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Abstract: We studied a Zener-type model of a viscoelastic body within the context of general fractional
calculus and derived restrictions on coefficients that follow from the dissipation inequality, which is
the entropy inequality under isothermal conditions. We showed, for a stress relaxation and a wave
propagation, that the restriction that follows from the entropy inequality is sufficient to guarantee the
existence and uniqueness of the solution. We presented numerical data related to the solution of a
wave equation for several values of parameters.
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1. Introduction

Concerning various applications of the “classical” Riemann–Liouville and Caputo
fractional derivatives in various problems of physics and mechanics, there exists a very
large amount of literature (see for example [1–5] and references therein). On the other
hand, the concept of general fractional calculus (GFC) has recently gained an increasing
interest from a theoretical point of view. We mention the review article of V. E. Tarasov [6],
where a development of ideas concerning the generalization of the Riemann–Liouville and
Caputo fractional integrals and derivatives are presented. The idea of GFC may be traced
to the work of A. N. Kochubei [7]. Further developments may be found in the papers of
Y. Luchko [8,9], as well as in [1,2].

The main idea of the GFC concept is to describe dynamical systems with the nonlocality
in time and space.

The following definitions of GFC are introduced; see [6,8,10] and references given
therein:

It
(M)[τ] f (τ) = (M ∗ f )(t) =

∫ t

0
M(t− τ) f (τ)dτ,

Dt
(K)[τ] f [τ] =

d
dt
(K ∗ f )(t) =

d
dt

∫ t

0
K(t− τ) f (τ)dτ,

CDt
(K)[τ] f [τ] =

(
K ∗ f (1)

)
(t) =

∫ t

0
K(t− τ) f (1)(τ)dτ, t ≥ 0, (1)

where f (1)(t) = d f
dt and f ∗ g denotes convolution. Equation (1)1 defines the integral in GFC,

whereas (1)2 and (1)3 define the generalized fractional derivative in the Riemann–Liouville
sense, and generalized fractional derivative in the Caputo sense, respectively. Kernels M
and K in (1) belong to the class of Sonin kernels, defined as follows. Let a < b. Then,

C(a,b)(0, ∞) = { f : f (t) = tpY(t), a < p < b, Y(t) ∈ C[0, ∞)},

where C[0, ∞) is the space of continuous functions on [0, ∞). Then, the set of Sonin ker-
nels S−1 is defined as a set of pairs of functions (M(t), K(t)), such that M(t), K(t) ∈
C(−1,0)(0, ∞), which satisfies the so-called Sonin condition
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(M ∗ K)(t) =
∫ t

0
M(t− τ)K(τ)dτ = 1, t ≥ 0; (2)

(M(t), K(t)) is called a Sonin pair. By [11], if M(t) and K(t), t ∈ (0, ∞), we have locally
integrable derivatives (that belong to L1

loc(R+)) that satisfy

lim
t→0

tM(t) = 0, lim
t→0

tK(t) = 0.

Then, ∫ t

0
M(1)(τ)[K(t)− K(t− τ)]dτ = K(t)M(t), (3)

for all t > 0, where M(1) and K(1) exist. Moreover, (2) implies

Dt
(K) It

(M)[τ] f (τ) = f (t),

It
(M)D

t
(K)[τ] f [τ] = f (t)− f (0), t > 0; (4)

see [7,12]. Then, (2) implies
sM̃(s)K̃(s) = 1,<s > 0, (5)

where (̃·) denotes the Laplace transform. This is used in [7] for the construction of M when
K is given.

We note that, in the frame of the Riemann–Liouville fractional calculus, one has

M(t) =
tα−1

Γ(α)
, K(t) =

t−α

Γ(1− α)
, t > 0,

so that (2), (3) and (5) hold true.
Our aim in this work is to analyze the Zener model of a viscoelastic body with specific

K and M satisfying (2). Moreover, we will derive the thermodynamical admissibility
conditions that guarantee the dissipation.

We consider kernels M and K in two forms, called cases. The first one is proposed by
Hanyga [12] as

Case H

M1(t) =
t−β

Γ(1− β)
+

tα−β

Γ(α− β + 1)
, t > 0,

K1(t) = tβ−1Eα,β(−tα), β ≥ 0, 0 < α ≤ β, t > 0, (6)

where Eα,β(t) =
∞
∑

k=0

tk

Γ(kα+β)
, t ≥ 0, α > 0, β ∈ C, is a two-parameter Mittag–Lefler func-

tion [13]. Conditions β ≥ 0 and 0 < α ≤ β imply that K is a singular, locally integrable
completely monotone function; see [14], p.144. It was shown in [12], Theorem 4.1, that any
singular, unbounded in a neighborhood of zero, locally integrable, completely monotone
function is a Sonin kernel, i.e., satisfies (5). Thus, functions (6) make a pair that belongs to
S−1. The Laplace transforms of M1 and K1 are

M̃1(s) =
sα + 1

s1+(α−β)
, K̃1(s) =

sα−β

sα + 1
,<s > 0. (7)

The second Sonin pair, proposed by Zacher [15], is
Case Z

M2(t) =

[
tα−1

Γ(α)
exp(−µt) + µ

∫ t

0

τα−1

Γ(α)
exp(−µτ)dτ

]
K2(t) =

t−α

Γ(1− α)
exp(−µt), , t ≥ 0 (8)
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where α ∈ (0, 1), µ ≥ 0. The Laplace transforms of M2 and K2 are

M̃2(s) =
1

(s + µ)α

(
1 +

µ

s

)
, K̃2(s) =

1

(s + µ)1−α
, <s > 0. (9)

Our goal is to investigate mechanical models with constitutive equations in the frame-
work of GFC.

