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Abstract: We study the projection of an element of fractional Gaussian noise onto its neighbouring
elements. We prove some analytic results for the coefficients of this projection. In particular, we obtain
recurrence relations for them. We also make several conjectures concerning the behaviour of these
coefficients, provide numerical evidence supporting these conjectures, and study them theoretically
in particular cases. As an auxiliary result of independent interest, we investigate the covariance
function of fractional Gaussian noise, prove that it is completely monotone for H > 1/2, and, in
particular, monotone, convex, log-convex along with further useful properties.
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1. Introduction

This paper is about some (conjectured) properties of the projection of an element
of fractional Gaussian noise onto the neighbouring elements. Unfortunately, not all our
conjectures are amenable to analytical proofs, while numerical experiments confirm their
validity. This is indeed rather strange, as the properties of fractional Brownian motion and
its increments have been thoroughly studied, attracting a lot of research efforts resulting
in countless papers and several books, e.g., [1–4]. These books are mostly devoted to the
stochastic analysis of fractional processes, the properties of their trajectories, distributional
properties of certain functionals of the paths, and related issues. Note that such interest
and the large number of theoretical studies related to Gaussian fractional noises is due to
the wide range of applications of such processes and its properties: existence of memory
combined with self-similarity and stationarity. In particular, fractional Gaussian noises
appear in the investigation of the behaviour of anomalous diffusion and solutions of
fractional diffusion equations, including numerical schemes [5–7], information capacity
of a non-linear neuron model [8], statistical inference [9,10], entropy calculation [11,12],
extraction of the quantitative information from recurrence plots [13] and many others.
There is, however, an area where much less is known: problems relating to the covariance
matrix of fractional Brownian motion and fractional Gaussian noise in high dimensions,
and its determinant. Computational features of the covariance matrices are widely used for
simulations and in various applications, see, for example, [14–17]. The problem considered
in the present paper arose in the following way: In [18], the authors construct a discrete
process that converges weakly to a fractional Brownian motion (fBm) BH = {BH

t , t ≥ 0}
with Hurst parameter H ∈ ( 1

2 , 1). The construction of this process is based on the Cholesky
decomposition of the covariance matrix of the fractional Gaussian noise (fGn). Several
interesting properties of this decomposition are proved in [18], such as the positivity of
all elements of the corresponding triangular matrix and the monotonicity along its main
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diagonal. Numerical examples suggest also the conjecture, that one has monotonicity
along all diagonals of this matrix. However, the analytic proof of this fact remains an
open problem. Studying this problem, the authors of [18] establish a connection between
the predictor’s coefficients—that is, the coefficients of the projection of any value of a
stationary Gaussian process onto finitely many subsequent elements—and the Cholesky
decomposition of the covariance matrix of the process. It turns out that the positivity of the
coefficients of the predictor implies the monotonicity along the diagonals of the triangular
matrix of the Cholesky decomposition of fGn, which is sufficient for the monotonicity
along the columns of the triangular matrix in the Cholesky decomposition of fBm itself;
this property, in turn, ensures the convergence of a wide class of discrete-time schemes
to a fractional Brownian motion. We will see in Section 2.1 below that the coefficients
of the predictor can be found as the solution to a system of linear equations, whose
coefficient matrix coincides with the covariance matrix of fGn. This enables us to reduce
the monotonicity problem for the Cholesky decomposition to proving the positivity of the
solution to a linear system of equations. However, see Section 2, even in the particular case
of a 3× 3-matrix, an analytic proof of positivity of all coefficients is a non-trivial problem.
For the moment, we have only a partial solution. Therefore, we formulate the following
conjecture:

Conjecture 1. If H > 1/2, then the coefficients of the projection of any element of fractional
Gaussian noise onto any finite number of its subsequent elements are strictly positive.

We shall discuss this conjecture in Section 2 in more detail. Due to stationarity, it
is sufficient to establish Conjecture 1 for the projection of ∆1 onto ∆2, . . . , ∆n, i.e., for the
conditional expectation

E(∆1 | ∆2, . . . , ∆n), n ≥ 3,

where BH denotes fBM and ∆k = BH
k − BH

k−1. Having computational evidence but lacking
an analytical proof for Conjecture 1, we provide in this paper a wide range of associated
properties of coefficients, some with an analytic proof, and some obtained using various
computational tools. It is, in particular, interesting to study the asymptotic behaviour of
the coefficients as H ↑ 1. This is particularly interesting since H = 1 fractional Brownian
motion B1 is degenerate, i.e., B1

t = tξ, where ξ∼N (0, 1), and N (0, 1) denotes the standard
normal distribution. Consequently, ∆k∼N (0, 1) for all k ≥ 1, and

E(∆1 | ∆2, . . . , ∆n) =
n

∑
k=2

αk∆k ∼ N (0, 1)

for any convex combination, αk ≥ 0, ∑n
k=2 αk = 1. This shows that in the case H = 1, the

values of the coefficients are indefinite, and therefore they cannot define the asymptotic
behaviour of the prelimit coefficients as H ↑ 1. It will be very ‘elegant’ if all coefficients
tend to (n− 1)−1; however, in reality their asymptotic behaviour is different, see Section 2.3.
Another interesting question are the relations between the coefficients. It is natural to
assume that they decrease as k increases, but the situation here is also more involved,
essentially depending on the value of H. In Section 2.4, we prove some recurrence relations
between the coefficients. These relations lead to a computational algorithm which is more
efficient than solving the system of equations as described in Section 2.1. Finally, it turns
out that the positivity of the first coefficient can be proven analytically for all values of n;
this result is established in Section 2.5.

We close the paper with a few numerical examples, supporting our theoretical results
and conjectures. In particular, we compute the coefficients for all n ≤ 10 and for various
values of H, and discuss their behaviour. Additionally, we compare different calculation
methods for the coefficients in terms of computing time, and we demonstrate the advantage
of the approach via the recurrence of formulae in most cases.
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The paper is organized as follows: Section 2 contains almost all properties of the
predictor’s coefficients that can be established analytically, and it introduces the system
of linear equations for these coefficients and some properties of the coefficients of this
system. We consider in detail two particular cases: n = 3 and n = 4. In these cases,
we prove the positivity of all coefficients, establish some relations between them, and
study the asymptotic behaviour as H ↑ 1. We also obtain recurrence relations for the
coefficients, and prove that for all values of n, the first coefficient is positive. Section 3
contains some numerical illustrations of the properties and conjectures from Sections 1 and
2. In Section 3.3, we briefly discuss some observations concerning the case H < 1/2.

