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Abstract: In this paper, the problem of adaptive neural fault-tolerant control (FTC) for the fractional-
order nonlinear systems (FNSs) with positive odd rational powers (PORPs) is considered. By using
the radial basis function neural networks (RBF NNs), the unknown nonlinear functions from the
controlled system can be approximated. With the help of an adaptive control ideology, the unknown
control rate of the actuator fault can be handled. In particular, the FNSs subject to high-order terms
are studied for the first time. In addition, the designed controller can ensure the boundedness of all
the signals of the closed-loop control system, and the tracking error can tend to a small neighborhood
of zero in the end. Finally, the illustrative examples are shown to validate the effectiveness of the
developed method.
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1. Introduction

The concept of Leibniz’s derivatives yielded the fractional-order calculus. As a gen-
eralization of integer-order differentiation and integration operators, the fractional-order
calculus can describe many plants and processes precisely, such as physics, engineering,
and economics, as in [1–5]. In the meantime, fractional-order controllers have more design
freedom and a robust ability by comparing with integer-order ones [6]. Due to its wide
application, the scholars are more enthusiastic about the control research of fractional-
order systems. In [7], the authors proposed the Mittag-Leffler stability theory and further
extended the Lyapunov direct method via utilizing the fractional-order operators. Aguila-
Camacho et al. developed a new lemma for the Caputo fractional derivatives that can offer
a simpler choice of the Lyapunov candidate function to the reader [8]. Based on the afore-
mentioned research, in the field of the FNS, various interesting results were reported. The
authors studied a sliding mode control approach for a class of chaotic FNSs in [9]. In terms
of state [10] and output [11] feedback FNSs, the scholars presented corresponding adaptive
controllers via the indirect Lyapunov method in [12], respectively. For fractional-order mul-
tiagent systems, an adaptive consensus control scheme was considered in [13]. With regard
to uncertain fractional-order interconnected systems with unknown control directions, the
fuzzy adaptive control approach was designed in [14]. In addition to the above results,
there have also been massive and preeminent results in FNS fields (see [15–20]).

The nonlinear systems with PORP are also named as high-order nonlinear systems
(HNSs). Because HNSs have uncontrollable linearization around the origin [21], in the
design process of the controller a certain obstacle exists. Lin et al. presented a method called
the adding a power integrator (API) which can deal with this difficulty effectively [22].
In addition, because of the strong approximation abilities of fuzzy logic systems (FLSs)
and RBF NNs (such as [23–26]), the scholars used FLSs or RBF NNs as approximators
to estimate the unknown nonlinearities compared to traditional control methods (such
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as [27–29]). Furthermore, a series of fruitful research was reported based on APIs and
FLSs or RBF NNs. In terms of high-order multiagent nonlinear systems [30], the authors
developed an adaptive output-feedback consensus tracking control scheme according to
the state-observer method. For stochastic HNSs [31], Jiang et al. discussed the finite-time
stabilization problem about high-order nonlinear systems with finite-time input-to-state
stability inverse dynamics in 2019. In [32], although HNSs had input quantization, the
adaptive neural tracking controller was still proposed. The authors considered fuzzy
finite-time control theory for HNSs by the adaptive method in [33].

If actuator stoppage occurs in the practical situation, it may lead to performance
deterioration and instability of the system, as described in [34]. For this reason, a lot of
FTC schemes were designed and obtained numerous achievements. Tang et al. considered
nonlinear multiple-input and multiple-output systems with an aircraft control application
and designed an adaptive actuator failure compensation method in [35]. In [36], the authors
studied the actuator failure compensation control of nonlinear systems with guaranteed
transient performance in 2010. In terms of near-space vehicle attitude dynamics with
actuator faults, Shen et al. investigated a fuzzy adaptive FTC issue in [37]. There are more
interesting results on FTCs that are reported (see [38–41]). In addition, an FTC also yields a
lot of results on an FNS. In [42], the fault-tolerant control methodology has been designed
for FNSs. For the nonlinear interconnected FNS [43], Li et al. proposed an adaptive neural
network scheme to deal with an FNS with intermittent actuator faults. In [44], the authors
presented a series of fractional-order control approaches for a class of general nonlinear
systems. The authors developed a new fractional-order adaptive control scheme based on
a sliding mode configuration [45].

