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Abstract: Under the same conditions, we propose the extended comparison between two derivative
free schemes of order six for addressing equations. The existing convergence technique used the
standard Taylor series approach, which requires derivatives up to order seven. In contrast to previous
researchers, our convergence theorems only demand the first derivative. In addition, formulas for
determining the region of uniqueness for the solution, convergence radii, and error estimations are
suggested. As a consequence, we broaden the utility of these productive schemes. Moreover, we
present a comparison of attraction basins for these schemes to obtain roots of complex polynomial
equations. The confirmation of our convergence findings on application problems brings this research
to a close.
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convergence ball
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1. Introduction

Let T1 and T2 denote normed linear spaces which are complete. Suppose A ⊆ T1 is
non-null, open and convex. Nonlinear equations of the type [1–4]

L(t) = 0, (1)

where L : A ⊆ T1 → T2 is derivable as per Fréchet, may be used to simulate a wide range
of complex scientific and engineering issues. The closed version of the solution t∗ can be
determined only in some special cases. The employment of iterative algorithms to conclude
is common among scientists and researchers because of this. Newton’s method is a popular
iterative process for dealing with nonlinear equations. Many novels and higher-order
iterative strategies for dealing with nonlinear equations have been discovered and are
currently being used in recent years [5–8]. However, the theorems on the convergence of
these schemes in most of these publications are derived by applying high-order derivatives.
Furthermore, no results are discussed regarding the error distances, radii of convergence,
or the region in which the solution is the only one.

In research work of iterative procedures, it is crucial to determine the region where
convergence is possible. Most of the time, the convergence zone is rather small. It is required
to broaden the convergence domain without making any extra assumptions. Likewise,
while investigating the convergence of iterative algorithms, exact error distances must be
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estimated. Taking these points into consideration, we develop convergence theorems for
two methods GM6 (2) and SM6 (3) proposed in [9,10], respectively. Let

un = tn + L(tn),

sn = tn − L(tn)

and [un, sn; L] is a first order divided difference [2,11], i.e., [·, ·; L] : A × A → L(T1, T2)
denoted the space of continuous linear operators mapping T1 to T2, [·, ·; L] : A→ L(T1, T2)
and for I denoting the identity operator on T1,

yn = tn − [un, sn; L]−1L(tn),

zn = yn − A−1
n L(yn),

tn+1 = zn − A−1
n L(zn),

An = 2[yn, tn; L]− [un, sn; L], (2)

The convergence order is four for the two-step methods (2) and (3) and the order
is six for the complete three step methods (2) and (3). The development, comparison,
and performance of the four and six-order methods were also given in [9,10]

yn = tn − [un, sn; L]−1L(tn),

zn = yn − (3I − 2[un, sn; L]−1[yn, tn; L])[un, sn; L]−1L(yn),

tn+1 = zn − (3I − 2[un, sn; L]−1[yn, tn; L])[un, sn; L]−1L(zn). (3)

Convergence works of these algorithms [9,10] are based on derivatives of L up to
order seven and offer only a convergence rate. As a consequence, the productivity of these
schemes is limited. To observe this, we define L on A = [− 1

2 , 3
2 ] by

L(t) =
{

0, if t = 0
t3 ln(t2) + t5 − t4, if t 6= 0

. (4)

Due to the unboundedness of L′′′ the results on the convergence of GM6 [9] and
SM6 [10] do not stand true for this example. Furthermore, these articles do not produce any
formula for approximating the error ‖tn − t∗‖, the convergence region, or the uniqueness
and accurate location of t∗. The same approach applies to other methods with inverses
such as [8,12–19]. This encourages us to develop the ball convergence theorems and hence
compare the convergence domains of GM6 and SM6 by considering assumptions only on L′.
Our research provides important formulas for the estimation of ‖tn − t∗‖ and convergence
radii. This study also discusses an exact location and the uniqueness of t∗. Furthermore,
a visual process, called the attraction basin, is utilized to compare the convergence regions
of these algorithms.

The other contents include follow: In Section 2, theorems on GM6 and SM6 are
given. Section 3 describes the comparison of the attraction basins. Numerical testing of
convergence outcomes is placed in Section 4. Concluding remarks are also stated.

2. Local Analysis

The local analysis is presented in this section for the methods GM6 and SM6, respec-
tively. This analysis used real parameters and real functions. Let D = [0, ∞) and a ≥ 0,
b ≥ 0, c ≥ 0.