More precisely, we consider the one-dimensional generalized Zener model [16] given
as

a CDt
(Ki)

σ(x, t) + σ(x, t) = b CDt
(Ki)

ε(x, t) + ε(x, t), t ∈ (0, ∞), x ∈ R, (10)

where i = 1, 2, and σ(x, t) denotes the stress ε(x, t), which is the strain in a body at time t
and position x, and a > 0, b > 0 are constants. The case a = b is trivial; the results are well
known, so we do not consider it.

As in our earlier papers, Refs [17–19], we consider a generalized Zener constitutive
equation for a viscoelastic body. We point out that our intention in this paper is to present
that fractional derivatives with kernels M1 and M2 given above (Cases H and Z) require
a completely different implementation in solving the wave equation in relation to the
method of solving the same equation with the Riemann–Louvile fractional derivatives in
the constitutive equation.

Concerning our previous paper [19], we have two remarks. The first one is that the
obtained sufficient conditions for the thermodynamical admissibility of the constitutive
equation (10) for both cases were obtained by our original approach given in the quoted
paper, with the aim of analyzing the dissipations inequality. The second remark is that one
can assume, as in [19], that the body force f and the initial conditions u0, v0 are random
since they may incorporate trough epistemic randomness or errors in the measuring
devices. Such an analysis will be considered in our future work since it involves additional
extensive analysis. Moreover, the environmental noise in random fluctuations in transient
dynamics of interdisciplinary physical models is an important issue that deserves further
investigations; see [20–24] for the “classical” fractional derivatives in various applications.
In several papers, the authors of [21,25]—see also references therein—use a memristor
(elements of electric circuits) in the analysis of fluctuations of various nonlinear models of
nanoelectronics. Their stochastic approach gives a new insight concerning physical models
through the prediction of memristor behaviour.

We comment on the possible applicability of our constitutive equation (10). In the
case of the Caputo derivative, in [26], the description of experimental data for certain
dental materials was successful. Since we have one additional parameter µ in (8) and (10),
the modeling of experimental results within the new framework is expected to be even
more precise.

Let us briefly present the content of the paper. After a short introduction concerning the
generalized functions framework, we analyze in Section 2 the thermodynamical restrictions
for the Zener constitutive equation in cases H and Z. Starting with Section 3, up to the
end of the paper, we will consider case Z with kernels (8). Section 3 is devoted to the
stress relaxation and the spatially one-dimensional wave equation in a viscoelastic material
when the coefficients satisfy the thermo-dynamical restriction; that is, condition b > a. This
condition implies the existence and the unicity of a solution of this equation. Moreover,
in Section 3, we analyze the regularity of a solution and give an example confirming the
numerical evidence of the properties of a solution.

Notation and Notions

We use the usual notation; for example, R = (−∞, ∞), R+ = (0, ∞), Ck(R) is the space
of functions with continuous k derivatives. We refer to the classical distribution theory
(cf. [27] or any other one about distributions) for the mathematical preliminaries related to
the space of tempered distributions S ′(R), the Fourier and the Laplace transforms. Recall
that the space of smooth functions, where all derivatives rapidly decrease as |x| → ∞—that
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is, are bounded by any power (1 + |x|)−m, m > 0—is denoted by S(R) = S . Its dual is the
space of tempered distributions S ′. Elements f ∈ S ′ supported by [0, ∞) ( f ∈ S ′+(Rd))
have the form f = DkF, Dk = ∂k/∂tk, where F is a continuous polynomially bounded
function supported by [0, ∞) (equal to zero in (0, ∞)). The Laplace transform will be
considered for the so-called exponentially bounded distributions, the linear combination
of the distributions of the form f (t) = eatg(t), where g ∈ S ′+(R). Recall that, for the
exponentially bounded function f ( f (t) ≤ Meat, t > 0, a ∈ R),

L( f )(s) = f̃ (s) =
∫ ∞

0
e−st f (t)dt, <s > a.

The Fourier transform is an isomorphism of S onto S and of S ′ onto S ′. It is given by

F (φ)(ξ) = φ̂(ξ) =
∫ ∞

−∞
e−ixξ f (x)dx, ξ ∈ R, φ ∈ S .

Recall that Heaviside’s function H is the characteristic function of [0, ∞). Its derivative
over R is the delta distribution δ(x). Also in S+(Rt), its derivative is δ(t). Let us recall that
L(t+) = 1/s2,L(H(t)) = 1/s, <s > 0, where t+ = H(t)t, t ∈ R.

We denote the dual pairing of a test function and a distribution through the integral
sign, explaining such an integral when it exists in the sense of classical functions or in the
sense of distribution pairing.