Despite the FTC mentioned earlier, there are problems that still need to be solved.
Motivated by the above statements, in this paper, the adaptive tracking FTC problem
for an FNS with PORP is considered. By combining RBF NNs and adaptive technology,
an adaptive neural FTC controller is proposed, which can ensure all signals of the FNS
with PORP are bounded, and the output signal can track the reference signal. The main
contributions are outlined as follows:

(1) In this paper, the tracking control issue of the FNS with PORP is considered for the
first time. In addition, the controlled system considers the condition of an actuator fault,
which can be more suitable in practice.

(2) The proposed controller can not only guarantee that all signals of the FNS with
PORP are bounded but also that the error of the FNS with PORP is near the origin. The
ideology of the proposed control can also extend to a class of more general strict-feedback
nonlinear systems.

The remaining part of the article can be outlined as follows. The preliminaries and
problem formulation are given in Section 2. The design process of the proposed controller
is introduced in Section 3. Section 4 provides the simulation results. The conclusions are
drawn in Section 5.

2. Problem Formulation and Preliminaries

Consider the following FNS with PORP as follows:
Dβxi = xξi

i+1 + fi(x̄i), i = 1, 2, . . . , n− 1
Dβxn = u + fn(x̄n)
y = x1,

where the fractional order β ∈ (0, 1), x̄n = [x1, . . . , xn]T ∈ Rn is the state vector with
x̄i = [x1, . . . , xi]

T ∈ Ri and y ∈ R is output. fi(·), (i = 1, . . . , n) is unknown nonlinear
function and u denotes the system input.

The system (1) is considered to occur the actuator fault:

ua(t) = ϕu + z(t) (1)
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where z(t) represents a bounded function and 0 < ϕ∗ ≤ ϕ ≤ 1 indicates the remaining
control rate and ϕ∗ is a constant. When ua(t) = u + z(t), this indicates bias fault, and when
ua(t) = ϕu, this means gain fault. In addition, suppose that the actuator fault occurs at
time instant tn.

The control objective is to construct an adaptive FTC controller for FNS with PORP,
such that:

(1) All the signals in the FNS with PORP are proven to be bounded.
(2) The tracking error can be able to tend to a small neighborhood near the origin.

Assumption 1 ([46]). The sign of ϕ is known.

Assumption 2 ([47]). The given reference signal yr is continuous and bounded; it also has nth
order derivative.

Definition 1 ([48]). There is a function f : [t0,+∞) → R that is abundant and smooth. Then,
the Caputo fractional-order derivative with order β of f can be shown

cDβ
t f (t) =

1
Υ(µ− β)

∫ t

c

f (µ)(ι)
(t− ι)β−µ+1 dι (2)

where µ − 1 ≤ β < µ, µ ∈ N. In addition, Υ(β) =
∫ ∞

0 yβ−1e−ydy is the Gamma function
meeting Υ(1) = 1. When β is in (0, 1), µ = 1.

Remark 1. In order for legibility, the fractional derivative of order β with the lower terminal at 0 is
written as Dβ that can take the place of 0Dβ

t .

According to the Laplace transform, (2) can be transformed as

L{Dβ f (t)} = sβF(s)−
µ−1

∑
i=0

sβ−i−1 f (i)(0)

= sβF(s)− sβ−1 f (0) (3)

where F(s) denotes the Laplace transform of f (t). In our paper, β ∈ (0, 1) is only consid-
ered.

Definition 2 ([48]). The Mittag-Leffler function with two parameters can be shown

E$,b =
∞

∑
i=0

φi

Υ(i$ + b)
(4)

where $ and b denote positive parameters, φ represents a complex number, and E1,1(φ) = eφ.