Assume function:

(i)
B0(ax, bx)− 1

has a minimal root R0 ∈ D0 \ {0} for some continuous and non-decreasing function
B0 : D× D → D. Let D0 = [0, R0).
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(ii)
N1(x)− 1

has a minimal root r1 ∈ D0 \ {0}, with the function B : D0 × D0 → D being non-
decreasing and continuous and non-decreasing, and N1 : D0 → D is given as

N1(x) =
B(cx, bx)

1− B0(ax, bx)
.

(iii)
p(x)− 1

has a minimal root Rp ∈ D0 \ {0}, where p : D0 → D is given as

p(x) = 2B0(N1(x)x, x) + B0(ax, bx).

Set R1 = min{R0, Rp} and D1 = [0, R1).

(iv)
N2(x)− 1

has a minimal root r2 ∈ D1 \ {0}, where N2 : D1 → D is given as

N2(x) =
[

B((a + N1(x))x, bx)
1− B0(ax, bx)

+
2cB1((a + N1(x))x, cx)

(1− B0(ax, bx))(1− p(x))

]
N1(x)

for some function B1 : D1 × D1 → D which is continuous and non-decreasing.
(v)

N3(x)− 1

has a minimal root r3 ∈ D1 \ {0}, where N3 : D1 → D is given as

N3(x) =
[

B((a + N2(x))x, bx)
1− B0(ax, bx)

+
2cB1((a + N1(x))x, cx)

(1− B0(ax, bx))(1− p(x))

]
N2(x)

Let
r = min{rm}, m = 1, 2, 3. (5)

Let D2 = [0, r). Notice that for each x ∈ D2

0 ≤ B0(ax, bx) < 1 (6)

0 ≤ p(x) < 1 (7)

and
0 ≤ Nm(x) < 1. (8)

We utilize the condition (C) provided x∗ is a simple root of L and the functions “B” is
as given above.

(C1)
‖I + [t, x∗; L]‖ ≤ a

‖I − [t, x∗; L]‖ ≤ b

and
‖L′(x∗)−1([t, y; L]− L′(x∗))‖ ≤ B0(‖x∗ − t‖, ‖x∗ − y‖)

hold for each t, y ∈ A. Let A1 = D(x∗, R0) ∩ A.
(C2)

‖L′(x∗)−1([t, x∗; L]− [u, s; L])‖ ≤ B(‖u− t‖, ‖s− x∗‖),

‖L′(x∗)−1([t, y; L]− [u, s; L])‖ ≤ B1(‖u− t‖, ‖s− y‖)
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and
‖L′(x∗)−1L(t)‖ ≤ c‖x∗ − t‖

hold for t, u, s, y ∈ A0.
(C3) D(x∗, R) ⊂ A, where parameter R = max{r̃, ar̃, br̃, cr̃} and r̃ is given later.
(C4) There exist r∗ ≥ r̃ satisfying B0(0, r̃) < 1 or B0(r̃, 0) < 1.

Let A1 = D(x∗, r̃) ∩ A.

Next, conditions (C) are needed to prove the local convergence analysis of method GM6.

Theorem 1. Assume conditions (C) hold for r̃ = r. Then, we have lim
n→∞

tn = x∗, provided

t0 ∈ D(x∗, r̃) \ {x∗} and the only root of L in the set A1 is x∗.

Proof. Items
‖yn − x∗‖ ≤ N1(‖tn − x∗‖)‖x∗ − tn‖ ≤ ‖x∗ − tn‖ < r (9)

‖zn − x∗‖ ≤ N2(‖x∗ − tn‖)‖x∗ − tn‖ ≤ ‖x∗ − tn‖ (10)

and
‖tn+1 − x∗‖ ≤ N3(‖x∗ − tn‖)‖x∗ − tn‖ ≤ ‖x∗ − tn‖, (11)

shall be proven, where the radius r is given in (2) and function Nm are as previously defined.
By hypothesis t0 ∈ D(x∗, r) \ {x∗}.

