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Abstract: The accurate characterization of the surface microstructure of ultra-high temperature ce-
ramics after thermal shocks is of great practical significance for evaluating their thermal resistance
properties. In this paper, a fractal reconstruction method for the surface image of Ultra-high tempera-
ture ceramics after repeated thermal shocks is proposed. The nonlinearity and spatial distribution
characteristics of the oxidized surfaces of ceramics were extracted. A fractal convolutional neural
network model based on deep learning was established to realize automatic recognition of the
classification of thermal shock cycles of ultra-high temperature ceramics, obtaining a recognition
accuracy of 93.74%. It provides a novel quantitative method for evaluating the surface character of
ultra-high temperature ceramics, which contributes to understanding the influence of oxidation after
thermal shocks.
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1. Introduction

Ultra-high temperature ceramics (UHTCs) are an emerging class of materials that
can keep their physical and chemical structure stable under high temperatures. These
materials include refractory borides, carbides, and transition metal nitrides, such as ZrB2,
TaC, etc. [1,2]. With the rapid development of UHTCs used in aviation, nuclear energy,
military equipment, and the automobile industry, this class of materials has attracted much
attention for employment in extreme environments [3]. ZrB2, for example, has been shown
to have high antioxidant properties [4,5]. In ZrB2 composites, SiC is usually introduced as
the second phase to inhibit grain growth and improve sintering performance, oxidation
performance, and mechanical properties [6,7]. The effects of the microstructure on ceramic
properties have been reported in many relevant fields. Chu et al. [8] analyzed γ-dicalcium
silicate-based low-carbon materials and discussed the roles of particle packing and water-
coating thickness in the carbonation and strength of this material. However, due to the
inherent brittleness of UHTCs, they are prone to catastrophic damage when subject to high
temperature differences under rapid heating or cooling. Evaluating the thermal shock
resistance and fracture strength of UHTCs at high temperatures is an essential problem [9].

The thermal shock failure criteria and thermal shock resistance characterization model
have been established for this kind of material, and researchers are currently striving
to accurately evaluate their thermal shock resistance [9]. Along with investigations into
the optimal design [10] and the heterogeneous materials introduced [11], the description
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of the complexity of the structures has become a salient problem. The utilization of
the microstructure of UHTCs to reveal the damage to the materials following thermal
shocks has become a commonly used method, comparing and extracting features such
as the oxidized surface [2], fracture surface [12], crack propagation path [13], and fretting
wear scars [14]. However, it is inconvenient and difficult to extract the material damage
features when the material structure is complex. Therefore, a quantitative approach to
extract damage features from complex microstructures, which would be beneficial for the
evaluation of the damage to mechanical properties, is urgently needed.

Daghigh et al. [15] applied machine learning to excavate the internal relationship
between different particle fillers and the fracture toughness of particle-reinforced compos-
ites. Konstantopoulos et al. [16] used a machine learning classification model to process
nanoindentation data and identify interface reinforcement. In traditional machine vision-
based image recognition, experts manage and define feature information and design and
provide corresponding feature extraction and classification algorithms, which have good
recognition characteristics. However, the robustness of different features and the efficiency
of recognition still require significant work.

In the prediction of mechanical properties of composite materials, a large amount
of data is obtained based on experimental tests and numerical simulation. Combined
with artificial intelligence, researchers can establish rapid responses between parameters
and properties. Laban et al. [17] used artificial neural networks to predict the quasi-
static compressive bearing capacity of composite circular tubes subjected to low-speed
impact loads through the initial peak force, average load, and crushing force efficiency
and successfully modeled the highly nonlinear behavior with a mean square error of
0.191 N. Artero-Guerrero et al. [18] predicted the ballistic limit of a composite under differ-
ent layering orders based on an artificial neural network. The errors in the artificial neural
network prediction results for the training set and test set were 3.7% and 7%, respectively.
It was concluded that laying 0◦ and 90◦ laminates on the impact side of the composite mate-
rial was helpful in improving the ballistic limit of the composite laminates and could guide
the design of composite materials. Using neural networks, Yan et al. [19] proposed an effi-
cient multiscale framework for composite substitution modeling considering progressive
damage behavior.