In order to simplify the exposition, we will assume in the main theorem of Section 3
that a function f (x, t), x ∈ R, t > 0, the initial data u0(x), v0(x), x ∈ R, and their derivatives
up to an imposed order belong to the space of integrable continuous functions with a
suitable decay property, in order to have the existence of a convolution in x of these
functions with a fundamental solution P, for which, we show that it is a distribution.

2. Thermodynamical Restrictions

We consider the constitutive Equation (10) with kernel K of both cases. Our intention
is to derive the restrictions on the coefficients in (10) that follow from the second law of
thermodynamics under isothermal conditions. We assume that ε(x, t) = 0 and σ(x, t) = 0
for each x ∈ R, and t < 0. Further on, we assume that ε ∈ C1([0, ∞)). The second law of
thermodynamics, under appropriate isothermal conditions, requires that, for any cycle of
duration T > 0, where cycle here means ε(x, 0) = ε(x, T) = 0, there exists D > 0 such that
the dissipation inequality

D(x) =
∫ T

0
σ(x, t)

∂ε(x, t)
∂t

(t, x)dt ≥ 0, (11)

holds for every x ∈ (−∞, ∞). Because of that, in the analysis that follows, we shall write
(11) without x. Inequality (11) is used for ε, which does not satisfy the conditions of
a cycle. For example, in [28], the use of (11) for any sufficiently smooth ε is proposed,
which also satisfies ε(x, t) = 0, t ∈ (−∞, 0]. We follow [28] since it does not require a
definition of a cycle. Note that the cycles are differently defined in various papers. In
[29], it is required that the entropy inequality holds (11) is just a special case of it) for a
specially defined D-cyclic process. We refer to [17,30–32] for a more detailed analysis of a
dissipativity condition.

Applying the Fourier transform now on a function (or a distribution) depending on
t ≥ 0 (those supported by [0, ∞) with respect to variable t) to (10)2, we obtain the Fourier
transform of CDt

(K) f (t) as
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F
(

CDt
(K) f (t)

)
(ω) = F

(∫ t

0
K(t− τ) f (1)(τ)dτ

)
= F (K(t))(ω)F

(
f (1)(t)

)
(ω)

= F
(

t−α

Γ(1− α)
H(t)

)
(ω)(iω)F ( f (t))(ω)

=
iω

(iω + µ)1−α
F ( f (t))(ω), ω ∈ R.

2.1. Restrictions on the Coefficients for Case Z

In this subsection, we use notation K2 = K and H2 = H. Applying the Fourier
transform (on a function or distribution depending on t), we obtain

F
(

CDt
(K) f (t)

)
(ω) = F

(∫ t

0
K(t− τ) f (1)(τ)dτ

)
= F (K(t))(ω)F

(
f (1)(t)

)
(ω)

= F
(

t−α

Γ(1− α)
H(t)

)
(ω)(iω)F ( f (t))(ω)

=
iω

(iω + µ)1−α
F ( f (t))(ω), ω ∈ R.

Then,
σ̂(x, ω) = E(ω)ε̂(x, ω), ω ∈ R, x ∈ R, (12)

implies

E(ω) =
1 + b iω

(iω+µ)1−α

1 + a iω
(iω+µ)1−α

= 1 +
(b− a) iω

(iω+µ)1−α

1 + a iω
(iω+µ)1−α

= E1(ω) + iE2(ω), ω ∈ R. (13)

Let (iω + µ)1−α = ρ exp(iθ), ρ > 0, θ ∈ [0.2π) so that iω = ρ
1

1−α exp
(

iθ
1−α

)
− µ. This

leads to

ρ
1

1−α cos
(

θ

1− α

)
= µ, ω = ρ

1
1−α sin

(
θ

1− α

)
. (14)

Then, we have

iω
1 + a iω

(iω+µ)1−α

=
iρ

1
1−α sin

(
θ

1−α

)
ρ cos θ + iρ sin θ + aiρ

1
1−α sin

(
θ

1−α

) =

ρ
1

1−α sin
(

θ
1−α

)[
ρ sin θ + ρ

1
1−α sin

(
θ

1−α

)]
+ iρ cos θρ

1
1−α sin

(
θ

1−α

)
(ρ cos θ)2 + (ρ sin θ + ω)2 , (15)

with ρ and ω given by (14). Now, it is easy to prove the next proposition.

Proposition 1. Condition b > a is a sufficient one for the components E1 and E2 of the complex
dynamic modulus E defined by (12) to satisfy

E1(ω) = E1(−ω), E2(ω) = −E2(−ω), ω ∈ R, E2(ω) ≥ 0, ω ∈ R+,∫ ∞

0

1
ω

E2(ω)

(1 + ω2)
m
2

dω =
∫ ∞

0

(b− a)ρ cos θ

((ρ cos θ)2 + (ρ sin θ + ω)2)(1 + ω2)
m
2

dω < ∞,
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for some m > 0.

Proof. Relations (13)–(15) imply that

E1(ω) = 1 + (b− a)
ω[ρ sin θ + ω]

(ρ cos θ)2 + (ρ sin θ + ω)2 ,

E2(ω) = (b− a)
ωρ cos θ

(ρ cos θ)2 + (ρ sin θ + ω)2 , ω ∈ R.