It follows by (C1), and (C3) that

‖u0 − x∗‖ = ‖x∗ − t0 + L(t0)‖
= ‖(I + [t0, x∗; L])(x∗ − t0)‖
≤ ‖I + [t0, x∗; L]‖ ‖x∗ − t0‖ ≤ a‖x∗ − t0‖ < ar < R (12)

‖s0 − x∗‖ = ‖x∗ − t0 − L(t0)‖
= ‖(I − [t0, x∗; L])(x∗ − t0)‖
≤ ‖I − [t0, x∗; L]‖ ‖x∗ − t0‖ ≤ b‖x∗ − t0‖ < br < R (13)

and

‖L′(x∗)−1([u0, s0; L]− L′(x∗))‖ ≤ B0(‖u0 − x∗‖, ‖s0 − x∗‖)
≤ B0(a‖x∗ − t0‖, b‖x∗ − t0‖) ≤ B0(ar, br) < 1. (14)

Estimate (14) with a lemma due to Banach on linear operators with inverses [2,11] give
[u0, s0; L]−1 ∈ L(T2, T1), and

‖[u0, s0; L]−1L′(x∗)‖ ≤
1

1− B0(‖u0 − x∗‖, ‖s0 − x∗‖)
. (15)

It also follows by (15) and the first substep of method GM6 that iterate y0 is well
defined, and

y0 − x∗ = x∗ − t0 − [u0, s0; L]−1L(t0)

= [u0, s0; L]−1([u0, s0; L]− [t0, x∗; L])(x∗ − t0). (16)

Using (2), (8) (for m = 1), (C2), (15) and (16),

‖y0 − x∗‖ ≤
B(‖u0 − t0‖, ‖s0 − x∗‖)‖x∗ − t0‖

1− B0(a‖x∗ − t0‖, b‖x∗ − t0‖)
≤ N1(‖x∗ − t0‖)‖x∗ − t0‖ ≤ ‖x∗ − t0‖ < r, (17)
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proving (9) if n = 0 and that the iterate y0 ∈ D(x∗, r).
Next, we prove A−1

0 ∈ L(T2, T1). By (2), (7) and (17),

‖L′(x∗)−1(A0 − L′(x∗))‖ ≤ 2‖L′(x∗)−1([y0, t0; L]− L′(x∗))‖
+ ‖L′(x∗)−1([u0, s0; L]− L′(x∗))‖
≤ 2B0(‖y0 − x∗‖, ‖x∗ − t0‖) + B0(‖u0 − x∗‖, ‖s0 − x∗‖)
≤ 2B0(N1(‖x∗ − t0‖)‖x∗ − t0‖, ‖x∗ − t0‖)
+ B0(a‖x∗ − t0‖, b‖x∗ − t0‖) = p(‖x∗ − t0‖)
≤ p(r) < 1, (18)

so
‖A−1

0 L′(x∗)‖ ≤
1

1− p(‖x∗ − t0‖)
. (19)

Hence, the iterate z0 exists given GM6. Moreover, we get

z0 − x∗ = y0 − x∗ − [u0, s0; L]−1L(y0)

+ [u0, s0; L]−1(A0 − [u0, s0; L])A−1
0 L(y0). (20)

Then, it follows by (2), (8) (for m = 2), (15), (C2), (C3), (17), (19) and (20),

‖z0 − x∗‖ ≤
[

B(‖u0 − y0‖, ‖s0 − x∗‖)
1− B0(a‖x∗ − t0‖, b‖x∗ − t0‖)

+
2cB1(‖y0 − u0‖, ‖t0 − s0‖)

(1− B0(a‖x∗ − t0‖, b‖x∗ − t0‖))(1− p(‖x∗ − t0‖)

]
‖y0 − x∗‖

≤ N2(‖x∗ − t0‖)‖x∗ − t0‖ ≤ ‖x∗ − t0‖, (21)

proving (10) if n = 0 and the iterates z0 ∈ D(x∗, r). The iterate t1 is well defined by the
third substep of method GM6. Furthermore, as in (20) and (21)), we write

t1 − x∗ = z0 − x∗ − [u0, s0; L]−1L(z0)

+ ([u0, s0; L]−1 − A−1
0 )L(z0)

= z0 − x∗ − [u0, s0; L]−1L(z0)

+ [u0, s0; L]−1(A0 − [u0, s0; L])A−1
0 )L(z0). (22)

By using (2), (8) (for m = 2), (15), (17), (19), (21) and (22),

‖t1 − x∗‖ ≤
[

B(‖u0 − z0‖, ‖s0 − x∗‖)
1− B0(a‖x∗ − t0‖, b‖x∗ − t0‖)