2. Analytical Properties of the Coefficients

Let BH =
{

BH
t , t ≥ 0

}
be a fractional Brownian motion (fBm) with Hurst index

H ∈ ( 1
2 , 1), that is, a centered Gaussian process with covariance function of the form

E BH
t BH

s =
1
2

(
t2H + s2H − |t− s|2H

)
. (1)

We use
∆n = BH

n − BH
n−1, n = 1, 2, 3, . . . .

for the nth increment of fBM. It is well known that the process BH has stationary increments,
which implies that {∆n, n ≥ 1} is a stationary Gaussian sequence (known as fractional
Gaussian noise—fGn for short). It follows from (1) that its autocovariance function is
given by

ρk = E∆1∆k+1 =
1
2

(
|k + 1|2H − 2|k|2H + |k− 1|2H

)
, k ≥ 1. (2)

Obviously, ρ0 = 1.
Now, let us consider the projection of ∆1 onto ∆2, . . . , ∆n, i.e., the conditional ex-

pectation E(∆1 | ∆2, . . . , ∆n). Since the joint distribution of (∆1, . . . , ∆n) is centered and
Gaussian, we obtain the following relation from the theorem on normal correlation (see, for
example, Theorem 3.1 in [19]):

E(∆1 | ∆2, . . . , ∆n) =
n

∑
k=2

Γk
n∆k, n ≥ 2, (3)

where Γk
n ∈ R. Our Conjecture 1 means that all the coefficients Γk

n for n = 2, 3 . . . , k =
2, 3, . . . , n, are strictly positive (We have formulated it in more general form, i.e., for any
element ∆j, because, by stationarity, the projection E

(
∆j | ∆j+1, . . . , ∆j+n−1

)
for any j has

the same distribution as E(∆1 | ∆2, . . . , ∆n)).
Let us consider two approaches to the calculation of the coefficients Γk

n. The first
method is straightforward; it involves solving of the system of linear equations. The second
one is based on recurrence relations for the Γk

n.

2.1. System of Linear Equations for Coefficients

Multiplying both sides of (3) by ∆l , 2 ≤ l ≤ n and taking expectations yields

E∆1∆l =
n

∑
k=2

Γk
n E∆k∆l , 2 ≤ l ≤ n.

Due to stationarity,

E∆k∆l = ρ|l−k|.
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This leads to the following system of linear equations for the coefficients Γk
n, k =

2, . . . , n:

ρl−1 =
n

∑
k=2

Γk
nρ|l−k|, 2 ≤ l ≤ n. (4)

We can solve this using Cramer’s rule,

Γk
n =

det Ak
det A

,

where

A =


1 ρ1 ρ2 . . . ρk . . . ρn−2
ρ1 1 ρ1 . . . ρk−1 . . . ρn−3
...

...
...

...
...

ρn−2 ρn−3 ρn−4 . . . ρn−k−1 . . . 1

 (5)

and Ak is the matrix A with its kth column vector replaced by (ρ1, . . . , ρn−1)
>:

Ak =


1 ρ1 ρ2 . . .

kth column
ρ1 . . . ρn−2

ρ1 1 ρ1 . . . ρ2 . . . ρn−3
...

...
...

...
...

ρn−2 ρn−3 ρn−4 . . . ρn−1 . . . 1

. (6)

Remark 1. It is known that the finite-dimensional distributions of BH have a nonsingular co-
variance matrix; in particular, for any 0 < t1 < · · · < tn, the values BH

t1
, . . . , BH

tn
are linearly

independent; see Theorem 1.1 in [20] and its proof. Obviously, a similar statement holds for fractional
Gaussian noise, since the vector (∆1, . . . , ∆n) is a nonsingular linear transform of (BH

1 , . . . , BH
n ).

In other words, det A 6= 0; moreover, if ∑k αk∆k = 0 a.s., then αk = 0 for all k.

2.2. Relations between the Values ρk

In order to establish analytic properties of the coefficients Γk
n, we need several auxiliary

results on the properties of the sequence {ρk, k ∈ Z+}. We start with a useful relation
between ρ1, ρ2 and ρ3.

Lemma 1. The following equality holds:

ρ2 − ρ2
1 =

1
2
(ρ1 − ρ3). (7)

Proof. Using the self-similarity of fBm and the stationarity of its increments, we obtain

22Hρ1 = 22H E BH
1 (BH

2 − BH
1 )

= E BH
2 (BH

4 − BH
2 )

= E(BH
2 − BH

1 )(BH
4 − BH

2 ) +E BH
1 (BH

4 − BH
2 )

= E∆2(∆3 + ∆4) +E∆1(∆3 + ∆4)

= ρ1 + 2ρ2 + ρ3.

Note that by (2), ρ1 = 22H−1 − 1, whence 22H = 2ρ1 + 2. Thus, we arrive at

(2ρ1 + 2)ρ1 = ρ1 + 2ρ2 + ρ3.

which is equivalent to (7).
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Remark 2. The inequality ρ2
1 < ρ2 was proved in [18] (p. 28) by analytic methods. In this paper,

we improve this result in two directions: we obtain an explicit expression for ρ2 − ρ2
1 and we prove

the sharper bound ρ2
1 < ρ3; see Lemma 3 below.

Many important properties of the covariance function of a fractional Gaussian noise
(such as monotonicity, convexity and log-convexity) follow from the more general property
of complete monotonicity, which is stated in the next lemma. To formulate it, let us
introduce the function

ρ(x) = ρ(H, x) =
1
2

(
|x + 1|2H − 2|x|2H + |x− 1|2H

)
, x ≥ 0.

Lemma 2.

1. The function ρ : (0, ∞)→ R is convex if H > 1/2 and concave if H < 1/2.
2. If H > 1/2, then the function ρ is completely monotone (CM) on (1, ∞), that is,

ρ ∈ C∞(1, ∞) and

(−1)nρ(n)(x) ≥ 0 for all n ∈ N∪ {0} and x > 1. (8)

3. If H < 1/2, then the function −ρ is completely monotone on (1, ∞).

Proof. 1. Using the elementary relation d
dx |x|

2H = 2H sgn(x)|x|2H−1, it is not hard to
see that

ρ(x) =
1
2

(
|x + 1|2H − |x|2H

)
− 1

2

(
|x|2H − |x− 1|2H

)
= H(2H − 1)

∫ 1

0

∫ t

−t
|x + s|2H−2 ds dt. (9)

Since x 7→ |x + s|2H−2 is convex, and since convex functions are a convex cone which
is closed under pointwise convergence, the double integral appearing in the representation
of ρ(x) is again convex. Thus, ρ(x) is convex or concave according to 2H − 1 > 0 or
2H − 1 < 0, respectively.