With the development of deep learning models, automatic extraction of material dam-
age features for the identification of damage types has demonstrated advantages such
as high efficiency and low cost [20]. Such methods can help in extracting and describing
complex image features and significantly reduce the required labor [21]. Yang et al. [22]
predicted complex stress and strain fields in layered composites using deep learning. The
convolutional neural network (CNN) model has powerful feature extraction, nonlinear
mapping, and generalization capabilities [23]. Yu et al. [24] applied an AI-based approach
in the optimal design of 2D nanocomposites, identifying high-performance solutions with
maximum toughness or strength. A CNN model was used to obtain the toughness or
strength, and a global optimizer was used to search the design space of the 2D nanocom-
posite graphene.

Although CNN models have powerful image feature recognition abilities, irregular
and inhomogeneous microstructures can make feature recognition difficult. The fractal
method, as a nonlinear mathematical method, can be used to effectively evaluate the
irregularity and complexity of geometrical morphologies. Roberto et al. [25] predicted and
classified histological images through fractal recombination features.

The surfaces of UHTCs in extreme environments are oxidized after thermal shocks. The
oxidation structures influence the residual strength of UHTCs following thermal shocks [26].
This paper provides a fractal feature recombination method for the oxidized surfaces of
UHTCs following thermal shocks. Then, a convolution neural network model based on the
fractal recombination image is established. The relationship between the microstructure
of the oxidized surface and the strength of UHTCs is discussed. Furthermore, a fusion
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model combining the oxidized surface image and the fractal feature reconstruction image
is established and verified.

2. Methodology
2.1. Thermal Shock Experiment

In this study, the properties of ZrB2–20%vol.SiC composites following repeated ther-
mal shocks were investigated. ZrB2–SiC ceramics were prepared through hot pressing for
1 h at 1900 ◦C and 30 MPa under a uniaxial load. The prepared ZrB2–SiC ceramic material
was cut, with its tensile surface perpendicular to the direction of hot pressing. The sample
size was 36 mm × 4 mm × 3 mm, following the GB/T 6569-2006/ISO 14704: 2000 standard.
The samples were subjected to thermal shock treatment with electric heating equipment.
Six samples were tested under different thermal shock conditions. The temperatures of the
samples’ centers were measured using thermocouples and a double specific-heat infrared
thermometer. When the temperature reached 1600 ◦C, the system circuit was closed and
a thermal shock was recorded. Thermal shocks with 10, 20, 30, and 50 cycles were used.
The heating rate was 80 ◦C/s. The residual strength after the thermal shocks was measured
with a three-point bending test. The microstructures of the oxidized surface were observed
with a scanning electron microscope (SEM), as shown in Figure 1. Experimental details
can be found in our previous studies [26]. From the microstructures, it can be seen that the
images of the oxidized surfaces were complex, and they were difficult to describe using
regular geometries.
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Figure 1. Micrographs of the original specimen (a) and the specimens shocked with 10 (b), 20 (c),
30 (d), and 50 (e) cycles. The scale of the images is 20 µm. In (a), ZrB2 is gray and the SiC is a dark
color in the composites.

2.2. Fractal Feature Recombination Method

Fractal geometry is a field that deals with geometrical structures that cannot be defined
using Euclidean geometry. In computer vision, the most prominent algorithms are the
box-counting [27] and gliding-box [28] algorithms. The application of these algorithms
consists in splitting the images onto different scales and then extracting features from each
sub-image. For the representation of numerical features using fractal approaches, we used
the fractal dimension (FD), lacunarity (LAC), and percolation (PERC), which were judged
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to be three of the most relevant approaches. A multiscale and multidimensional analysis
of the images was performed to obtain these features. The gliding-box [28] algorithm,
which can be applied to process images of different resolutions and sizes, was employed as
a multidimensional analysis method.

Three color distance measures—namely, the chessboard (∆h), Minkowski (∆n), and
Manhattan (∆m) distances—were employed, as shown in Equations (1)–(3) [28]:

∆h = max(| fi(ki)− fc(kc)|), k ∈ r, g, b (1)

∆n = p

√
∑
k
(( fi(ki)− fc(kc))

p, k ∈ r, g, b (2)

∆m = ∑
k
| fi(ki)− fc(kc)|, k ∈ r, g, b (3)

When box β was moved, a multidimensional analysis of the color similarity was
performed for each pixel in the box. The center vector fc = (rc, gc, bc) represents the color
intensity of the three-color RGB channels. Other pixels in the border are also assigned
fi = (ri, gi, bi).