+
2cB1(‖y0 − u0‖, ‖t0 − s0‖)

(1− B0(a‖x∗ − t0‖, b‖x∗ − t0‖))(1− p(‖x∗ − t0‖)

]
‖z0 − x∗‖

≤ N3(‖x∗ − t0‖)‖x∗ − t0‖ ≤ ‖x∗ − t0‖, (23)

proving (11) if n = 0 and that the iterate t1 ∈ D(x∗, r). Simply exchange u0, s0, t0, y0, z0,
t1 by ui, si, ti, yi, zi, ti+1 in the above calculations, the induction for (9)–(11) is done. Then,
from the inequality

‖ti+1 − x∗‖ ≤ ρ‖ti − x∗‖ < r, (24)

we get lim
i→∞

ti = x∗ and ti+1 ∈ D(x∗, r).

Let T = [x∗, q; L] for some q ∈ A1 and L(q) = 0. Then, by (C1) and (C4), it follows that

‖L′(x∗)−1(x∗ − T))‖ ≤ B0(0, ‖x∗ − q‖) ≤ B0(0, r∗) < 1,
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which implies q = x∗, since T−1 ∈ L(B2, B1) and 0 = L(x∗)− L(q) = T(x∗ − q).

Next, the local analysis of method SM6 follows analogously. However, this time the
“Ni” functions are given as

N2(x) =
[

B((a + N1(x))x, bx)
1− B0(ax, bx)

+
2cB1(cx, cx)

(1− B0(ax, bx))2

]
N1(x)

and

N3(x) =
[

B((a + N2(x))x, cx)
1− B0(ax, bx)

+
2cB1((a + N1(x))x, cx)

(1− B0(ax, bx))2

]
N2(x),

and
r = min{r1, r2, r3}, (25)

where r2, r3 are the minimal positive roots of N2(x)− 1, N3(x)− 1 (assumed to exist). These
functions are motivated by the estimations (under conditions (C) with r̃ = r):

zn − x∗ = yn − x∗ − [un, sn; L]−1L(yn)

+ 2(I − [un, sn; L]−1[yn, tn; L])[un, sn; L]−1L(yn)

= yn − x∗ − [un, sn; L]−1L(yn)

+ 2[un, sn; L]−1([un, sn; L]− [yn, tn; L])[un, sn; L]−1L(yn),

so

‖zn − x∗‖ ≤
[

B(‖un − yn‖, ‖sn − tn‖)
1− B0(a‖tn − x∗‖, b‖tn − x∗‖)

+
2cB1(‖un − tn‖, ‖sn − tn‖)

(1− B0(a‖tn − x∗‖, b‖tn − x∗‖))2

]
‖yn − x∗‖

≤ N2(‖tn − x∗‖)‖tn − x∗‖ ≤ ‖tn − x∗‖ < r,

and

tn+1 − x∗ = zn − x∗ − [un, sn; L]−1L(zn)

+ 2[un, sn; L]−1([un, sn; L]− [yn, tn; L])[un, sn; L]−1L(zn),

so

‖tn+1 − x∗‖ ≤
[

B(‖un − zn‖, ‖sn − tn‖)
1− B0(a‖tn − x∗‖, b‖tn − x∗‖)

+
2cB1(‖un − yn‖, ‖sn − tn‖)

(1− B0(a‖tn − x∗‖, b‖tn − x∗‖))2

]
‖zn − x∗‖

≤ N3(‖tn − x∗‖)‖tn − x∗‖ ≤ ‖tn − x∗‖.

That is we have proven the corresponding local convergence analysis for method SM6.

Theorem 2. Assume conditions (C) hold for r̃ = r provided that t0 ∈ D(x∗, r̃) \ {x∗}. Then,
the items of Theorem 2 hold for method SM6 with r, N2, N3 replacing r, N2, N3, respectively.
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3. Attraction Basins Comparison

For evaluating the convergence zones of iterative algorithms the basin of attraction
is a valuable geometrical tool. These basins illustrate all the initial estimations that imply
convergence to a root of an equation when an iterative approach is used, allowing us to
see visually which places are suitable starters and which are not. Using this excellent
tool, we compare the convergence areas of GM6 and SM6 for a variety of complex poly-
nomials. With the starting point z0 ∈ W = [−2, 2] × [−2, 2] ⊂ C, GM6 and SM6 used
on polynomials with complex coefficients. The starter z0 is in the basin of a root z∗ of
a test polynomial if lim

m→∞
zm = z∗ and then a typical color associated with z∗ is applied

on z0. Black color is applied on z0 ∈ W if {zm} diverges. To end the iteration process,
the conditions ‖zm − z∗‖ < 10−6 or the maximum of 100 iterations is used. The fractal
figures are created in MATLAB 2019a.