2. Let H > 1
2 and x ≥ 1. Then, Formula (9) remains valid if we replace |x + s| with (x + s).

But (x + s)2H−2 is CM and so ρ(x) is an integral mixture of CM-functions. Since CM is a
convex cone which is closed under pointwise convergence, cf. Corollary 1.6 in [21], we see
that ρ is CM on (1, ∞).

3. The above arguments holds true in the case H < 1
2 ; the only difference is that in this case,

the factor (2H − 1) is negative.

Remark 3. 1. Since x 7→ ρ(x + 1) is a CM function on (0.∞), it admits the representation
ρ(x + 1) = a +

∫ ∞
0 e−xt µ(dt), for some positive measure µ on [0, ∞) and a ≥ 0, see, for example,

Theory 1.4 in [21]. Taking into account that ρ(+∞) = 0, it is not hard to see that a = 0, i.e.,

ρ(x + 1) =
∫ ∞

0
e−xtµ(dt). (10)

2. The function ρ can be represented in the form ρ(x + 1) = ∆2
1 fH(x), where we write ∆1 f (x) :=

f (x + 1)− f (x) for the step-1 difference operator, and fH(x) := 1
2 x2H . Then the second statement

of Lemma 2 follows from the more general result: if f is CM on (0, ∞), then ∆1
2 f is CM. Indeed,

since CM is a closed convex cone, it is enough to verify the claim for the ‘basic’ CM function
f (x) = e−tx, where t ≥ 0 is a parameter. Now we have

∆2
1 f (x) = e−(x+2)t − 2e−(x+1)t + e−xt = e−xt(e−t − 1)2,

and this is clearly a completely monotone function.
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3. The argument which we used in the proof of Lemma 2.2. proves a bit more: The function
x 7→ ρ(H, x) is for x ≥ 1 and H > 1/2 even a Stieltjes function, i.e., a double Laplace transform.
To see this, we note that the kernel x 7→ (x + s)2H−2 is a Stieltjes function. Further details on
Stieltjes functions can be found in [21].

As for the following properties, fractional Brownian with Hurst index H = 1 is
degenerate, i.e., B1

t = tξ, where ξ∼N (0, 1); consequently all ρk = 1 and the next set of
inequalities are equalities. Therefore, we consider only 1/2 < H < 1.

Corollary 1. Let H ∈ ( 1
2 , 1). The sequence {ρk, k ≥ 0} has the following properties

1. Monotonicity and positivity: for any k ∈ N

ρk−1 > ρk > 0. (11)

2. Convexity: for any k ∈ N

ρk−1 − ρk > ρk − ρk+1. (12)

3. Log-convexity: for any k ∈ N

ρk−1ρk+1 > ρ2
k . (13)

Proof. By Lemma 2, the function ρ(x) is convex on (0, ∞) and completely monotone on
(1, ∞); by continuity, we can include the endpoints of each interval.

We begin with the observation that a completely monotone function is automatically
log-convex. We show this for ρ using the representation (10): for any x ≥ 0,

ρ(x + 1) =
∫ ∞

0
e−xtµ(dt), ρ′(x + 1) = −

∫ ∞

0
e−xttµ(dt),

ρ′′(x + 1) =
∫ ∞

0
e−xtt2µ(dt).

Thus, the Cauchy–Schwarz inequality yields(
ρ′(x)

)2 ≤ ρ(x) · ρ′′(x) (14)

which guarantees that x 7→ log ρ(x + 1) is convex.
Therefore all properties claimed in the statement hold for k ≥ 2, convexity even for

k ≥ 1, and we only have to deal with the case k = 1.

Monotonicity for k = 1: We have to show ρ0 > ρ1. This follows by direct verification since
by (2),

ρ0 = 1 and ρ1 = 22H−1 − 1 (15)

(recall that 1/2 < H < 1).

Log-convexity for k = 1: In this case, the inequality (13) has the form ρ2 > ρ2
1. It immediately

follows from the representation (7) combined with the monotonicity property (11).

The previous lemma implies that ρ2
1 < ρ2. The following result gives a sharper bound.

Lemma 3. If H ∈ ( 1
2 , 1), then

ρ2
1 < ρ3. (16)
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Proof. Applying (7), we may write

ρ3 − ρ2
1 = ρ3 − ρ2 +

1
2
(ρ1 − ρ3) =

1
2
(ρ1 − 2ρ2 + ρ3) > 0,

because of Statement 2 of Corollary 1.

2.3. Particular Cases

We will now consider in detail two particular cases: n = 3 and n = 4. In these
cases, we prove the positivity of all coefficients Γk

n, establish some relations between them,
and study the asymptotic behavior as H ↑ 1. In the case n = 3 everything is established
analytically, while in the case n = 4, the sign of the second coefficient Γ3

n and the relation
between the second and the third coefficients, Γ3

n and Γ4
n, are verified numerically.

2.3.1. Case n = 3

In the case n = 3, the system (4) becomes{
Γ2

3 + Γ3
3ρ1 = ρ1,

Γ2
3ρ1 + Γ3

3 = ρ2,
(17)

whence

Γ2
3 =

ρ1(1− ρ2)

1− ρ2
1

, Γ3
3 =

ρ2 − ρ2
1

1− ρ2
1

.

Proposition 1. For any H ∈ ( 1
2 , 1),

Γ2
3 > Γ3

3 > 0.

Proof. Recall that, by Corollary 1 (Statement 1), 1 > ρ1 > ρ2 > . . . Hence, the first
inequality Γ2

3 > Γ3
3 is equivalent to

ρ1(1− ρ2) > ρ2 − ρ2
1 or (1 + ρ1)(ρ1 − ρ2) > 0,

which is true due to Corollary 1.
To prove the second inequality Γ3

3 > 0, we need to show that ρ2 > ρ2
1, which was

established in Corollary 1.