Since

(ρ cos θ)2 + (ρ sin θ + ω)2 = (ρ cos θ)2 + (ρ sin θ + ρ
1

1−α sin
θ

1− α
)2,

and sin θ and sin θ
1−α have the same sign + for θ ∈ (0, π/2) and sign − for θ ∈ (−π/2, 0),

we can easily conclude that

E1(ω) = E1(−ω), E2(ω) = −E2(ω), ω ∈ R,

Now, we simply conclude that

E2(ω) ≥ 0, ω > 0 if b > a.

The last part is clear.

2.2. Restrictions for H

In this subsection, K1 = K, H1 = H. We present the restrictions for (10) with the
assumptions

a ≥ 0, b > 0, 0 < α ≤ β, β ∈ [0, 1].

In fact, we have the same formulation as in the case of Proposition 2,but now in a quite
different context:

Proposition 2. Condition b > a is a sufficient one for the components E1 and E2 of the complex
dynamic modulus E, defined by (12), to satisfy

E1(ω) = E1(−ω), E2(ω) = −E2(−ω), ω ∈ R, E2(ω) ≥ 0, ω ∈ R+,∫ ∞

0

1
ω

E2(ω)

(1 + ω2)
m
2

dω =
∫ ∞

0

(b− a)ρ cos θ

((ρ cos θ)2 + (ρ sin θ + ω)2)(1 + ω2)
m
2

dω < ∞,

for some m > 0.

Proof. Applying the Fourier transform to (10) and using (7), we obtain

F
(

CDt
(K1)

f (t)
)
(ω) =

(iω)1+α−β

(iω)α + 1
, ω ∈ R,

so that, instead of (13), we have

E(ω) =
1 + b (iω)1+α−β

(iω)α+1

1 + a (iω)1+α−β

(iω)α+1

, ω ∈ R.

This implies that

E(ω) = 1 + (b− a)
(iω)1+α−β

(iω)α + 1 + a(iω)1+α−β
, ω ∈ R. (16)
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It will be clear from the proof that is to follow that the converse assumption a > b
does not imply the claims of the proposition. We will consider the case when ω > 0 since
the case of ω < 0 is quite similar.

Let ω > 0 and z = (iω)1+α−β = R exp(iθ). Then, we have

iω = R
1

1+α−β

[
cos

θ

1 + α− β
+ i sin

θ

1 + α− β

]
,

which implies that

cos
θ

1 + α− β
= 0 i.e.,

θ

1 + α− β
=

π

2
and sin

θ

1 + α− β
> 0, since ω > 0.

Thus, 1 + α− β < 1 implies that

z = (iω)1+α−β = R exp(i(1 + α− β)π/2)

lies in the first quadrant. Rewrite (16) in the form

E(ω) = 1 + (b− a)
z

z
α

1+α−β + 1 + az
.

Since
z

α
1+α−β = R

α
1+α−β (cos

απ

2
+ i sin

απ

2
),

we again have that z
α

1+α−β belongs to the first quadrant.
Then, using simple geometric arguments (sum of three terms, each having an argument

in (0, π
2 )), we conclude that

arg

(
z

z
α

1+α−β + 1 + az

)
= θE ∈ (0,

π

2
).

In the case of ω < 0, we obtain θE ∈ (−π/2, 0). Rewriting E as

E(ω) = 1 + (b− a)ρeiθE , (17)

we obtain E1(ω) ≥ 0, E2(ω) ≥ 0, ω > 0.
Therefore, looking at the real and imaginary part of E in (17), we easily conclude that

E1(ω) = E1(−ω), E2(ω) = −E2(−ω), ω ∈ R.

For the last part, we note that E2(0) = 0, and it is differentiable in a neighborhood of
zero so that E2(ω)

ω 6= 0.

2.3. Dissipation Inequality

Our main theorem of this section is to follow. Since the condition for cases H and Z
are the same (b > a), the next theorem holds in both cases.

For simplicity, we assume that σ and ε belong to C1[0, ∞).

Theorem 1. With the quoted assumptions on σ and ε, and the constitutive Equation (13), condition
b > a implies the dissipation inequality (10).

Proof. The basic idea is the Bochner–Schwartz theorem for non-negative measures; see [33],
p. 331.

We will rewrite (10) in another form.
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D(x) =
∫ T

0
σ(x, t)

∂ε(x, t)
∂t

(t, x)dt =
∫ T

0
(F−1E)(x, t) ∗ ε(x, t)

∂ε

∂t
(t, x)dt

=
∫ T

0
F−1(

1
iω

E(ω))(x, t) ∗ ∂ε

∂t
(x, t)

∂ε

∂t
(t, x)dt, x ∈ R.

Let
F1(ω) = E2(ω)/(iω), and F2(ω) = E1(ω)/(iω), ω ∈ R.

Now, F1 is even and F1 ≥ 0, ω > 0, whereas F2 is odd. Since F2 is odd, as in our
previous paper [19], we can show that∫ T

0
F−1(F2(ω))(x, t) ∗ ∂ε

∂t
(x, t)

∂ε

∂t
(t, x)dt = 0.

Thus, we have to prove that the non-negativity of F1(ω) ≥ 0, ω ∈ (−∞, ∞), implies∫ T

0
F−1(F1(ω))(x, t) ∗ ∂ε

∂t
(x, t)

∂ε

∂t
(t, x)dt ≥ 0.