The experiment begins with the polynomials F1(z) = z2 + 1 and F2(z) = z2 + z to
design the basins of their roots. In Figures 1 and 2, yellow and magenta colors are associated
with the roots i and −i, of F1(z), respectively. Figures 3 and 4 offer basins of roots −1 and 0
of F2(z) in magenta and green colors, respectively. Next, the polynomials F3(z) = z3 + 1
and F4(z) = z3 + z are picked. Figures 5 and 6 give the attraction basins of roots 1

2 −
√

3
2 i,

−1 and 1
2 +

√
3

2 i of F3(z) in cyan, yellow and magenta, respectively. In Figures 7 and 8,
the basins of the roots 0, −i, and i of F4(z) are painted in cyan, yellow and magenta colors,
respectively. Further, F5(z) = z4 + 1 and F6(z) = z4 + z are chosen to decorate the attrac-
tion basins of their roots. In Figures 9 and 10, the basins of the roots 0.707106 + 0.707106i,
0.707106− 0.707106i, −0.707106− 0.707106i and −0.707106 + 0.707106i of F5(z) = 0 are,
respectively, indicated in green, blue, red and yellow zones. In Figures 11 and 12, con-
vergence to the roots −1, 1

2 +
√

3
2 i, 1

2 −
√

3
2 i and 0 of the polynomial F6(z) is presented in

yellow, blue, green and red, respectively. Furthermore, F7(z) = z5 + 1 and F8(z) = z5 + z
are taken. In Figures 13 and 14, magenta, green, yellow, blue and red colors are applied
to the basins of roots 0.809016 + 0.587785i, 0.809016− 0.587785i, −0.309016− 0.951056i,
−1 and −0.309016 + 0.951056i, respectively, of F7(z). Figures 15 and 16 display the basins
of the roots 0.707106 + 0.707106i, 0, −0.707106 + 0.707106i, −0.707106− 0.707106i and
0.707106− 0.707106i of F8(z) = 0 in blue, green, magenta, yellow, and red colors, re-
spectively. Lastly, we select F9(z) = z6 + 1 and F10(z) = z6 + z. In Figures 17 and 18,
the basins of the roots 0.500000− 0.866025i, 0.500000+ 0.866025i, 1i,−0.500000− 0.866025i,
−0.500000 + 0.866025i and −1i of F9(z) = 0 are illustrated in yellow, blue, green, ma-
genta, cyan and red, respectively. Figures 19 and 20 give the basins of the roots −1,
−0.3090169 + 0.951056i, 0, −0.3090169 − 0.951056i, 0.809016 + 0.587785i and
0.809016− 0.587785i of F10(z) = 0 in green, yellow, red, cyan, magenta and blue col-
ors, respectively.
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Figure 1. GM6.
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Figure 4. SM6.
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Figure 16. SM6.
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Figure 20. SM6.

We consider polynomials W1(z) = z2 − 1 and W2(z) = z2 − z − 1 of degree two.
The results of the comparison between attraction basins for (2) and (3) are displayed
in Figures 21 and 22. In Figure 21, green and pink areas show the attraction basins
corresponding to the roots −1 and 1, respectively, of W1(z). The basins of the roots 1+

√
5

2

and 1−
√

5
2 of W2(z) = 0 are shown in Figure 22 by using pink and green colors, respectively.