Remark 4. It is worth pointing out that the positivity (and positive definiteness) of the coefficient
matrix together with the positivity of the right-hand side of the system does not imply the positivity
of the solution. Indeed, consider the following system with the same coefficients as in (17), but
another positive right-hand side, say (b1, b2):(

1 ρ1
ρ1 1

)(
x1
x2

)
=

(
b1
b2

)
.

The solution has the form

x1 =
b1 − b2ρ1

1− ρ2
1

, x2 =
b2 − b1ρ1

1− ρ2
1

.

If, for example, b2 < b1ρ1, then x1 > 0 and x2 < 0. For the system (17), this condition is
written as ρ2 < ρ2

1, contradicting Corollary 1.
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Proposition 2.

lim
H↑1

Γ2
3 =

9 log 9− 8 log 4
8 log 4

≈ 0.783083,

lim
H↑1

Γ3
3 =

8 log 16− 9 log 9
8 log 4

≈ 0.216917.

Proof. If we take the limit H ↑ 1 in the relations

ρ1 = 22H−1 − 1, ρ2 =
1
2

(
32H − 22H+1 + 1

)
, (18)

we obtain

ρ1 → 1, ρ2 → 1, as H ↑ 1.

Therefore,

lim
H↑1

Γ2
3 = lim

H↑1

ρ1(1− ρ2)

(1− ρ1)(1 + ρ1)
= lim

H↑1

1− ρ2

2(1− ρ1)

= lim
H↑1

1− 1
2
(
32H − 22H+1 + 1

)
2(1− 22H−1 + 1)

= lim
H↑1

1− 32H + 22H+1

4(2− 22H−1)
= lim

H↑1

1− 9H + 2 · 4H

8− 2 · 4H .

By l’Hôpital’s rule,

lim
H↑1

Γ2
3 = lim

H↑1

−9H log 9 + 2 · 4H log 4
−2 · 4H log 4

=
−9 log 9 + 8 log 4
−8 log 4

.

Similarly,

lim
H↑1

Γ3
3 = lim

H↑1

ρ2 − ρ2
1

1− ρ2
1

= lim
H↑1

ρ2 − ρ2
1

2(1− ρ1)

= lim
H↑1

1
2
(
32H − 22H+1 + 1

)
− (22H−1 − 1)2

2(2− 22H−1)

= lim
H↑1

32H − 22H+1 + 1− 2(24H−2 − 22H + 1)
4(2− 22H−1)

= lim
H↑1

9H − 1− 1
2 16H

8− 2 · 4H = lim
H↑1

9H log 9− 1
2 16H log 16

−2 · 4H log 4

=
9 log 9− 8 log 16
−8 log 4

.

Figure 1 shows the dependence of the coefficients Γ2
3 and Γ3

3 on H. It illustrates
the theoretical results stated in Propositions 1 and 2, in particular, the positivity and
monotonicity of the coefficients, and convergence to theoretical limit values as H ↑ 1.
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Γ3
2

Γ3
3

Figure 1. Case n = 3: Γ2
3 and Γ3

3 as the functions of H.

2.3.2. Case n = 4

For n = 4, the system (4) has the following form
ρ1 = Γ2

4 + Γ3
4ρ1 + Γ4

4ρ2,

ρ2 = Γ2
4ρ1 + Γ3

4 + Γ4
4ρ1,

ρ3 = Γ2
4ρ2 + Γ3

4ρ1 + Γ4
4.

Therefore,

Γ2
4 =

ρ1 + ρ2
1ρ3 + ρ1ρ2

2 − ρ2ρ3 − ρ3
1 − ρ1ρ2

1 + 2ρ2
1ρ2 − ρ2

2 − 2ρ2
1

, (19)

Γ3
4 =

ρ2
1ρ2 − ρ3

2 + ρ1ρ2ρ3 − ρ2
1 + ρ2 − ρ1ρ3

1 + 2ρ2
1ρ2 − ρ2

2 − 2ρ2
1

, (20)

Γ4
4 =

ρ3
1 + ρ1ρ2

2 − 2ρ1ρ2 + ρ3 − ρ2
1ρ3

1 + 2ρ2
1ρ2 − ρ2

2 − 2ρ2
1

. (21)

Proposition 3. For any H ∈ ( 1
2 , 1),

Γ2
4 > Γ3

4 and Γ4
4 > 0.

Proof. The positivity of the denominator follows from the representation

1 + 2ρ2
1ρ2 − ρ2

2 − 2ρ2
1 = (1− ρ2)(1− ρ2

1) + (1− ρ2)(ρ2 − ρ2
1) (22)

and with Corollary 1. Therefore, it suffices to prove the claimed relations for the numerators
of Γ2

4, Γ3
4, and Γ4

4.

1. Let us prove that Γ2
4 > Γ3

4. The difference between the numerators of Γ2
4 and Γ3

4 is equal to

(ρ1 + ρ2
1ρ3 + ρ1ρ2

2 − ρ2ρ3 − ρ3
1 − ρ1ρ2)− (ρ2

1ρ2 − ρ3
2 + ρ1ρ2ρ3 − ρ2

1 + ρ2 − ρ1ρ3)

= (ρ1 − ρ2)(1 + ρ3)(1− ρ2) + (ρ2
1 − ρ2

2)(1− ρ1 − ρ2 + ρ3) > 0,

since ρ1 > ρ2 and 1− ρ1 ≥ ρ2 − ρ3 by Statements 1 and 2 of Corollary 1.

2. Finally, the positivity of Γ4
4 follows from the following representation of its numerator:

ρ3
1 + ρ1ρ2

2 − 2ρ1ρ2 + ρ3 − ρ2
1ρ3 = (ρ1 − ρ2)

2 + (1− ρ1)(ρ3 − ρ2
1 + ρ1ρ3 − ρ2

2),

because ρ3 > ρ2
1 and ρ1ρ3 > ρ2

2 by (16), and (13), respectively.



Fractal Fract. 2022, 6, 620 10 of 22

Figure 2 confirms the above proposition. We see that Γ2
4 is the largest coefficient.

However, Γ3
4 > Γ4

4 only for H < 0.752281; for larger H, the order changes.

0.6 0.7 0.8 0.9 1.0
H

0.2

0.4

0.6

Γ4
2

Γ4
3

Γ4
4

Figure 2. Case n = 4: Γ2
4, Γ3

4, and Γ4
4 as the functions of H.