This will complete the proof of (11).
Let θ ∈ S(R). Then, by Theorem IX.10 in [33], the positivity of F1 implies that F−1(F1)

is positive definite; that is, for every θ ∈ S(R) and supp θ ∈ [0, T],∫ T

0

∫ T

0
(F−1(F1)(t− τ)θ(τ)θ(t)dτdt

= 2
∫ T

0

∫ t

0
F−1(F1(ξ))(t− τ)θ(τ)θ(t)dτdt ≥ 0,

where we also use the assumption that F1 is even.
Finally, since any function in C[0, T] is a pointwise limit of a real-valued sequence

θk, k ∈ N in S(R), let θk → ε(1) pointwisely on open set (0, T) as k 7−→ ∞. For such θk,

lim
k→∞

∫ T

0

∫ T

0
F−1(F1(ξ))(t− τ)θk(τ)θk(t)dτdt

=
∫ T

0

∫ T

0
F−1(F1(ξ))(t− τ)ε(1)(τ)ε(1)(t)dτdt ≥ 0.

The last expression is simply D ≥ 0, i.e., (11) holds.

Remark 1. Conditions stated in Theorem 1 are obtained by a different approach in relation to
the one used by Bagley and Torvik; see [34,35]. Their approach is based on the assumption that a
sinusoidal stress, imposed on a viscoelastic body, after a transition period, implies that the strain has
the same form but with a phase shift. The energy dissipation condition has to be satisfied during
a deformation process starting from a virginal state and it is not required for this deformation to
constitute a cycle. The approach used here is also used in [18,31,36].

3. Stress Relaxation and Wave Equation

We will show how condition b > a, which follows from the dissipation inequality,
implies the solvability and the unicity of a solution for a real model, which will be described
below. As we already noted, in the sequel, we consider only case Z.

The next lemma is needed.

Lemma 1. (a) Let s ∈ C,<s > 0. Then,

<s

√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

≥ 0.
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(b) If <s > c > 0, then there exists c0 > 0 such that

<s

√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

≥ c0

Proof. (a) The proof will be given in several simple steps. Let <s > 0,=s > 0. Then, using
simple geometry, one can conclude that

z =
s

(s + µ)1−α
= ρeiβ satisfies arg z = β ∈ (0, π/2).

The same reasoning shows that, for <s > 0 and =s < 0, there holds

arg z = β ∈ (−π/2, 0).

Thus, for <s > 0, in both cases, we have <z > 0.
Now, consider

Z =
1 + az
1 + bz

= reiγ with <z > 0.

Again, we conclude by elementary observation that γ ∈ (0, π/2) implies

arg Z = γ ∈ (−π/2, 0),

since arg (1 + bz) ≥ arg(1 + az). In addition, in a similar way, we conclude that γ ∈
(−π/2, 0) implies

arg Z = γ ∈ (0, π/2),

because arg (1 + bz) ≥ arg(1 + az).
Now, we will determine the location of points of (t, r) = A(z), where

A(z) = t + ir =
√

1 + az
1 + bz

=

√
a
b
+

b− a
b(1 + bz)

, <z > 0.

We will decompose mapping A in several simple mappings, having in mind that
<z > 0.

1. z 7→ w1 = b(1 + bz) transforms <z > 0 into <w1 > b;
2. w1 7→ w2 = b−a

w1
, transforms <w1 > b into the interior of the circle

(b− a)
1
b
[((t− 1/2)2) + r2 = 1/4],

that is, to the set of points w2 = t+ ir belonging to the interior of the circle (t− 1/2)2 + r2 =
(
√
(b− a)/2b)2;

3. w2 7→ w3 = a
b + w2 transforms the interior of the circle to the translated one,

C = {(t, r) :
a
b
+ [(t− 1/2)2 + r2 = (

√
(b− a)/2b)2}. (18)

With this analysis, we conclude that <z > 0 is transformed by the mapping A into the
interior of C given by (18).

We conclude:
If <s > 0 and =s > 0, then we know that z has the real part > 0 and the imaginary

part > 0. Thus, A(z) has a positive real part and negative imaginary part. With this, we
conclude that arg(sA(z)) must belong to (−π/2, π/2). The same arguments show that
the assumption <s > 0, =s < 0 imply that arg(sA(z)) must belong to (−π/2, π/2). This
proves assertion (a).



Fractal Fract. 2022, 6, 617 10 of 17

(b) The first quadrant in the z-plane goes by the mapping A into the lower half of C in
(18), whereas the fourth quadrant in the z-plane goes to the upper half of C. Thus, by the
first part, we have that A maps points <z > 0 into points (t, r) of the complex plane so that
(t, r) belongs to the set of points

{(t, r) :
√

points in the interior of C }.

Now, the first part of the proof implies that, after the multiplication of s and A(z), one
must have <(sA(z)) ≥

√
a/b. This proves assertion (b).

Remark 2. Previous proof shows that, for a > b, the circle (b− a) 1
b [((t− 1/2)2) + r2 = 1/4]

lies in the left side of <z = 0 and intersects both the left and right half of the complex plane. This
contradicts a). Thus, the conclusion b > a that we have obtained from the dissipation inequality
appears as the essential one for the existence and the uniqueness of a solution of a wave equation in
Theorem 2.