Based on the Laplace transform, (4) can be shown below

L{tb−1E$,b(−ct$)} = s$−b

s$ + c
, (r(s) > |c|−$) (5)

where c is a real number and r(s) is the real part of s.
The following two lemmas are proper for Mittag-Leffler function (4) and can be

revealed as below:
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Lemma 1 ([48]). For all the number β̄ ∈ R and the given number q ∈ R, there exists a real number
$ ($ ∈ (0, 2)), such that (6) holds with θ > 0 and q ≤ | arg(φ)| ≤ π.

E$,β̄ ≤
θ

1 + |φ| (6)

Lemma 2 ([7]). Think about the FNS: Dβy(t) = l(t, y(t)), l(·) meets Lipschitz condition and
y = 0 is an equilibrium point. Suppose some class—K functions gm(‖y(t)‖)(m = 1, 2, 3)
and V(t, y(t)), which meet g1(‖y(t)‖) ≤ V ≤ g2(‖y(t)‖) and DβV ≤ g3(‖y(t)‖), then
Dβy(t) = l(t, y(t)) is convergent and eventually stable, where V(t, y(t)) is a function and
β ∈ (0, 1).

Lemma 3 ([8]). Let g(t) ∈ Rn be a differentiable vector. For any time instant t

1
2

Dβ(gT(t)Pg(t)) ≤ gT(t)PDβg(t), ∀β ∈ (0, 1], t ≥ 0 (7)

where P ∈ Rn×n is a positive definite constant matrix.

Lemma 4 ([49]). It is supposed that the differentiable function V(t) satisfying V(0) is non-
negative. If V(t) can satisfy DβV(t) ≤ −χV(t) + do, V(t) ≤ ς(V(0) + do

χ ), where χ > 0, ς > 0
and do > 0 are parameters.

Lemma 5 ([50]). With regard to any real-valued function ν, ζ and any positive odd integer ξ ≥ 1,
then

∣∣νξ − ζξ
∣∣ ≤ ξ|ν− ζ|(νξ−1 + ζξ−1).

The RBF NN is utilized to shape the unknown nonlinear function f (P) : Rq → R,
which is described as

fnn(P) = WTΨ(P) (8)

where P ∈ ΩP ⊂ Rq denotes the input vector and W = [w1, . . . , wl̄ ]
T ∈ Rl̄ represents

weight vector with the RBF NN node number l̄ > 1. Ψ(P) = [s1(P), . . . , sl̄(P)]T ∈ Rl̄ . si(P)
is chosen as commonly used Gaussian function:

si(P) = e
− (P−vi)

T (P−vi)

η2
i , 1 ≤ i ≤ l̄ (9)

where the center of the receptive domain is denoted by vi = [vi1, . . . , viq]
T and ηi represents

the width of the Gaussian function.
From [51], if l̄ is selected sufficiently large, WTΨ(Y) can approximate any continuous

function f (P) to any desired accuracy over a compact set ΩP ⊂ Rq to arbitrary accuracy in

f (P) = W∗TΨ(P) + κ(P), ∀P ∈ ΩP ⊂ Rq (10)

The W∗ in (10) is the optimal weight vector that can be shown as

W∗ = arg min
W∈Rl

{ sup
P∈ΩP

| f (P)−WTΨ(P)|} (11)

where the approximation error can be shown as κ(P) and it can satisfy κ(P) < v for any
given constant v > 0.