The FD, LAC, and PERC are described by five functions: C(L), Q(L), M(L), Λ(L), and
D(L) [25]. From the five characteristic functions of the FD, LAC, and PERC, 300 fractal
features were obtained. The details can be found in Appendix A. Then, these features were
reshaped into 10 × 10 × 3 RGB images, and the process is shown in Figure 2.
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Figure 2. In the process of fractal feature recombination, 300 features were obtained from the five functions
of the FD, LAC, and PERC, and these features were reconstructed into 10× 10× 3 RGB images.

However, the Minkowski distance also changes due to different p values. The Minkowski
distance is an extension of the Euclidean distance. When p is 2, it results in a Euclidean
distance. With changing values of p, 100 different features could be obtained. We randomly
selected one image from each category. It showed that the standard deviation of the feature
reached the maximum when p equaled 3. This also indicated that the range of the features
was the largest, as shown in Figure 3.
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Figure 3. Using the Minkowski distance, the standard deviation of the features was obtained with
different p values.

Based on the Minkowski distance, 100 features could be extracted from the image
and recombined into a 10 × 10 matrix. In Figure 4, the gray co-occurrence matrix (GLCM)
obtained by processing the reconstructed matrix is shown. Four different angle-scanning
directions of 0◦, 45◦, 90◦, and 135◦ were selected, and offset d was set as 1. Then, the matrix
was processed to obtain four different GLCMs. Finally, the energy was extracted from the
GLCM using Equation (4) [29]. As shown in Figure 5, when p was 3, the average energy
was the largest relative to other p values. This also indicated that, when p = 3, the elements
in the GLCM were most concentrated. To sum up, p = 3 was the most appropriate for the
Minkowski distance.

Energy =
N−1

∑
i,j=0

P(d,θ)(i, j)2 (4)
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2.3. Model Selection

ResNet, which introduced the residual learning framework of deep feedforward
neural networks, was first proposed by He et al. [30]. In recent years, ResNet and its
variants have achieved excellent performance and become the dominant models in image
processing. They have been integrated into current popular processing models, such as
the region-based convolutional neural network (RCNN) [31]. ResNet [32] has been widely
used in various feature extraction applications. However, when a CNN reaches a certain
depth, further deepening of the classification effect does not lead to improvements but to
slower network convergence speed and lower accuracy. Even if the dataset is enlarged
and the over-fitting problem is solved, the classification performance and accuracy will not
be improved. The emergence of the residual network can solve this problem to a certain
extent. Thus, we used the ResNet-50 model in this article.

2.4. Model Fusion

Firstly, the sliding-box algorithm was used to place a square box with pixel L × L in
the upper left corner of the image, and the box was slid continuously to the right, one row
at a time, and down one row to the right of the image. When the end of the image was
reached, the box was repositioned at the starting point and the L value increased by 2. The
initial value of L was set to 3 and the maximum value was 41. Then, feature extraction
of the FD, LAC, and PERC for these boxes was used to obtain a total of 100 features from
the five functions C(L), Q(L), M(L), Λ(L), and D(L). By selecting three different distances,
300 features could be obtained. Finally, the 300 features were reconstructed into
a 10 × 10 × 3 artificial color image.

The training set of the original images was input into the CNN model, and the optimal
model O-Resnet was obtained by continually adjusting the learning rate, batch size, epoch,
and dropout. Similarly, the reconstructed images of the fractal features were input into
the CNN model, and the optimal model F-ResNet was obtained after the corresponding
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adjustment. Based on the test set, the original image and the fractal reconstruction image
were input into O-ResNet and F-ResNet, respectively, and the classification and recognition
results were output, respectively. Then, the quasi-probability values of the two models
were added according to the sum rule, finally, the model fusion result and the predicted
class were obtained. The overall process is shown in Figure 6.
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3. Experimental Results and Analysis
3.1. Dataset
3.1.1. Microscopic Image Acquisition of Oxidized Surface

The original dataset in this study consisted of 10 SEM images of a ZrB2–SiC oxidized
surface following repeated thermal shocks. There were five categories; namely, those for
0, 10, 20, 30, and 50 thermal shock cycles. Zero corresponded to the surface morphology
without thermal shocks. The image resolution was 500 dpi and the pixel size was 645 × 478.
The number of thermal shocks cycle provided the classification of the corresponding target.