Remark 5. Consider numerically the relation between Γ3
4 and Γ4

4 and the sign of Γ3
4. One may

represent the numerator of Γ3
4 as follows:

ρ2
1ρ2 − ρ3

2 + ρ1ρ2ρ3 − ρ2
1 + ρ2 − ρ1ρ3 = (1− ρ2)(ρ2 + ρ2

2 − ρ2
1 − ρ1ρ3). (23)

Thus we need to establish that

ρ2 + ρ2
2 − ρ2

1 − ρ1ρ3 > 0. (24)

We established this fact numerically since we could not come up with an analytical proof.
Figure 3 shows the plot of the left-hand side of (24) that confirms the positivity of Γ3

4.

0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

0.08

Figure 3. The left-hand side of (24).

However, we can look at (24) from another point of view. Rewrite (24) in the following form:

1 + ρ2

ρ1
>

ρ1 + ρ3

ρ2
.
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The left- and the right-hand sides of this inequality are the values at the points x = 0 and
x = 1, respectively, of the following function:

ψ(H, x) :=
ρ(H, x) + ρ(H, x + 2)

ρ(H, x + 1)

=
(x + 3)2H − 2(x + 2)2H + 2(x + 1)2H − 2x2H + (1− x)2H

(x + 2)2H − 2(x + 1)2H + x2H , x ∈ [0, 1].

The graph of the surface {ψ(H, x), x ∈ [0, 1], H ∈ (1/2, 1)} is shown in Figure 4. It was
natural to assume that the function ψ(H, x) decreases in x for any H, being at x = 0 bigger than
at x = 1. However, the function is not monotone for all H. Figure 5 contains two-dimensional
plots of {ψ(H, x), x ∈ [0, 1]} for four different values of H: 0.6, 0.7, 0.8 and 0.9. We observe that
ψ(H, 0) > ψ(H, 1) for each value of H; however, the function ψ(H, x) changes its behavior from
increasing to decreasing.

Figure 4. The function ψ(H, x) as a surface.

0.2 0.4 0.6 0.8 1.0
x

3

4

5

6

7

8

H=0.6 H=0.7 H=0.8 H=0.9

Figure 5. The function ψ(H, x) as a function of x for various H.
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Remark 6. The unexpected behavior of ψ(H, x), x ∈ [0, 1] (first increasing, then decreasing) is a
consequence of the non-standard term (1− x)2H . For x ≥ 1, this function decreases in x for any
H > 1/2. Indeed, for x ≥ 1, it has the form

ψ(H, x) =
(x + 3)2H − 2(x + 2)2H + 2(x + 1)2H − 2x2H + (x− 1)2H

(x + 2)2H − 2(x + 1)2H + x2H

= −2 +
(x + 3)2H + (x− 1)2H − 2(x + 1)2H

(x + 2)2H − 2(x + 1)2H + x2H

= −2 +
(1 + 2

x+1 )
2H + (1− 2

x+1 )
2H − 2

(1 + 1
x+1 )

2H + (1− 1
x+1 )

2H − 2
.

Write y = 1
x+1 ∈ (0, 1

2 ]. It is sufficient to prove that the function

η(H, y) =
(1 + 2y)2H + (1− 2y)2H − 2
(1 + y)2H + (1− y)2H − 2

, y ∈ (0, 1
2 ],

increases in y for any H ∈ ( 1
2 , 1). However, for y < 1

2 ,

(1 + y)2H + (1− y)2H − 2 =
∞

∑
k=0

cky2k+2

and

(1 + 2y)2H + (1− 2y)2H − 2 =
∞

∑
k=0

ck (2y)2k+2,

where

ck =
4H(2H − 1)(2H − 2) . . . (2H − 2k− 1)

(2k + 2)!
=

2(2H)2k+2
(2k + 2)!

, k = 0, 1, 2, . . .

(here (x)n = x(x− 1) . . . (x− n + 1) is the Pochhammer symbol). The monotonicity of η(H, y)
for y ∈ (0, 1

2 ] can be proved by differentiation. Then

η(H, y) =
∑∞

k=0 ck 22k+2y2k

∑∞
k=0 cky2k , (25)

and hence, the partial derivative equals

∂

∂y
η(H, y)

=

(
∞

∑
k=0

cky2k

)−2( ∞

∑
k=1

ck 22k+22ky2k−1
∞

∑
l=0

cly2l −
∞

∑
k=1

ck2ky2k−1
∞

∑
l=0

cl 22l+2y2l

)

=

(
∞

∑
k=0

cky2k

)−2 ∞

∑
k=1

∞

∑
l=0

ckcl · 2k
(

22k+2 − 22l+2
)

y2k+2l−1.

By rearranging the double sum in the numerator, we obtain the expression

∂

∂y
η(H, y) =

(
∞

∑
k=0

cky2k

)−2 ∞

∑
k=1

k

∑
l=0

ckcl(2k− 2l)
(

22k+2 − 22l+2
)

y2k+2l−1,

which is clearly positive. Thus for any H ∈ ( 1
2 , 1), η(H, y) is increasing as a function of y ∈ (0, 1

2 ).
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Let us try to establish a bit more. We can represent η(H, y) in the following form:

η(H, y) =
∑∞

k=0 ck 22k+2y2k

∑∞
k=0 cky2k =

∞

∑
k=0

bky2k,

where the coefficients bk can be found successively from the following equations:

22c0 = c0b0,

24c1 = c0b1 + c1b0,

26c2 = c0b2 + c1b1 + c2b0,

28c3 = c0b3 + c1b2 + c2b1 + c3b0,

. . .

Let us find the first few coefficients: b0 = 22 = 4,

b1 =
24c1 − 22c1

c0
=

(24 − 22) (2H−1)(2H−2)(2H−3)
4!

(2H−1)
2!

= (2H − 2)(2H − 3),

b2 =
(26 − 22)c2 − c1b1

c0

=
60 (2H−1)(2H−2)(2H−3)(2H−4)(2H−5)

6! − (2H−1)(2H−2)2(2H−3)2

4!
(2H−1)

2!

=
2!(2H − 2)(2H − 3)

4!
(
2(2H − 4)(2H − 5)− (2H − 2)(2H − 3)

)
=

1
6
(2H − 2)(2H − 3)(2H2 − 13H + 17).

It is easy to see that b0, b1, and b2 are positive for H ∈ ( 1
2 , 1). We believe that bk > 0 for all k.

However, the proof of this fact remains an open problem.