3. Design of Controller

The coordinate transformations are given below{
α1 = x1 − yr,
αi = xi − λi−1, i = 2, . . . , n
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where λi is the virtual control law.
Step 1. It is easy to obtain

Dβα1 = Dβx1 − Dβyr = xξ1
2 + f1(x̄1)− Dβyr (12)

A Lyapunov function can be defined as follows

V1 =
1
2

α2
1 +

1
2ρ1

σ̃2
1 (13)

where σ̃1 = σ1 − σ̂1, ρ1 is a positive constant. With the help of Lemma 3, then

DβV1 ≤ α1Dβα1 −
1
ρ1

σ̃1Dβσ̂1

= α1(xξ1
2 + f1(x̄1)− Dβyr)−

1
ρ1

σ̃1Dβσ̂1

= α1(xξ1
2 − λ

ξ1
1 + λ

ξ1
1 + f1(x̄1)− Dβyr)−

1
ρ1

σ̃1Dβσ̂1 (14)

Let us define f̄1(x̄1) = f1(x̄1)− Dβyr +
α1
2 +

ξ2
1α1
2 . Due to the existence of unknown

nonlinear function f1(x̄1), we can use RBF NNs to approximate f̄1(x̄1), one has f̄1(x̄1) =
WT

1 Ψ1(x̄1) + κ1, |κ1| ≤ v1 and v1 is a constant.
Based on Young’s inequality, we can obtain

α1 f̄1(x̄1) ≤
1

2b2
1

α2
1σ1ΨT

1 Ψ1 +
b2

1
2
+

α2
1

2
+

v2
1

2
(15)

where σ1 = ‖W1‖2, b1 > 0 is a design constant.
Then, we can rewrite DβV1 as

DβV1 ≤ α1(xξ1
2 − λ

ξ1
1 + λ

ξ1
1 +

1
2b2

1
α1σ1ΨT

1 Ψ1)

− 1
ρ1

σ̃1Dβσ̂1 +
b2

1
2
+

v2
1

2
−

ξ2
1α2

1
2

(16)

In addition, with the help of Lemma 5, then

α1(xξ1
2 − λ

ξ1
1 ) ≤ ξ1|α1||α2|(xξ1−1

2 + λ
ξ1−1
1 )

≤
ξ2

1α2
1

2
+

1
2

α2
2(xξ1−1

2 + λ
ξ1−1
1 )2 (17)

From (17), DβV1 can be written as

DβV1 ≤ α1(λ
ξ1
1 +

1
2b2

1
α1σ̂1ΨT

1 Ψ1)

+
1
ρ1

σ̃1(
ρ1

2b2
1

α2
1ΨT

1 Ψ1 − Dβσ̂1)

+
b2

1
2
+

v2
1

2
+

1
2

α2
2(xξ1−1

2 + λ
ξ1−1
1 )2 (18)
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We design the virtual control law λ1 and the adaptive law Dβσ̂1 as follows

λ1 = −(c1α1 +
1

2b2
1

α1σ̂1ΨT
1 Ψ1)

1
ξ1 ,

Dβσ̂1 =
ρ1

2b2
1

α2
1ΨT

1 Ψ1 − o1σ̂1 (19)

where c1 is a positive design constant.
Furthermore, inequality (18) can be written as

DβV1 ≤ −c1α2
1 +

b2
1

2
+

v2
1

2
+

o1

ρ1
σ̃1σ̂1

+
1
2

α2
2(xξ1−1

2 + λ
ξ1−1
1 )2 (20)

Step 2. Dβα2 can be shown as

Dβα2 = Dβx2 − Dβλ1 = xξ2
3 + f2(x̄2)− Dβλ1 (21)

The designed Lyapunov function as

V2 =
1
2

α2
2 +

1
2ρ2

σ̃2
2 + V1 (22)

where σ̃2 = σ2 − σ̂2, ρ2 > 0 is a constant.
Similar to (14), then

DβV2 ≤ α2Dβα2 −
1
ρ2

σ̃2Dβσ̂2 + DβV1

= α2(xξ2
3 + f2(x̄2)− Dβλ1 +

1
2

α2(xξ1−1
2 + λ

ξ1−1
1 )2)

− 1
ρ2

σ̃2Dβσ̂2 − c1α2
1 +

b2
1

2
+

v2
1

2
+

o1

ρ1
σ̃1σ̂1

= α2(xξ2
3 − λ

ξ2
2 + λ

ξ2
2 + f̄2(x̄2))