3.1.2. Data Preprocessing

To ensure the reliability of the model and improve the training accuracy, the dataset
of the image was enhanced. We first clipped the images of the original dataset; that is, set
a sliding window with a size of 50 × 50 for each image. Every time the sliding window
moved to a new position, we made a judgment based on its position. If the window did
not exceed the right or bottom boundary of the original image, we cropped its position.
Otherwise, we did not cut it and moved directly to the next position. In this study, the
window sliding step was set to 35 and, finally, each original picture was cropped into
234 images with pixels of 50 × 50. To further expand the dataset, random rotation, trans-
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lation, scaling, flipping, and shearing were used. Then, the extended dataset was re-
constructed with fractal features, as shown in Figure 7. The oxidized surface images of
ZrB2–SiC ceramics with different numbers of thermal shock cycles (0, 10, 20, 30, and 50)
were divided into five categories: first, second, third, fourth, and fifth. Based on the fractal
feature extraction method described in Section 2.4, the fractal features extracted from each
category of images were reconstituted into chromaticity maps. Finally, the reconstructed
images of the fractal features were input into the deep learning model.
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3.2. Experimental Parameter Settings and Evaluation Indicators
3.2.1. Parameter Settings

The dataset from the expanded original image and fractal feature reconstruction image
was divided into the training set, validation set, and test set in the ratio of 6:2:2, respectively.
At the same time, the image from the dataset was resized to 3 × 224 × 224 as the input
of the model. In the process of model training, the initial learning rate for training the
two ResNet models was 0.005, the learning rate drop factor was 0.001, the batch size
was 128, the number of iterations was 20, and the cross-entropy loss function was used.
Generalized regularization was added to the training models to prevent over-fitting of the
training system. Finally, the softmax classifier was used to output the final identification
results and a random gradient descent method to learn parameters.

3.2.2. Experimental Evaluation Index

In multi-target detection and classification, accuracy is the most important evaluation
index; that is, the percentage of the quantity correctly predicted by the model compared
to the total quantity. This study compared the accuracy of each model as the evaluation
standard. In addition to accuracy, the evaluation criteria for the models included precision
and recall. Precision is the proportion of the sample identified as positive that is actually
positive. The recall rate is the proportion of positive samples correctly identified as positive.
The calculation formulas for each evaluation index are shown in Equations (5)–(7):

Acc =
TP + TN

TP + FN + FP + TN
(5)

Pre =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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TP refers to the number of positive classes correctly predicted as positive. TN is the
number of negative classes correctly predicted as negative. FP is the number of negative
classes incorrectly predicted as positive. FN is the number of positive classes wrongly
predicted as negative.

The statistics in Table 1 are the results of O-ResNet for the above algorithm indicators.
The statistics in Table 2 are the results of F-ResNet. Table 3 shows the fusion results of
the O-ResNet and F-ResNet models. Figure 8a–c display the variation tendencies for the
accuracy, precision, and recall statistics shown in Table 1, Table 2, and Table 3, respectively.

Table 1. The classification results for O-ResNet.

Category Accuracy (%) Precision (%) Recall (%)

First 100.0 100.0 100.0
Second 100.0 100.0 100.0
Third 91.5 84.2 71.6

Fourth 90.1 73.6 79.1
Fifth 98.1 93.0 98.5

Table 2. The classification results for F-ResNet.

Category Accuracy (%) Precision (%) Recall (%)

First 90.5 81.3 77.6
Second 97.4 90.5 100.0
Third 83.9 61.4 66.2

Fourth 81.9 58.3 52.2
Fifth 94.1 89.2 86.6

Table 3. The classification results for O-F-ResNet (Fusion model).

Category Accuracy (%) Precision (%) Recall (%)

First 100.0 100.0 100.0
Second 100.0 100.0 100.0
Third 93.0 85.5 79.1

Fourth 91.3 77.9 79.1
Fifth 98.1 93.0 98.5

3.3. Result Analysis

As shown in Tables 1–3, the average accuracy of the fusion model O-F-ResNet was im-
proved by 0.54% compared to O-ResNet and by 6.52% compared to F-ResNet. O-F-ResNet
was 1.12% more accurate on average than O-ResNet and 15.14% more accurate than
F-ResNet. The average recall rate of O-F-ResNet was 1.50% higher than that of O-ResNet
and 14.82% higher than that of F-ResNet. The fusion model had the highest average accu-
racy. The fractal features increased the recognition accuracy in the fusion model, especially
for the third and the fourth categories, as shown in Figure 8.