Figures 23 and 24 determine the attraction basins for (2) and (3) associated with the roots
of W3(z) = z3 + (−0.7250 + 1.6500i)z− 0.2750− 1.6500i and W4(z) = z3 − z. The basins
for (2) and (3) associated with the roots 1, −1.401440 + 0.915201i and 0.4014403− 0.915201i
of W3(z) are given in Figure 23 by means of green, pink and blue domains, respectively.
In Figure 24, the basins of the roots 0, 1, and −1 of W4(z) = 0 are painted in yellow,
magenta and cyan, respectively. Next, we use polynomials W5(z) = z4 − 10z2 + 9 and
W6(z) = z4 − z of degree four to compare the attraction basins for (2) and (3). The basins
for (2) and (3) corresponding to the roots−1, 3,−3 and 1 of W5(z) are illustrated in Figure 25
using yellow, pink, green and blue colors, respectively. Figure 26 gives the comparison of
basins for these schemes associated with the roots 0, 1, − 1

2 −
3
2 i and − 1

2 + 3
2 i of W6(z) = 0,

which are denoted in green, blue, yellow and red regions, respectively. Moreover, we select
polynomials W7(z) = z5 + z and W8(z) = z5 − 5z3 + 4z of degree five to give and compare
the attraction basins for (2) and (3). In Figure 27, green, cyan, red, pink and yellow regions
illustrate the attraction basins of the roots −0.707106− 0.707106i, −0.707106 + 0.707106i,
0.707106 + 0.707106i, 0.707106− 0.707106i and 0, respectively, of W7(z) = 0. Figure 28
gives the basins of roots 0, 2, −1, −2 and 1 of W8(z) in yellow, magenta, red, green and
cyan colors, respectively. Lastly, sixth degree complex polynomials W9(z) = z6 + z− 1 and
W10(z) = z6 − 0.5z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 + 1

4 (11 + i)z2 − 1
4 (19 + 3i)z + 3

2 − 3i are
considered. In Figure 29, green, pink, red, yellow, cyan and blue colors are used to give
the basins related to the roots −1.134724, 0.629372− 0.735755i, 0.7780895, −0.451055−
1.002364i, 0.629372 + 0.735755i and −0.451055 + 1.002364i of W9(z) = 0, respectively.
In Figure 30, the attraction basins for (2) and (3) corresponding to the roots 1− i, − 1

2 −
i
2 ,

− 3
2 i, 1, i and −1 + 2i of W10(z) are provided in blue, yellow, green, magenta, cyan and red

colors, respectively.
From Figures 21–30, we deduce that (2) has the wider basins in comparison to (3). as

it can be seen that the black zones that appear in Figures 21, 25 and 28 only appear in (3)
method and not in (2). Furthermore, (2) is better than (3) in terms of less chaotic behavior
as it can be seen that basins are bigger in (2) and there are fewer changes of basin than in (3)
in each Figure, which means that the fractal dimension is lower in (2) and consequently
less chaotic. Hence, the overall conclusion of this comparison is that the numerical stability
of (2) is higher than (3). This means that (2) is the preferable alternative for solving real
problems. Moreover, related to the patterns that appear in the basin of attraction, it is
clear that the (2) is similar to third-order methods such us Halley or Chebyshev and the
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immediate basin of attraction is big and black zones are avoided. On the other hand,
in the (3) everything seems more independent with different structures, for example in
Figure 29 where the roots are bounded by a small basin and then a really big one in red
appears or Figures 21, 25 and 28 where zones with no convergence appear, especially in
Figure 25 where almost the half of the plane is black. Finally, in Figures 24, 26, 27, and 29
it seems that a compactification appears in the roots but one of the basins is much bigger
than the rest, and this behavior is really interesting and can be considered in the future.
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Figure 21. Attraction basins comparison between (2) and (3) (related to W1(z)).
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Figure 22. Attraction basins comparison between (2) and (3) (related to W2(z)).
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Figure 23. Attraction basins comparison between (2) and (3) (related to W3(z)).
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Figure 24. Attraction basins comparison between (2) and (3) (related to W4(z)).
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Figure 25. Attraction basins comparison between (2) and (3) (related to W5(z)).
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Figure 26. Attraction basins comparison between (2) and (3) (related to W6(z)).
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Figure 27. Attraction basins comparison between (2) and (3) (related to W7(z)).
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Figure 28. Attraction basins comparison between (2) and (3) (related to W8(z)).

Re{z}

-4 -3 -2 -1 0 1 2 3 4

Im
{z

}

-4

-3

-2

-1

0

1

2

3

4

(2)
Re{z}

-4 -3 -2 -1 0 1 2 3 4

Im
{z

}

-4

-3

-2

-1

0

1

2

3

4

(3)

Figure 29. Attraction basins comparison between (2) and (3) (related to W9(z)).
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Figure 30. Attraction basins comparison between (2) and (3) (related to W10(z)).

