show that the only weak solution of (1) with f ≡ u0 ≡ u1 ≡ 0 is u ≡ 0.
To verify this, fix 0 ≤ t ≤ T and set ω(τ) =

∫ t
τ u(s, ·)ds if 0 ≤ τ ≤ t and ω(t) = 0 if

0 ≤ t ≤ τ ≤ T. Then ω(τ) ∈ H1
0(Ω) for each τ ∈ [0, T] and we have

∫ t

0
〈∂α

τu(τ, ·), ω(τ)〉+ B[u, ω; τ]dτ = 0.

Since ∂tu(0, ·) = ω(t) = 0, then ∂α
t u = ∂t∂

α−1
t u, and so we obtain after integrating by

parts in the first term above∫ t

0
−(∂α−1

τ u(τ, ·), ω′(τ)) + B[u, ω; τ]dτ = 0.

Now ω′ = −u for 0 ≤ τ ≤ t ≤ T, and then∫ t

0
(∂α−1

τ u(τ, ·), u(τ, ·))−B[ω′, ω; τ]dτ = 0.

From Lemma 3 and the decreasing property of g2−α we know∫ t

0
(∂α−1

τ u(τ, ·), u(τ, ·))dτ ≥1
2
[g2−α ∗ ‖u(τ, ·)‖2](t) +

g2−α(t)
2

∫ t

0
‖u(τ, ·)‖2dτ

≥ g2−α(t)
2

∫ t

0
‖u(τ, ·)‖2dτ.

Thus,

g2−α(t)
2

∫ t

0
‖u(τ, ·)‖2dτ − 1

2

∫ t

0
∂τB[ω, ω; τ]dτ ≤ 1

2

∫ t

0
−C[ω, ω; τ] +D[u, ω; τ]dτ,

due to 2B[ω′, ω; τ] = ∂τB[ω, ω; τ]− C[ω, ω; τ]−D[u, ω; τ], where

C[u, v; τ] =
∫

Ω

N

∑
i,j=1

∂τai,j(τ, x)∂ju · ∂iv−
N

∑
j=1

∂τbj(τ, x)∂juv− ∂τc(τ, x)uvdx,

D[u, v; τ] =
∫

Ω

N

∑
j=1

∂jbj(τ, x)uv + 2
N

∑
j=1

bj(τ, x)∂jvudx

for u, v ∈ H1
0(Ω). Since

|C[ω, ω; τ]| ≤‖∂τai,j(τ)‖L∞‖∇ω‖2 + ‖∇ω‖‖ω‖‖∂τbj(τ)‖L∞ + ‖ω‖‖ω‖Lq‖∂τc(τ)‖
L

2q
q−2

≤‖∂τai,j(τ)‖L∞(Ω)‖∇ω‖2 + ‖∇ω‖2 + ‖ω‖2‖∂τbj(τ)‖2
L∞

+ ‖ω‖2 + C2(q, N, Ω)‖∇ω‖2‖∂τc(τ)‖2

L
2q

q−2

≤C‖ω‖2
H1

0
,

and

|D[u, ω; τ]| ≤‖∂jbj(τ)‖L∞‖u(τ, ·)‖‖ω‖+ 2‖bj(τ)‖L∞‖Dω‖‖u(τ, ·)‖
≤‖u(τ, ·)‖2 + ‖∂jbj(τ)‖2

L∞‖ω‖2 + 2‖Dω‖2 + 2‖bj(τ)‖2
L∞‖u(τ, ·)‖2

≤C(‖ω‖2
H1

0
+ ‖u(τ, ·)‖2).
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Hence,

g2−α(t)
2

∫ t

0
‖u(τ, ·)‖2dτ +

1
2
B[ω(0), ω(0); t] ≤ C

∫ t

0
‖ω(τ)‖2

H1
0
+ ‖u(τ, ·)‖2dτ,

which together with

B[ω(0), ω(0); t] ≥µ‖∇ω(0)‖2 − ‖∇ω(0)‖‖ω(0)‖‖bj(t)‖L∞ − ‖ω(0)‖‖ω(0)‖Lq‖c(t)‖
L

2q
q−2

≥µ‖∇ω(0)‖2 − (
µ

4
‖∇ω(0)‖2 +

1
µ
‖ω(0)‖2‖bj(t)‖2

L∞)

− (
1
4ε
‖ω(0)‖2 + εC2(q, N, Ω)‖c‖2

L∞(0,T,L
2q

q−2 )

‖∇ω(0)‖2)

≥µ

2
‖ω(0)‖2

H1
0
− C‖ω(0)‖2

for ε = µ
4

1
C2(q,N,∂Ω)‖c‖2

L∞(0,T,L
2q

q−2 )

, shows that

g2−α(t)
∫ t

0
‖u(τ, ·)‖2dτ + ‖ω(0)‖2

H1
0

≤C
( ∫ t

0
(‖ω(τ)‖2

H1
0
+ ‖u(τ, ·)‖2)dτ + ‖ω(0)‖2

)
.

(24)

Let us write

W(t) :=
∫ t

0
u(τ, ·)dτ, t ∈ [0, T],

whereupon (24) becomes

g2−α(t)
∫ t

0
‖u(τ, ·)‖2dτ + ‖W(t)‖2

H1
0

≤C
( ∫ t

0
(‖W(t)−W(τ)‖2

H1
0
+ ‖u(τ, ·)‖2)dτ + ‖W(t)‖2

)
.

Since ‖W(t) −W(τ)‖2
H1

0
≤ 2‖W(τ)‖2

H1
0
+ 2‖W(t)‖2

H1
0
, and ‖W(t)‖ ≤

∫ t
0 ‖u(τ, ·)‖dτ, we

can derive

g2−α(t)
∫ t

0
‖u(τ, ·)‖2dτ + (1− 2tC1)‖W(t)‖2

H1
0
≤ C1

∫ t

0
(‖W(τ)‖2

H1
0
+ ‖u(τ, ·)‖2)dτ.

Choose T1 so mall that

g2−α(T1)

2
≥ C1 and 1− 2T1C1 ≥

1
2

.

Then if 0 < t ≤ T1, we have

[g2−α(t)− C1]
∫ t

0
‖u(τ, ·)‖2dτ +

1
2
‖W(t)‖2

H1
0
≤ C1

∫ t

0
‖W(τ)‖2

H1
0
dτ.

Consequently, Gronwall’s inequality implies W(t) ≡ 0 on [0, T1]. Then
∫ t

0 ‖u(τ)‖
2d

τ ≡ 0 on [0, T1]. This, together with the continuity of u, shows u(t) ≡ 0 on [0, T1].
We use the same argument on [T1, T2], [T2, T3],. . . , and then we can deduce u ≡ 0.
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