As can be seen from Table 4, the residual strength increased after repeated thermal
shocks. The formation of a silica-rich scale is considered to improve oxidation resistance,
and such scales are effective in certain temperature, pressure, and external gas velocity
regimes [3]. When the number of thermal shock cycles was increased to 20, the bending
strength continued to increase. However, when the number of thermal shock cycles reached
30, the bending strength of the sample was smaller than that after 10 and 20 thermal shock
cycles. The reason is that, with the increase in thermal shock cycles, more gas products
were produced by the oxidation of the sample. For example, gaseous products, such as CO
and B2O3, leave many holes when they pass through the oxide layer, which can possibly
reduce ceramic strength. However, when the number of thermal shocks rose to 50 cycles,
the pores in the oxide layer did not show an obvious increasing trend and the silica-rich
glass phase was denser than before, which led to a higher strength than 30 cycles.
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Table 4. Relationships between thermal shock cycles and residual strength [26].

Thermal Shock Cycles Bending Strength (MPa)

0 440 ± 47
10 514 ± 34
20 645 ± 60
30 494 ± 147
50 589 ± 72

In this study, fractal geometry features combined with convolutional neural networks
were used to investigate thermal shock cycles applied to UHTCs. Quantitatively extracting
features of the surface microstructure of UHTCs after thermal shocks can contribute to
evaluating their thermal shock resistance. This method can be expanded to recognize the
damage features of composites. Using microstructures of materials to distinguish their
loading conditions can help to provide early warnings before the material fractures.

4. Conclusions

In this paper, a characterization method for the oxidized surface of ultra-high temper-
ature ceramics was proposed, and a correlation model for the oxidized surface microstruc-
tures and thermal shock properties of materials based on fractal features and deep learning
was constructed. The main conclusions are as follows:

(1) A fractal feature recombination method for the oxidized surface of ultra-high tem-
perature ceramics after thermal shocks was described. It is a novel method for the
extraction of irregular and inhomogeneous microstructures of oxidized surfaces. The
method transformed the parameters of fractal features into chromaticity maps suitable
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to input into deep learning models. In the image feature extraction process, the gray
co-occurrence matrix was obtained by processing the reconstructed matrix. The p
value was calculated and p = 3 resulted in the appropriate Minkowski distance for
our images;

(2) The original images and the recombination images of the fractal features with different
numbers of thermal shock cycles were respectively input into the deep learning model
and the model was fused in the softmax layer. Ultimately, the classification accuracy of
the oxidized surface image reached 93.47%. It was verified that the fusion model could
effectively identify the categories of oxidized surface images under different thermal
shock cycles. The fractal features were able to increase the recognition accuracy in the
fusion model;

(3) A quantization method for the oxidized surface of ultra-high temperature ceramics
with different numbers of thermal shock cycles was described. The relationship
between the oxidized surface of the material and the strength was discussed.

In the future, distance calculation formulas other than the chessboard, Minkowski,
and Manhattan distances could be selected to obtain fractal features, and different fea-
ture arrangement methods could be employed to further improve image classification
performance. In the process of composite structure assembly and use, our method can
also be used to detect the damage to composites, which can help to improve the reliability
of structures.
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Appendix A. Fractal Feature Extraction Process

In this study, fractal-based methods were used to represent structures through ob-
servations at different scales. The most prominent algorithms for this purpose are the
box-counting [27] and gliding-box [28] algorithms. These algorithms involve splitting
images into different scales and then extracting features from each sub-image. For the
representation of numerical features using fractal approaches, the fractal dimension (FD),
lacunarity (LAC), and percolation (PERC) are three of the most relevant features [25].
A multiscale and multidimensional analysis of the image was performed in order to obtain
these features. The multidimensional analysis method we chose was the gliding-box [28]
algorithm. This algorithm consists of placing a box β sized L × L in the upper-left corner
of the image, where L is given in pixels. This box glides through the image, one column
and then one row at a time. After reaching the end of the image, the box is repositioned at
the starting point and the value of L is increased by 2. In an image sized H ×W, the total
number T of boxes for a scale L is given by Equation (A1):

T(L) = (H − L + 1)× (W − L + 1)|L ≤ (H, W) (A1)