Proposition 4.

lim
H↑1

Γ2
4 =

531 log2 4 + 72 log2 6 + 51 log2 9− 384 log2 12 + 108 log2 18
96 log2 12− 640 log2 2− 51 log2 9

≈ 0.742250,

lim
H↑1

Γ3
4 =

48 log 2− 15 log 9
16 log 2− 3 log 9

≈ 0.069508,

lim
H↑1

Γ4
4 =

108 log2 18− 364 log2 2− 216 log 2 log 9− 81 log2 9
96 log2 12− 640 log2 2− 51 log2 9

≈ 0.188242.

Remark 7. Obviously, the sum of the limits of the coefficients is 1, as expected.

Sketch of proof. The proof is straightforward. Substituting ρ1 = 22H−1 − 1,
ρ2 = 1

2
(
32H − 22H+1 + 1

)
, and ρ3 = 1

2
(
42H − 2 · 32H + 22H) into (19)–(21), and simplifying

the resulting expressions, we obtain

Γ2
4 =

2− 7 · 4H + 43H+1 + 62H+1 − 4 · 9H − 24H+3 · 9H + 2 · 92H + 44H + 182H

2(−26H+1 + 2 · 9H + 3 · 24H − 92H + 122H − 1)
,

Γ3
4 =
−22H+1 + 42H+1 − 22H+1 · 9H − 64H + 92H − 1

2(22H+1 + 9H − 16H − 1)
,

Γ4
4 =
−3 · 24H+1 + 4H + 82H+1 + 4 · 9H − 22H+1 · 9H − 24H+1 · 9H − 2 · 92H − 44H + 182H − 2

2(−26H+1 + 2 · 9H + 3 · 24H − 92H + 122H − 1)

(for Γ3
4, we first cancel out the factor 1− ρ2, see (22) and (23)). Then applying l’Hôpital’s

rule (twice), we arrive at the claimed limits by simple algebra.
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Remark 8. For n = 5, we present the graphical results only; see Figure 6. The situation here is
more complicated compared to the case n = 4. The first coefficient Γ2

5 is still the largest; however,
the order of three other coefficients changes several times depending on H. In particular, for H close
to 1/2, these coefficients are decreasing, but for H close to 1, they are increasing.

0.6 0.7 0.8 0.9 1.0
H

0.1

0.2

0.3

0.4

Γ5
2

Γ5
3

Γ5
4

Γ5
5

Figure 6. Case n = 5: Γ2
5, Γ3

5, Γ4
5, and Γ5

5 depending on H.

2.4. Recurrence Relations for the Coefficients

In general, there are several ways to obtain (4). For example, we can consider the
coefficients Γk

n as a result of minimizing the value of the quadratic form

E(∆1 −
n

∑
k=2

αk∆k)
2.

Evidently, differentiation leads again to the system (4). We can look for the coefficients
with the help of the inverse matrix A−1, where A is from (5). However, calculating the
entries of the inverse matrix is as difficult as calculating the determinants. It is possible to
avoid determinants using the properties of fGn. More precisely, we propose a recurrence
method to calculate the coefficients Γk

n successively, starting with Γ2
2 = ρ1 = 22H−1 − 1.

Proposition 5. The following relations hold true:

Γn+1
n+1 =

ρn −∑n
k=2 Γk

nρn+1−k

1−∑n
k=2 Γk

nρk−1
, n ≥ 2, (26)

Γk
n+1 = Γk

n − Γn+1
n+1Γn−k+2

n , n ≥ 2, 2 ≤ k ≤ n. (27)

Proof. In order to prove (26) and (27), we use the theorem on normal correlation as well as
the independence of ∆n+1 −E(∆n+1 | ∆2, . . . , ∆n) and any of ∆k, 2 ≤ k ≤ n. We get

E(∆1 | ∆2, . . . , ∆n, ∆n+1) =
n

∑
k=2

Γ̃k
n∆k + Γn+1

n+1(∆n+1 −E(∆n+1 | ∆2, . . . , ∆n)), (28)

where Γ̃k
n, 2 ≤ k ≤ n, are some constants. Now we take the conditional expectation

E(· | ∆2, . . . , ∆n) on both sides of (28) to obtain

E(∆1 | ∆2, . . . , ∆n) =
n

∑
k=2

Γ̃k
n+1∆k.
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Comparing this equality with (3), and taking into account that the increments ∆k,
2 ≤ k ≤ n are linearly independent, we conclude that

n

∑
k=2

Γ̃k
n+1∆k =

n

∑
k=2

Γk
n∆k.

Now we insert this equality into (28) and see

E(∆1 | ∆2, . . . , ∆n, ∆n+1) =
n

∑
k=2

Γk
n∆k + Γn+1

n+1(∆n+1 −E(∆n+1 | ∆2, . . . , ∆n)). (29)

After multiplying both sides of the last equality by (∆n+1 −E(∆n+1 | ∆2, . . . , ∆n)) and
taking expectations, we arrive at

E(∆1(∆n+1 −E(∆n+1 | ∆2, . . . , ∆n))) = Γn+1
n+1E(∆n+1 −E(∆n+1 | ∆2, . . . , ∆n))

2.

It follows from the stationarity of the increments that the indices n + 1 and 1 of the
last equality play symmetric roles, i.e., they are equivalent to

E(∆n+1(∆1 −E(∆1 | ∆2, . . . , ∆n))) = Γn+1
n+1E(∆1 −E(∆1 | ∆2, . . . , ∆n))

2.

From this, we conclude that

Γn+1
n+1 =

E(∆n+1(∆1 −E(∆1 | ∆2, . . . , ∆n)))

E(∆1 −E(∆1 | ∆2, . . . , ∆n))
2

=
ρn −∑n

k=2 Γk
nρn+1−k

1−∑n
k=2 Γk

nρk−1
.

Thus, the relation (26) is proved.
Using again the symmetry of the stationary increments, it is not hard to see that

E(∆n+1 | ∆2, . . . , ∆n) =
n

∑
k=2

Γn−k+2
n ∆k.

Therefore, we obtain from (29) that

E(∆1 | ∆2, . . . , ∆n, ∆n+1) =
n

∑
k=2

Γk
n∆k + Γn+1

n+1∆n+1 − Γn+1
n+1

n

∑
k=2

Γn−k+2
n ∆k

=
n

∑
k=2

(
Γk

n − Γn+1
n+1Γn−k+2

n

)
∆k + Γn+1

n+1∆n+1,

and (27) follows.