−
α2

2
2
−

ξ2
2α2

2
2
− 1

ρ2
σ̃2Dβσ̂2 − c1α2

1 +
b2

1
2

+
v2

1
2

+
o1

ρ1
σ̃1σ̂1 (23)

Let us define f̄2(x̄2) = f2(x̄2)− Dβλ1 +
α2
2 +

ξ2
2α2
2 + 1/2α2(xξ1−1

2 + λ
ξ1−1
1 )2. By using

RBF NNs to approximate f̄2(x̄2), then f̄2(x̄2) = WT
2 Ψ2(x̄2) + κ2, |κ2| ≤ v2 and v2 is a

constant. With the support of Young’s inequality, then

α2 f̄2(x̄2) ≤
1

2b2
2

α2
2σ2ΨT

2 Ψ2 +
b2

2
2
+

α2
2

2
+

v2
2

2
(24)

where σ2 = ‖W2‖2, b2 > 0 is a design constant.
The same as (17), with the help of Lemma 5, then

α2(xξ2
3 − λ

ξ2
2 ) ≤ ξ2|α2||α3|(xξ2

3 + λ
ξ2
2 )

≤
ξ2

2α2
2

2
+

1
2

α2
3(xξ2−1

3 + λ
ξ2−1
2 )2 (25)

Next, the virtual control law λ2 and the adaptive law Dβσ̂2 can be designed
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λ2 = −(c2α2 +
1

2b2
2

α2σ̂2ΨT
2 Ψ2)

1
ξ2 , (26)

Dβσ̂2 =
ρ2

2b2
2

α2
2ΨT

2 Ψ2 − o2σ̂2 (27)

where c2 > 0 is a design parameter.
By substituting (26) and (27) into (23), we can obtain

DβV2 ≤ −
2

∑
h=1

chα2
h +

2

∑
h=1

b2
h

2
+

2

∑
h=1

v2
h

2

+
2

∑
h=1

oh
ρh

σ̃hσ̂h +
1
2

α2
3(xξ2−1

3 + λ
ξ2−1
2 )2 (28)

Step i (3 ≤ i ≤ n− 1). The Lyapunov function is designed as follows

Vi =
1
2

α2
i +

1
2ρi

σ̃2
i + Vi−1 (29)

where σ̃i = σi − σ̂i, ρi > 0 is a constant.
It is obvious to obtain

DβVi ≤ αiDβαi −
1
ρi

σ̃iDβσ̂i + DβVi−1

= αi(xξi
i+1 + fi(x̄i)− Dβλi−1)

− 1
ρi

σ̃iDβσ̂i + DβVi−1

= αi(xξi
i+1 − λ

ξi
i + λ

ξi
i + fi(x̄i)− Dβλi−1)

− 1
ρi

σ̃iDβσ̂i + DβVi−1 (30)

Define f̄i(x̄i) = fi(x̄i) − Dβλi−1 +
αi
2 +

ξ2
i αi
2 + 1

2 αi(xξi−1−1
i + λ

ξi−1−1
i−1 )2. The same as

step 1, by using RBF NNs to approximate f̄i(x̄i), then f̄i(x̄i) = WT
i Ψi(x̄i) + κi, |κi| ≤ vi,

where vi is a constant. According to Young’s inequality, then

αi f̄i(x̄i) ≤
1

2b2
i

α2
i σiΨT

i Ψi +
b2

i
2
+

α2
i

2
+

v2
i

2
(31)

where σi = ‖Wi‖2, bi > 0 is a design constant.
Next, we start to deal with αi(xξi

i+1 − λ
ξi
i ) with the support of Lemma 5, then

αi(xξi
i+1 − λ

ξi
i ) ≤ ξi|αi||αi+1|(xξi−1

i+1 + λ
ξi−1
i )