3.1. Stress Relaxation for Z in Case ε(x, t) = H(t)1x

We treat the creep problem. Applying the Laplace transform to (10), we obtain

σ̃(x, s) =
1 + b s

(s+µ)1−α

1 + a s
(s+µ)1−α

ε̃(x, s), x ∈ R, <s > 0.

For the stress relaxation test, we take ε(x, t) = H(t)1x, where 1x is the characteristic
function of R (1x = 1, x ∈ R). Since H̃(s) = 1

s ,<s > 0, we have

σ̃(x, s) =
1 + b s

(s+µ)1−α

1 + a s
(s+µ)1−α

ε̃(x, s) =
1 + b s

(s+µ)1−α

1 + a s
(s+µ)1−α

1
s

, x ∈ R, <s > 0. (19)

Proposition 3. Let ε(x, t) = H(t)1x be the strain in (10). Then, the stress σ has the form

σ(x, t) = δ(x)(
b
a

H(t) + g(t)), x ∈ R, t ∈ [0, ∞),

where, for any x0 > 0, which means that the integral does not depend on x0 > 0,

g(t) =
1

2πi

∫ x0+i∞

x0−i∞
exp(ts)

a− b
bs

1
1 + a s

(s+µ)1−α

ds, t ∈ R+,

is a continuous function.

Proof. By Lemma 1, part (b), the integrand does not have zeros in the right half of C.
Moreover,

a− b
bs

1
1 + a s

(s+µ)1−α

behaves as Cs−1−α, |s| → ∞, (20)

so that, using the Cauchy formula, the complex integral below does not depend on the
choice of x0 > 0. Thus,

σ(x, t) =
1

2πi

∫ x0+i∞

x0−i∞
exp(ts)

1 + b s
(s+µ)1−α

1 + a s
(s+µ)1−α

1
s

ds, x ∈ R, t ∈ R+,

where x0 > 0. Thus,

σ(x, t) =
δ(x)
2πi

∫ x0+i∞

x0−i∞
exp(ts)

1 + b s
(s+µ)1−α

1 + a s
(s+µ)1−α

1
s

ds,
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=
δ(x)
2πi

∫ x0+i∞

x0−i∞
exp(ts)(

b
as

+
a− b

as
1

1 + a s
(s+µ)1−α

)ds

= δ(x)(
b
a

H(t) + g(t)),

where

g(t) =
1

2πi

∫ x0+i∞

x0−i∞
exp(ts)(

a− b
bs

1
1 + a s

(s+µ)1−α

)ds, t > 0,

is a continuous function because of (20).

The result of the numerical inversion of (19) is shown in Figure 1.

t

s( , )x t

m=0 m=5

0 1 2 3 4 5

1

2

3

Figure 1. Stress relaxation curves for a = 0.2, b = 1, α = 0.3.

In Figure 1, x ∈ R. The stress relaxation curve for the case of a “classical” fractional
Zener model is given in [16], p. 64.

3.2. Wave Equation for Z

We present a wave equation for case Z. Note that the waves in the Zener model of the
viscoelastic body with the Riemann–Liouville and Caputo derivative have been studied
in many papers. We refer to the review articles [19,37]. The one-dimensional equation of
motion, constitutive equation, and geometrical conditions in the dimensionless form are

∂

∂x
σ(x, t) + f (x, t) =

∂2

∂t2 u(x, t), (21)

a CDt
(K)σ(t, x) + σ(t, x) = b CDt

(K)ε(t, x) + ε(t, x), x ∈ R, t ∈ R+ (22)

ε(x, t) =
∂

∂x
u(x, t), x ∈ R, t ∈ R+ (23)

where f (t, x) denotes the body force. We associate to (21)–(23) the following initial conditions:

u(0, x) = u0(x),
∂u(0, x)

∂t
= v0(x), x ∈ R. (24)

where u0 and v0 are functions with properties that will be discussed in the main theorem of
this section. The use of the Laplace transform, (1)3 and (9), give, for <s > 0,

L
(

CDt
(K) f

)
(s) =

˜(CDt
(K) f

)
(s) = K̃2(s) f̃ (1)(s)

=
1

(s + µ)1−α

[
s f̃ (s)− f (0)

]
=

s

(s + µ)1−α
f̃ (s)− f (0)

(s + µ)1−α
.
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Note that, for µ = 0 ,we recover the result presented in [38], p. 98. Applying the
Laplace transform to (22), we obtain

σ̃(x, s) =
1 + b s

(s+µ)1−α

1 + a s
(s+µ)1−α

ε̃(x, s) =
1 + b s

(s+µ)1−α

1 + a s
(s+µ)1−α

∂̃u
∂x

(x, s), x ∈ R,<s > 0,

where we used σ(x, 0) = ε(x, 0) = 0. Let

L(t) = L−1

1 + b s
(s+µ)1−α

1 + a s
(s+µ)1−α

(t), t > 0,

so that

σ(t, x) = L(t) ∗t
∂u(t, x)

∂x
=
∫ t

0
L(t− τ)

∂u(τ, x)
∂x

dτ, t ∈ (0, ∞), x ∈ R.