4. Examples

The convergence radii are determined for the iterative procedures GM6 and SM6.

Example 1. Let T1 = T2 = R3 and A = D(0, 1). Consider L on A for t = (t1, t2, t3)
T as

L(t) = (et1 − 1,
e− 1

2
t2
2 + t2, t3)

T

Notice that

t∗ =

0
0
0


Also,

a = b =
1
2
(3 + e

1
e−1 ), c = 2,

B0(v, v1) =
(e− 1)

2
(v + v1),

B(v, v1) =
e

1
e−1

2
(v + v1),

B1(v, v1) =
1
2
(e

1
e−1 v + (e− 1)v1).

Using proposed theorems, we obtained r and r. These radii are given in Table 1.

Table 1. Comparison of the radii in Example 1.

SM6 GM6

r1 = 0.124265 r1 = 0.124265
r2 = 0.071733 r2 = 0.064445
r3 = 0.057472 r3 = 0.052507
r = 0.057472 r = 0.052507

Example 2. Let us choose T1 = T2 = C[0, 1] and A = D(0, 1). Consider the operator L on A
defined as

L(t)(v) = t(v)− 5
∫ 1

0
vs.y t(y)3 dy,
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where t(v) ∈ C[0, 1]. We have t∗ = 0. Furthermore,

a = b = 9, c = 2,

B0(x, y) =
7.5
2
(x + y),

B(x, y) =
15
2
(x + y),

B1(x, y) =
1
2
(15x + 7.5y).

The convergence radii r and r are obtained using the suggested theorems and presented in
Table 2.

Table 2. Comparison of the radii in Example 2.

SM6 GM6

r1 = 0.066667 r1 = 0.066667
r2 = 0.004614 r2 = 0.003524
r3 = 0.003497 r3 = 0.002828
r = 0.003497 r = 0.002828

Example 3. We solve the nonlinear systems

ymym+1 − 1 = 0, 1 ≤ m ≤ 18

ymy1 − 1 = 0, m = 19.

The initial point is chosen to be t0 = [1.5, 1.5, . . . , 1.5]T . Then, the two-step method (2) and
(3) after three iterations as well as the three-step methods (2) and (3) after two iterations given the
solution vector t∗ = [1, 1, . . . , 1]T .

Example 4. Let us consider the two-point differential equation

w′′ + 3ww′ = 0, w(0) = 0, w(2) = 1.

Moreover, let

p0 = 0 < p1 < p2 · · · < pj−1 < pj = 2, pi+1 = pi + h, h =
2
i

.

Set p0 = w(p0) = 0, p1 = w(p1) = · · · = pi−1 = w(pi−1) and pi = w(pi) = 1.
The central difference for first, as well as the second order derivative discretion, give

w′′i =
wi−1 − 2wi + wi+1

h2 , i = 1, 2, . . . , j− 1

w′i =
wi+1 − wi−1

h2 , i = 1, 2, . . . , j− 1

wi =
wi+1 + wi−1

2
, i = 1, 2, . . . , j− 1.

By these substitutions, we obtain that (j− 1)(j− 1) nonlinear system.

4(wi−1 − 2wi + wi+1) + 3h(w2
i+1 − w2

i−1) = 0, i = 1, 2, . . . , j− 1.

This system is solved for j = 6. Let t0 = [0.5, 0.5, 0.5, 0.5, 0.5]T . Then, if we apply the
two-step methods (2) and (3) after three iterations or the three-step methods (2) and (3) after two
iterations we obtain the solution vector t∗ with five entries given by

t∗ = [0.4524453796, 0.760355997, 0.9116610553, 0.9715327158, 0.9927818807]T .
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5. Conclusions

A comparison is made between the convergence balls and dynamical behaviors of two
derivative free equation solvers that are similar in their efficiency. The ball convergence of
GM6 and SM6 solely require generalized Lipschitz continuity of L′. Then, the convergence
zones of GM6 and SM6 are presented using the geometric tool attraction basins. Finally, our
analytical conclusions are validated against real-world application challenges. The scheme
SM6 is discovered to have bigger convergence balls than the solver GM6. Future research
will involve the extension of this technique to multipoint method [1,4].
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