≤
ξ2

i α2
i

2
+

1
2

α2
i+1(xξi−1

i+1 + λ
ξi−1
i )2 (32)

On the basis of (31) and (32), we obtain
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DβVi ≤ αi(λ
ξi
i +

1
2b2

i
αiσ̂iΨT

i Ψi)

+
1
ρi

σ̃i(
ρi

2b2
i

α2
i ΨT

i Ψi − Dβσ̂i) + DβVi−1

+
b2

i
2
+

v2
i

2
+

1
2

α2
i+1(xξi−1

i+1 + λ
ξi−1
i )2 (33)

We can design the virtual control law λi and the adaptive law Dβσ̂i, one has

λi = −(ciαi +
1

2b2
i

αiσ̂iΨT
i Ψi)

1
ξi , (34)

Dβσ̂i =
ρi

2b2
i

α2
i ΨT

i Ψi − oiσ̂i (35)

where ci > 0 is a design constant.
Substituting (34) and (35) into (33), we can obtain

DβVi ≤ −
i

∑
h=1

chα2
h +

i

∑
h=1

b2
h

2
+

i

∑
h=1

v2
h

2

+
i

∑
h=1

oh
ρh

σ̃hσ̂h +
1
2

α2
i+1(xξi−1

i+1 + λ
ξi−1
i )2 (36)

Step n. We ultimately design actual control law u and the adaptive laws Dβσ̂n and
Dβv̂ in this position as 

u = v̂ū,
ū = −cnαn − 1

2b2
n

αnσ̂nΨT
n Ψn − z(t),

Dβσ̂n = ρn
2b2

n
α2

nΨT
n Ψn − onσ̂n,

Dβv̂ = −γsign(ϕ)ūαn − ocv̂

(37)

where v = 1
ϕ , ṽ = v− v̂, σ̃n = σn − σ̂n and γ > 0, ρn > 0, cn > 0, bn > 0, on > 0 and oc > 0

are constants. It is noted that ϕu = ū− ϕṽū.
Next, the following Lyapunov function candidate is chosen

Vn =
1
2

α2
n +

1
2ρn

σ̃2
n +
|ϕ|
2γ

ṽ2 + Vn−1 (38)

Using Lemma 3, it is not difficult to obtain

DβVn ≤ αn(ϕu + z(t) + fn(x̄n)− Dβλn−1)

− 1
ρn

σ̃nDβσ̂n + DβVn−1 −
|ϕ|
γ

ṽDβv̂ (39)

The same as the previous steps, we define f̄n(x̄n) = fn(x̄n)− Dβλn−1 +
αn
2 + ξ2

nαn
2 +

1
2 αn(xξn−1−1

n + λ
ξn−1−1
n−1 )2. By employing RBF NNs to approximate f̄n(x̄n), then f̄n(x̄n) =

WT
n Ψn(x̄n) + κn, |κn| ≤ vn, where vn is a constant. Next, we define that σn = ‖Wn‖2 and

utilize Young’s inequality, then

αn f̄n(x̄n) ≤
1

2b2
n

α2
nσnΨT

n Ψn +
b2

n
2

+
α2

n
2

+
v2

n
2

(40)

We can substitute (37) into (39), and one has
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DβVn ≤ αn(ū + z(t) +
1

2b2
n

σ̂nΨT
n Ψn)

+
σ̃n

ρn
(

ρn

2b2
n

α2
nΨT

n Ψn − Dβσ̂n) + DβVn−1

−|ϕ|
γ

ṽ(Dβv̂ + γsign(ϕ)ūαn)

≤ −
n

∑
h=1

chα2
h +

n

∑
h=1

oh
ρh

σ̃hσ̂h +
|ϕ|
γ

ṽv̂

+
n

∑
h=1

b2
h

2
+

n

∑
h=1

v2
h

2
(41)

Because the definitions of σ̃h (h = 1, . . . , n) and ṽ, we can obtain the following inequalities:
n