Then, (21)–(24) become

∂2

∂t2 u(x, t)− L(t) ∗t
∂2u(t, x)

∂x2 = f (x, t) + u0(x)δ(1)(t) + v0(x)δ(t). (25)

In order not to go into cumbersome detail, we will say that a continuous function
m(x), x ∈ R, rapidly decreases enough as |x| → ∞ if it is convolvable with a given function
b; that is, x 7→

∫
R h(x− t)b(t)dt, x ∈ R, is a continuous function. Thus, we assume:

(i) f (·, t) and the first three derivatives d
dx f (·, t), d2

dx2 f (·, t), and d3

dx3 f (·, t), t ≥ 0, rapidly
decrease enough with respect to |x| → ∞ so that their convolutions in x with a
bounded continuous function are continuous on R× (0, ∞).

(ii) u0 and v0 and their derivatives up to the third order rapidly decrease enough with
respect to |x| → ∞ so that their convolutions in x with a bounded continuous function
are continuous on R× (0, ∞).

Theorem 2. Assume that f , u0, and v0 satisfy assumptions (i) and (ii) given above.
Equations (21)–(24) have a unique solution given by

u(x, t) = P(x, t) ∗t,x B(x, t), x ∈ R, t > 0,

where

P(x, t) = L−1

1
2

s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

exp

−|x|s
√√√√√1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α


(x, t),

is a solution of the equation

∂2

∂t2 u(x, t)− L(t) ∗t
∂2u(t, x)

∂x2 = δ(x)δ(t),

and

B(x, t) = L−1

[
f̃ (x, s) + u0(x)s + v0(x)

s2

]
(x, t) (26)

= f (x, t)t+ + u0H(t) + v0t+, x ∈ R, t > 0.

P(x, t) is a distribution so that it is a smooth bounded function out of a set of points (x, t) ∈
(R \ (−ε, ε))× [0, ∞) for any ε > 0. The singularity is the point x = 0 so that, in a neighbourhood
of this point, x ∈ (−a, a), one has that P is the third derivative with respect to x of a bounded
continuous function over to (−a, a)× [0, ∞).

The solution u(x, t), (x, t) ∈ R× [0, ∞) is a continuous function.
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Proof. The Laplace transform Lt 7→s applied to (25), with x ∈ R and Rs > 0, gives

∂2

∂x2 ũ(x, s)− s2
1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

ũ(x, s) = −
1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

B̃(x, s). (27)

Applying the Fourier transform Fx 7→ξ to (27), we obtain

−ξ2 ˆ̃u(ξ, s)− s2
1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

ˆ̃u(ξ, s) = −
1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

̂̃B(ξ, s).

This implies that

ˆ̃u(ξ, s) =
s2

1+a s
(s+µ)1−α

1+b s
(s+µ)1−α

ξ2 + s2
1+a s

(s+µ)1−α

1+b s
(s+µ)1−α

· B̂(ξ, s)
s2 , ξ ∈ R,<s > 0. (28)

The next step is to apply the inverse Fourier transform. We note that

F−1
(

a
ξ2 + a

)
(x) =

1
2
√

ae−|x|
√

a, x ∈ R,

if Ra > 0. In order to use this result, we need to check that Rs

√
1+a s

(s+µ)1−α

1+b s
(s+µ)1−α

is positive if

Rs > 0. This follows from Lemma 1, part (a). Thus, for x 6= 0, the function P(x, t), t ≥ 0 is
smooth. Thus, P is smooth over (R \ {0})× [0, ∞).

Next, (28) becomes

ˆ̃u(x, s) = s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

F−1


s

√
1+a s

(s+µ)1−α

1+b s
(s+µ)1−α

ξ2 + s2
1+a s

(s+µ)1−α

1+b s
(s+µ)1−α

̂̂B(ξ, s)
s2

(x, s), (29)

for ξ ∈ R,Rs > 0, and, thus,

ũ(x, s) = s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

exp

−|x|s
√√√√√1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α


∗x

f̃ (x, s) + u0(x)s + v0(x)
s2 . (30)

Put

P(x, t) = L−1

1
2

s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α


×exp

−|x|s
√√√√√1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

(x, t)

, x ∈ R, t > 0.

Lemma 1 implies that we can take any x0 > 0 in the integrals below since we will
perform the use of te Cauchy formula in the analysis of these integrals. Thus, for x ∈ R,
t ∈ R+,
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P(x, t) =
1

4πi

∫ x0+i∞

x0−i∞
s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

exp

ts− |x|s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

ds, (31)

we conclude that the point x = 0 is singular. Thus, the integral (31) must be understood in
the sense of dual pairing (it does not exist in the classical sense). We have to enter into the
space of the distribution and rewrite P into the form

P(x, t) =

−1
2

d3

dx3L
−1


s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α


−2

× exp(−|x|s

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

)

(x, t),

so that

K(x, t) =
1
2

s

√√√√ 1 + a s
s+µ)1−α

1 + b s
(s+µ)1−α

−2

exp

−|x|s
√√√√√1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

,

x ∈ R, t ≥ 0

is integrable in a neighbourhood of x = 0, t ≥ 0. We have that

P(0, t) = L−1

1
2

s

√√√√ 1 + a s
s+µ)1−α

1 + b s
(s+µ)1−α

−2, t ≥ 0,

is a bounded continuous function.
Let

P0(x, t) =
1

2πi

∫ x0+i∞

x0−i∞
K(x, s)ds, x ∈ R, t > 0.