2.5. Positivity of Γ2
n

We conjecture that all coefficients Γk
n, 2 ≤ k ≤ n are positive. However, analytically,

we can prove only the positivity of the leading coefficient, Γ2
n.

Proposition 6. For all n ≥ 1, Γ2
n+1 > 0.

Proof. From the stationarity of the increments, it follows that

E(∆2 | ∆3, . . . , ∆n+1) =
n+1

∑
k=3

Γk−1
n ∆k.
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Similar to (29),

E(∆1 | ∆2, . . . , ∆n, ∆n+1) = Γ̃2
n+1(∆2 −E(∆2 | ∆3, . . . , ∆n+1)) +

n+1

∑
k=3

Γk
n+1∆k,

and so

Γ2
n+1 = Γ̃2

n+1 =
E((∆2 −E(∆2 | ∆3, . . . , ∆n+1))∆1)

E(∆2 −E(∆2 | ∆3, . . . , ∆n+1))
2 .

It remains to prove the positivity of the numerator

E((∆2 −E(∆2 | ∆3, . . . , ∆n+1))∆1) = ρ1 −
n+1

∑
k=3

Γk−1
n ρk−1.

However, we know from (4) that

ρ1 =
n

∑
k=2

Γk
nρk−2.

Therefore,

ρ1 −
n+1

∑
k=3

Γk−1
n ρk−1 =

n

∑
k=2

Γk
nρk−2 −

n

∑
k=2

Γk
nρk =

n

∑
k=2

Γk
n(ρk−2 − ρk) > 0,

since the sequence ρk is decreasing, see Corollary 1.

3. Numerical Results
3.1. Properties of Coefficients: Positivity and (non)monotonicity

In this section, we compute numerically the coefficients Γk
n for various values of H. In

Tables 1–6, the results for H = 0.51, 0.6, 0.7, 0.8, 0.9, and 0.99 are listed for 2 ≤ n ≤ 10.

Table 1. Coefficients Γk
n for H = 0.51.

n\k 2 3 4 5 6 7 8 9 10

2 0.01396
3 0.01389 0.00521
4 0.01387 0.00516 0.00339
5 0.01386 0.00515 0.00336 0.00253
6 0.01386 0.00514 0.00335 0.00250 0.00201
7 0.01385 0.00514 0.00334 0.00249 0.00199 0.00167
8 0.01385 0.00514 0.00334 0.00248 0.00198 0.00165 0.00143
9 0.01385 0.00513 0.00334 0.00248 0.00198 0.00165 0.00142 0.00125

10 0.01385 0.00513 0.00333 0.00248 0.00198 0.00164 0.00141 0.00124 0.00111

Table 2. Coefficients Γk
n for H = 0.6.

n\k 2 3 4 5 6 7 8 9 10

2 0.14870
3 0.14123 0.05020
4 0.13954 0.04542 0.03383
5 0.13868 0.04427 0.03031 0.02522
6 0.13817 0.04366 0.02942 0.02243 0.02013
7 0.13784 0.04329 0.02893 0.02170 0.01781 0.01675
8 0.13760 0.04303 0.02862 0.02129 0.01719 0.01477 0.01434
9 0.13742 0.04285 0.02840 0.02102 0.01683 0.01423 0.01262 0.01254

10 0.13728 0.04271 0.02824 0.02083 0.01660 0.01391 0.01214 0.01101 0.01114
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Table 3. Coefficients Γk
n for H = 0.7.

n\k 2 3 4 5 6 7 8 9 10

2 0.31951
3 0.28867 0.09652
4 0.28207 0.07677 0.06840
5 0.27860 0.07288 0.05409 0.05074
6 0.27654 0.07069 0.05114 0.03946 0.04048
7 0.27518 0.06936 0.04942 0.03708 0.03117 0.03366
8 0.27421 0.06846 0.04835 0.03566 0.02917 0.02573 0.02881
9 0.27348 0.06782 0.04762 0.03476 0.02796 0.02401 0.02191 0.02518

10 0.27292 0.06733 0.04708 0.03413 0.02718 0.02295 0.02039 0.01907 0.02237

Table 4. Coefficients Γk
n for H = 0.8.

n\k 2 3 4 5 6 7 8 9 10

2 0.51572
3 0.44379 0.13947
4 0.42915 0.09287 0.10500
5 0.42108 0.08574 0.07202 0.07684
6 0.41637 0.08132 0.06676 0.05103 0.06130
7 0.41325 0.07873 0.06336 0.04690 0.04010 0.05089
8 0.41103 0.07698 0.06132 0.04414 0.03668 0.03291 0.04352
9 0.40938 0.07573 0.05993 0.04246 0.03435 0.02999 0.02790 0.03801

10 0.40810 0.07479 0.05892 0.04130 0.03292 0.02796 0.02534 0.02420 0.03373

Table 5. Coefficients Γk
n for H = 0.9.

n\k 2 3 4 5 6 7 8 9 10

2 0.74110
3 0.60809 0.17948
4 0.58213 0.09152 0.14465
5 0.56714 0.08204 0.08433 0.10362
6 0.55857 0.07506 0.07754 0.05671 0.08272
7 0.55290 0.07118 0.07223 0.05156 0.04445 0.06852
8 0.54889 0.06858 0.06921 0.04734 0.04028 0.03617 0.05851
9 0.54590 0.06673 0.06716 0.04492 0.03675 0.03266 0.03049 0.05105

10 0.54359 0.06535 0.06568 0.04326 0.03472 0.02962 0.02747 0.02633 0.04527

Table 6. Coefficients Γk
n for H = 0.99.

n\k 2 3 4 5 6 7 8 9 10

2 0.97247
3 0.76506 0.21328
4 0.72588 0.07275 0.18368
5 0.70233 0.06342 0.09059 0.12824
6 0.68917 0.05413 0.08408 0.05617 0.10262
7 0.68047 0.04937 0.07696 0.05159 0.04422 0.08474
8 0.67435 0.04617 0.07323 0.04602 0.04065 0.03555 0.07228
9 0.66979 0.04393 0.07067 0.04312 0.03604 0.03265 0.02980 0.06299

10 0.66628 0.04227 0.06885 0.04111 0.03363 0.02870 0.02735 0.02560 0.05582

Observe the following:

1. All coefficients are positive.
2. The first coefficient in each row is the largest, i.e., Γ2

n > Γk
n for any 3 ≤ k ≤ n.