∑
h=1

oh
ρh

σ̃hσ̂h ≤ −
n

∑
h=1

oh
2ρh

σ̃2
h +

n

∑
h=1

oh
2ρh

σ2
h (42)

|ϕ|
γ

ṽv̂ ≤ −oc
|ϕ|
2γ

ṽ2 + oc
|ϕ|
2γ

v2 (43)

From the above inequalities (42) and (43), we can derive the following inequality

DβVn ≤ −
n

∑
h=1

chα2
h −

n

∑
h=1

oh
2ρh

σ̃2
h − oc

|ϕ|
2γ

ṽ2 + do (44)

where do = ∑n
h=1

b2
h

2 + ∑n
h=1

v2
h

2 + ∑n
h=1

oh
2ρh

σ2
h + oc

|ϕ|
2γ v2.

Theorem 1. Design the actual law u, the virtual control laws λh (h = 1, 2, . . . , n− 1), and the
adaptive laws Dβσ̂h (h = 1, 2, . . . , n) and Dβv̂ for the FNS with PORP (1) with Assumption 1,
then we have the following properties:

(1) All signals of the FNS with PORP are bounded.
(2) The FNS with PORP output signal can track the reference signal.

Proof. We define χ = min{2 ∑n
h=1 ch, ∑n

h=1 oh, oc}, then we can obtain

DβVn ≤ −χVn + do (45)

According to Lemma 4, we have Vn(t) ≤ ς(V(0) + do
χ ), where ς > 0 is a parameter. It is

not difficult to get that α1, . . . , αn, σ̃1, . . . , σ̃n and ṽ are bounded. Based on σ̂h = σh − σ̃h
and v̂ = v− ṽ, we can obtain the boundedness of v̂ and σ̂h, (h = 1, 2, . . . , n). Obviously,
the virtual law λ1 is bounded due to the boundedness of α1 and σ̂1. In addition, the
boundedness of x2 can be confirmed because of x2 = α2 + λ1. Repeating the above analysis
process, we can have that λ2, . . . , λn−1 and x3, . . . , xn are bounded. Then, we can say that
all signals of the FNS with PORP are bounded.

4. Simulation Example

Case 1: Consider a second-order FNS with PORP in this part Dβx1 = xξ1
2 + f1(x̄1),

Dβx2 = u + f2(x̄2),
y = x1,

where f1(x̄1) = sin(x1), f2(x̄2) = −x1− x2 and ξ1 = 3. The actuator fault can be expressed:
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ua =

{
u, t < tn
ϕu + z(t), t ≥ tn

where z(t) = 0.01 sin(t), tn = 5s.
The reference signal yr = sin(t) + cos(0.5t). The initial conditions are selected for

case 1 as follows: [x1(0), x2(0), σ̂1(0), σ̂2(0), v̂(0)]T = [0, 0, 0, 0, 0]T . The RBF NNs contain 11
nodes (l̄1 = l̄2 = 11). Φi(Pi) = [si1(Pi), si2(Pi), . . . , sil̄i (Pi)]

T ∈ Rl̄i (i = 1, 2) where sij(Pi) =

exp− (Pi−vij)
T(Pi−vij)

η2
i

(i = 1, 2, j = 1, 2, . . . , l̄i). In addition, v1j spaced in [−5, 5]× [−5, 5] and

v2j spaced in [−5, 5]× [−5, 5]× [−5, 5]× [−5, 5]. The widths are ηi =
√

2 for all.
The control goal of this paper is to design an adaptive neural FTC scheme which can

ensure that the output signal y of the FNS with PORP can track the expected signal yr.
Given the virtual control law:

λ1 = −(c1α1 +
1

2b2
1

α1σ̂1ΨT
1 Ψ1)

1
ξ1 (46)

The actual control u is defined as:

u = v̂(−c2α2 −
1

2b2
2

α2σ̂2ΨT
2 Ψ2 − z(t)) (47)