Regarding the behavior of the integrand, we conclude that it is a bounded continuous
function on R× [0, ∞). Since (26) holds for B, we obtain

u(x, t) = −P0(x, t) ∗x,t (
∂3

∂x3 f (x, t) ∗t t+ + u(3)
0 (x) ∗t H(t) + v(3)0 ∗t t+), x ∈ R, t > 0. (32)

This, with the assumptions on f , u0 and v0, implies that u(x, t), x ∈ R× [0, ∞), is a
continuous function. This completes the proof of the theorem.

Corollary 1. If u0 = 0 and f and v0 and their derivatives up to order 5 satisfy assumptions (i)
and (ii), then the solution u is a classical one.

Proof. The assumptions imply that the second derivative of u(x, t) is continuous in x.We
note that the member with u0 disappears and that the second derivative of t+ is δ(t). Thus,
in the convolution of B with respect to t with P0, one obtains for the solution that the second
derivative ∂2

∂t2 u is continuous for t ∈ [0, ∞).

Corollary 2. If f , u0 and v0 and their derivatives up to order 6 satisfy assumptions (i) and (ii),
then the solution u is a classical one.

Proof. Note that u0 6= 0 gives an additional member on the right hand side of P0(x, t) ∗x,t

(u(3)
0 (x)δ′(t)). Thus, in order to improve the properties of P0 with respect to t, one should

put in the definition of P, P(x, t) = ∂4

∂x4 ..... Then, u given by (32) will have a new form: a
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convolution of a new P0 and the fourth derivatives of f , u0 and v0 With this, one has that
∂2

∂t2 P(x, t) is also continuous with respect to x ∈ R and t ≥ 0. This completes the proof.

Example

As a specific example, we consider Equations (21)–(24) with

f (x, t) = 0, v0(x) = 0, u0(x) = δ(x).

The solution is given by (30). It has the form

u(x, t) = − 1
2πi

∫ x0+i∞

x0−i∞

√√√√√1 + a s
(s+µ)1−α

1 + b s
(s+µ)1−α

exp

−|x|s
√√√√√1 + a s

(s+µ)1−α

1 + b s
(s+µ)1−α

ds (33)

It has a strong singularity at x = 0 for any t > 0, so, in our numerical experiment,
we consider it for x 6= 0. In Figure 2, we show (33) for several values of parameters. The
results presented in Figure 2 show that, for selected values of a = 0.2, b = 1, α = 0.3, by
increasing the parameter µ, the speed of the propagation of the maximum decreases and
the amplitude of the maximum decreases.

x

m=0 m=0.5

m=1

1 2 30

0.5

1

1.5

u x( , )1.5

Figure 2. Solution (33) for several values of µ and for t = 1.5, a = 0.2, b = 1, α = 0.3.

Figure 3 shows the solution when µ increases further. It is seen that the speed of the
propagation of the maximum decreases further, whereas the amplitude of the maximum
increases. This interesting property needs to be studied further.

x

u x( ),1.5

m=0

m=1

m=2

1 2 30

0.5

1

1.5

m=7

m=15

m=25

Figure 3. Solution (30) for large values of of µ and for t = 1.5, a = 0.2, b = 1, α = 0.3.



Fractal Fract. 2022, 6, 617 16 of 17

4. Conclusions

We considered a general form of a fractional derivation and fractional integral, sug-
gested by several leading experts in the field. Two Sonin pairs, called cases H of Hanyga
and Z of Zacher, were analyzed through the dissipation inequality for the Zener-type
constitutive equation. Our approach for the proof of the dissipation inequality was based
on the Bochner–Schwartz theorem as in our recent papers [18,36]. The limitation of our
approach is that it can only be applied to linear constitutive equations.

Our framework includes the space of generalized functions. This enables us to use the
strong results of the Schwartz theory. However, our results are closely connected with the
formulations of classical analysis.

In the case Z, we present results related to a stress relaxation and a wave propagation
for a Zener-type viscoelastic body for which the proposed thermodynamical restriction for
coefficients in the constitutive equation guarantee the existence and uniqueness.

The analysis of a solution for a wave propagation is the main part of our analysis. It
appears that some estimates based on the condition b > a, followed from the dissipation
inequality, are necessary for the use of the Fourier and Laplace transforms and their inverses.
Additional assumptions on initial data u0, v0 and the perturbation f imply the existence of
the classical solution given in the integral form.

It is shown in examples that a parameter µ appearing in the definition of the general-
ized derivative in a Sonin pair proposed by Zacher allows for a better fit of experimental
results. The numerical results show the properties of a solution out of a neighbourhood of
x = 0.

Finally, we comment the possible extension of the present work. The introduction
of stochastic terms in the constitutive equation for the case Z when µ 6= 0 (cf. (8)) seems
possible. However, the first step in such an analysis is the restriction on the coefficients that
are obtained in this paper.
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