Moreover, often it is substantially larger than any other coefficient in the row.
3. The conjecture concerning the monotonicity of coefficients (decrease along each row)

does not hold in general. If we take sufficiently large values of H, for example H = 0.9,



Fractal Fract. 2022, 6, 620 18 of 22

we see that the coefficient Γ3
n is always less than Γ4. Moreover, the last coefficient Γn

n is
bigger than Γn−1

n for sufficiently large H.
4. The monotonicity along each column holds, i.e., Γk

n > Γk
n+1 for fixed k. Figures 7 and 8

illustrate the dependence of Γk
n of n for k = 2, 3 and for various H.

20 40 60 80 100
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H=0.6

H=0.7

H=0.8

H=0.9

Figure 7. Case k = 2: Γ2
n as the functions of n.
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n
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0.06

0.08

0.10

H=0.6

H=0.7

H=0.8

H=0.9

Figure 8. Case k = 3: Γ3
n as the functions of n.

5. The limiting distribution of the coefficients as H ↑ 1 is not uniform.
6. It immediately follows from (27) that the coefficients satisfy the following relation:

Γk+1
n+1 = Γk+1

n − Γn+1
n+1Γn−k+1

n ,

whence

Γk+1
n+1 − Γk

n+1 = Γk+1
n − Γk

n − Γn+1
n+1

(
Γn−k+1

n − Γn−k+2
n

)
.

The second of these relations makes us expect that knowing that the coefficients
decrease in k for n fixed and that the last coefficient Γn+1

n+1 is positive, we can prove
that they decrease in k for n n + 1 by induction. Unfortunately, if we take n = 3 as
the start of the induction, we see that such a relation holds only if k = 2, and indeed,
Γ2

4 > Γ3
4 as we know from Proposition 3. However, the relation between Γ3

4 and Γ4
4 is

not so stable and depends on H; see Figure 2. Therefore, we cannot state that Γ3
4 > Γ4

4.



Fractal Fract. 2022, 6, 620 19 of 22

3.2. Comparison of the Methods: Computation Time

Let us compare the two methods in terms of computation time. The first method
(solving the system of equations) was realized using the R function solve(). We considered
two problems:

1. For fixed n, compute the coefficients Γk
n, 2 ≤ k ≤ n, i.e., compute the nth row of

the matrix.
2. Compute the whole triangular array

{
Γk

m | 2 ≤ m ≤ n, 2 ≤ k ≤ m
}

. This requires
solving (n− 1) systems of equations.

The second method (recurrence relations) always gives us the whole array of coefficients,
which can be considered an advantage.

Let us mention that both methods give exactly the same values of the coefficients.
We also compared the time needed for computation on an Intel Core i3-8145U pro-

cessor by each method. The results are shown in Table 7. Observe that the recurrence
method is always faster, especially for large n, if we need to compute the whole matrix.
It takes less than 2 s for n = 2000, while solving all systems of equations takes more that
21 min. Moreover, for large n the recurrence method is even faster than the calculation of a
single row of the matrix, which requires solving only one system of equations.

Table 7. Computation time.

n 100 500 1000 2000

System method (last row) 0.02 s 0.20 s 0.51 s 3.10 s
System method (whole matrix) 0.17 s 16.46 s 2.27 min 21.78 min

Recurrence method 0.04 s 0.19 s 0.48 s 1.83 s

3.3. Remarks on the Case H < 1
2

In this paper, we mainly focus on the case H > 1
2 (the case of long-range dependence).

In this section, we give some brief comment on the other case H < 1
2 .

1. Using the complete monotonicity of −ρ (see Lemma 2), we can show that in the case
H < 1

2 , the inequalities for ρk from Corollary 1, Properties 1 and 2, remain valid with
opposite signs (the sign ‘<’ instead of the sign ‘>’). In other words, the sequence
{ρk, k ≥ 0} is negative, increasing and concave. However, it remains log-convex, i.e.,
Property 3 of Corollary 1 holds for all H ∈ (0, 1/2) ∪ (1/2, 1).

2. The behavior of the coefficients for n = 3, 4, 5 is shown in Figures 9–11. We see that for
H < 1

2 , the coefficients are negative and increasing with respect to H. Moreover, for
all H < 1

2 we also observe the monotonicity with respect to k, i.e., Γk
n < Γk+1

n (unlike
the case H > 1

2 ).
3. Let H = 0. In this case BH

n = B0
n = (ξn − ξ0)/

√
2, where {ξi, i ≥ 0} is a sequence

of independent and identically distributed N (0, 1) random variables. So, ∆1 =
(ξ1 − ξ0)/

√
2 and, in general,

∆k =
ξk − ξk−1√

2
, k ≥ 1.

Consider the equality

E(∆1 | ∆2, . . . , ∆n) =
n

∑
k=2

Γk
n∆k, n ≥ 2.
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Then

E∆1∆2 = −1
2

, E∆1∆k = 0, k > 2,

E∆k∆k+1 = −1
2

, k ≥ 2, E∆k∆l = 0, |l − k| > 1.

Therefore, the system of linear equations has the form
−1

2
= Γ2

n −
1
2

Γ3
n,

0 = −1
2

Γk
n + Γk+1

n − 1
2

Γk+2
n , 2 ≤ k ≤ n− 2,

0 = −1
2

Γn−1
n + Γn

n,

and we obtain

Γn
n = − 1

2 Γn−1
n , Γ2

n = 1
2 Γ3

n − 1
2 , Γ3

n = 2
3 Γ4

n − 1
3 , . . . ,

Γk
n = k−1

k Γk+1
n − 1

k , . . . , Γn−1
n = n−2

n−1 Γn
n − 1

n−1 .

Finding Γn
n and Γn−1

n from the first and last equations, and then calculating successively
Γn−2

n , . . . , Γ2
n, we obtain the following solution:

Γk
n =

n− k + 1
n

, k = 2, . . . , n.

0.2 0.4 0.6 0.8 1.0
H

-0.6

-0.4

-0.2

0.2
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0.8

Γ3
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Γ3
3

Figure 9. Case n = 3: Γ2
3 and Γ3

3 as the functions of H.
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Figure 10. Case n = 4: Γ2
4, Γ3

4, and Γ4
4 as the functions of H.

0.2 0.4 0.6 0.8 1.0
H
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3
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4
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Figure 11. Case n = 5: Γ2
5, Γ3

5, Γ4
5, and Γ5

5 depending on H.
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