When box β is moved, a multidimensional analysis of color similarity is performed
for each pixel in the box. The center vector fc = (rc, gc, bc), represents the color intensity of
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the three-color RGB channels. Other pixels in the border are also assigned fi = (ri, gi, bi).
Then, the box is binarized by calculating the color distance between fc and fi to determine
the size. As shown in Equations (A2)–(A4) [28], three color distance measuresnamely, the
chessboard (∆h), Minkowski (∆n), and Manhattan (∆m) distances—were chosen:

∆h = max(| fi(ki)− fc(kc)|), k ∈ r, g, b (A2)

∆n = 3

√
∑
k
(( fi(ki)− fc(kc))

3, k ∈ r, g, b (A3)

∆m = ∑
k
| fi(ki)− fc(kc)|, k ∈ r, g, b (A4)

fi is marked as 1 if the calculated distance between fc and fi is less than or equal to
the box’s border L; otherwise, fi is marked as 0. Figure A1 shows a schematic diagram of
the calculation of the color distance for a box with a 3 × 3 border.
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Figure A1. Binarization diagram.

The aim of the process is to convert a box containing RGB into a box containing binary.
After the binarization of each box with frame L, the corresponding structure of the probability
matrix is generated, and each element in the matrix corresponds to probability P.

Taking a 3× 3 box as an example, the image with a box with a border L = 3 is traversed.
After binarization, we get a total of N boxes. The number of pixels marked 1 in each box is
then counted. A box with only 1 pixel equal to 1 is labeled n (1, 3). A box with only 2 pixels
equal to 1 is labeled n (2, 3). By analogy, a box with only 1 pixel equal to 1 is labeled
N (9, 3). At this point, n (1, 3) + n (2, 3) +... +n(9, 3)= N, and let P(m, 3) = n(m, 3)/N.

The FD is the feature most commonly used to evaluate the fractal characteristics of
images and involves the irregularity and complexity of fractals. To obtain the eigenvalues
of the local FD from the probability matrix for each value of scale L, Equation (A5) can be
used [28]:

D(L) =
L2

∑
m=1

P(m, L)
m

(A5)

The LAC is a complement to the FD and can further be used to evaluate the dis-
tribution and filling of fractal space. Based on the probability matrix, the first-order
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matrix in Equation (A6) and the second-order matrix in Equation (A7) can be calculated as
follows [28]:

µ(L) =
L2

∑
m=1

mP(m, L) (A6)

µ2(L) =
L2

∑
m=1

m2P(m, L) (A7)

The LAC value with the border L is given by Λ(L), as shown in Equation (8):

Λ(L) =
µ2(L)− (µ(L))2

(µ(L))2 (A8)

The PERC is a physical phenomenon that mainly involves the properties of a fluid in
porous media. This concept can be used to verify some of the cluster properties of image
pixel neighborhoods. After the color distance ∆ is calculated, the binary matrix generated
is marked by a clustering marking algorithm; that is, the nearby pixel group meeting the ∆
distance criterion is marked, as shown in Figure A2.
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Assume that ci is the number of clusters in box β and represents the characteristics of
the average number of clusters in each box with side length L. As shown in Equation (A9),
this is given by the feature C(L) [28]:

C(L) =
∑

T(L)
i=1 ci

T(L)
(A9)

It is assumed that mi is the size of the maximum number of clusters in box β. The
average coverage area of the largest clusters in each box with side length L is given by the
feature M(L) [28], as shown in Equation (A10):

M(L) =
∑

T(L)
i=1

mi
L2

T(L)
(A10)

We can also verify that box β is permeable by specifying permeable thresholds for
different types of structures. In this matrix, the threshold is set to p = 0.59275. If the ratio of
the number of pixels marked 1 to the total number of pixels in the matrix is greater than
or equal to p, the matrix is considered permeable. By setting Ωi to the number of pixels
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marked 1 in box β with size L × L, we can determine whether the box is infiltrating with
Equation (A11):

qi

{
1, Ωi

L2 ≥ 0.59275
0, Ωi

L2 < 0.59275
(A11)

Then, we can obtain the binary value of qi, where 1 indicates that the box is infiltrating.
Feature Q(L) represents the average number of seepage occurrences in the box with side
length L, which can be obtained from Equation (A12) [28]:

Q(L) =
∑

T(L)
i=1 qi

T(L)
(A12)

From the above five characteristic functions of FD, LAC, and PERC, 300 fractal features
can be obtained.
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