In addition, the adaptive laws Dβσ̂h (h = 1, 2) and Dβv̂ can be selected as

Dβσ̂1 =
ρ1

2b2
1

α2
1ΨT

1 Ψ1 − o1σ̂1,

Dβσ̂2 =
ρ2

2b2
2

α2
2ΨT

2 Ψ2 − o2σ̂2,

Dβv̂ = −γsign(ϕ)ūα2 − ocv̂ (48)

The above design parameters can be selected as follows: c1 = 50, c2 = 10, ρ1 = ρ2 = 1,
b1 = b2 = 1, o1 = o2 = 10, oc = 5, and γ = 5.

The simulation results can be exhibited in the Figures 1–5. It is shown that the FNS
with PORP output signal y follows the desired signal yr, and the tracking error is near the
origin in Figure 1. Figure 2 shows the curves σ̂1 and σ̂2 for the FNS with PORP. Figure 3
can exhibit the curve of v̂. In Figure 4, the designed control input u is stable and bounded.
Figure 5 shows the state x2 is bounded.

Time(Sec)

0 5 10 15 20 25
−2

−1

0

1

2

x1

yr

Time(Sec)

0 5 10 15 20 25
−1.5

-1

−0.5

0

0.5

α1

Figure 1. The output signal y and the desired signal yr, and the tracking error α1 (Case 1).
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0
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Figure 2. The curves of σ̂1 and σ̂2 (Case 1).
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Figure 3. The curve of v̂ (Case 1).
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Figure 4. The control input ua (Case 1).
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Time(Sec)
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−1.5

−1

−0.5

0

0.5

1
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2

2.5

3

x2

Figure 5. The system state x2 (Case 1).

Case 2: Consider the following FNS with PORP in this part Dβx1 = xξ1
2 + f1(x̄1),

Dβx2 = u + f2(x̄2),
y = x1,

where f1(x̄1) = cos(x1), f2(x̄2) = sin(x1) + x2 and ξ1 = 3. The desired signal yr = sin(t).
We take the same actuator fault, RBF NNs, the virtual control law λ1, the actual control u,
and the adaptive laws (Dβσ̂1, Dβσ̂2, Dβv̂) as Case 1. The initial conditions are selected for
Case 2 as follows: [x1(0), x2(0), σ̂1(0), σ̂2(0), v̂(0)]T = [0, 0, 0, 0, 0]T . However, the selection
of parameters is different from Case 1. They are shown as: c1 = c2 = 20, ρ1 = ρ2 = 5,
b1 = b2 = 2, o1 = o2 = 2, oc = 5, and γ = 5. The simulation results are presented
in Figures 6–10. The curve of output signal y and the desired signal yr and the curve of
tracking error are shown in Figure 6. Figures 7 and 8 show the curves σ̂1, σ̂2, and v̂. In
Figures 9 and 10, the designed control input u and the state x2 are stable and bounded.
According to the above two examples, we can clearly verify the effectiveness of the designed
method.

Time(Sec)

0 5 10 15 20 25
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−0.5

0

0.5

1

x1

yr

Time(Sec)

0 5 10 15 20 25
−0.05

0

0.05

0.1

α1

Figure 6. The output signal y and the desired signal yr, and the tracking error α1 (Case 2).
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Figure 7. The curves of σ̂1 and σ̂2 (Case 2).
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Figure 8. The curve of v̂ (Case 2).
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Figure 9. The control input ua (Case 2).
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Time(Sec)
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Figure 10. The system state x2 (Case 2).

5. Conclusions

In this paper, an adaptive neural FTC method was developed for the FNS with PORP.
In particular, the FNSs subject to high-order terms are studied for the first time. The
unknown functions of the systems have been approximated by RBF NNs. Under the frame
of an adaptive approach and backstepping technology, the proposed controllers can ensure
that all signals of an FNS with PORP are semi-global bounded and the tracking error is
near the origin. The simulation example verifies the rationality of the developed control
scheme.
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