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Abstract: As large-sized spacecraft have been developed, they have been equipped with flexible
appendages, such as solar cell plates and mechanical flexible arms. The attitude control of spacecraft
with flexible appendages has become more complex, with higher requirements. In this paper, a
fractional-order PD attitude control method for a type of spacecraft with flexible appendages is
presented. Firstly, a lumped parameter model of a spacecraft with flexible appendages is constructed,
which provides the transfer function of the attitude angle and external moment. Then, a design
method for the fractional-order PD controller for the attitude control of a spacecraft with flexible
appendages is provided. Based on the designed steps, a numerical example is provided to compare
the control performances between the fractional-order and integer-order PD controllers. Finally, the
obtained numerical results are presented to verify the effectiveness of the proposed control method.

Keywords: fractional-order PD control; attitude control; spacecraft; flexible appendages

1. Introduction

Spacecraft are the main carriers of space exploration missions, which have become
complex and large-scale in recent years [1,2]. The spacecraft’s capacity and launch cost
limit the spacecraft weight, such that large spacecraft always use lightweight materials
to reduce the overall mass of the spacecraft. In general, large spacecraft with lightweight
materials have strong flexibility.

In the modeling process of flexible spacecraft, the commonly used methods include
the lumped parameter method, the distributed parameter method, and the finite element
method. The lumped parameter method regards the spacecraft structure as a rigid body
system composed of several springs and rigid bodies [3]. Moreover, the flexible appendages
of the spacecraft structure are expressed by adjusting the stiffness of the spring. Then,
the spacecraft dynamical model can be established according to the multi-rigid-body
dynamics. Some researchers have studied the modeling and dynamics of spacecraft with
flexible appendages. Liu et al. [4] studied the dynamic characteristics of the dual solar panel
flexible spacecraft and discussed the rigid–flexible coupling effect between the attitude
motion, structural deformation, and thermal load. Gasbarri et al. [5] used the finite element
method to study the modeling of multibody flexible spacecraft and the spacecraft dynamics
in the form of the attitude coupling of complex spacecraft.

In the space environment, the spacecraft should be able to adjust its attitude to meet the
stated mission. Attitude control of the spacecrafts is one of the most important aspects [6].
The design of the attitude control indirectly determines the normal operation of a spacecraft
in orbit. For example, a spacecraft equipped with flexible solar panels is a typical rigid–
flexible coupling system [7]. During the attitude adjustment of the spacecraft, the flexible
solar panels vibrate and affect the spacecraft. If this rigid–flexible combination is not
properly controlled, the normal operation of the spacecraft could be affected. Compared
with rigid spacecraft, flexible spacecraft are more complicated to control because of the
vibration of the flexible structure and the coupling between the central rigid bodies. Thus,
the influence of the flexible appendages in spacecraft attitude control should be considered.
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The spacecraft attitude control algorithm mainly uses relatively common algorithms,
such as the PD control [8–10]. The impact analysis of the external interference and flexible
structure vibration is not comprehensive. With the increasing complexity of the spacecraft
structure, it is difficult for the conventional PD control to meet the control requirements of
the spacecraft. Without considering the influence of the flexible appendages’ vibration on
the attitude of the spacecraft, the attitude control design could affect the operating state of
the spacecraft and even lead to the instability of the spacecraft.

Fractional calculus is a generalization of the traditional integer calculus [11–13]. To
improve the control performance of the PD control, fractional calculus has been introduced
into the traditional PD control. Safikhani et al. designed a non-overshooting fractional-order
PD for special case of fractional-order plants [14]. Saleem et al. proposed an intelligently
optimized fractional-order PD controller of a rotary inverted pendulum [15]. Celik provided
a new fractional-order PD cascade controller for the advanced load frequency control of
a power system [16]. These references show the superiority of the fractional-order PD
controller, which encourages the study of fractional-order PD attitude control for spacecraft
with flexible appendages.

Motivated by the above discussion, this paper focuses on the design of a fractional-
order PD controller for spacecraft with flexible appendages. Based on the lumped parameter
method, the dynamical model of spacecraft with flexible appendages is discussed, as well as
the transfer function of the attitude angle and external moment. Then, the fractional-order
PD controller is designed according to the given gain crossover frequency and phase margin.
In addition, the effectiveness of the obtained results is verified by a numerical simulation.

The rest of this paper is organized as follows: in Section 2, some preliminaries are
introduced, including the fractional derivative and fractional-order PD controller; then, the
attitude control modeling of spacecraft with flexible appendages is proposed in Section 3;
a fractional-order PD controller and its design steps are given in Section 4; an example
is provided to verify the obtained results in Section 5; finally, the conclusions are listed
in Section 6.

2. Preliminaries
2.1. Fractional Derivative

The fractional derivative is a generalization of the integer-order derivatives, which
have been widely applied in different fields, such as dynamics, engineering, computer sci-
ence, etc. In particular, fractional derivative damping is utilized to describe the viscoelastic
damping model. The fractional derivative has three common definitions, the Grunwald–
Letnikov [17], Riemann–Liouville [18], and Caputo [19]. Let us introduce these definitions.

Definition 1 ([17]). In the Grunwald–Letnikov definition, the fractional integration and derivative
of a function x : (0, + ∞) −→ R with order q is described by

G
a Dq

t x(t) = lim
h→0+

1
hq

[ t−a
h ]

∑
i=0

(−1)i
(

q
i

)
x(t− ih), (1)

where
[ t−a

h
]

is the maximum integer, which is less than t−a
h and(

q
i

)
=

q(q− 1)(q− 2) · · · (q− i + 1)
i!

.

When q > 0, Equation (1) denotes the Grunwald–Letnikov fractional derivative definition.
When q < 0, Equation (1) is the Grunwald–Letnikov fractional integration definition. Due to its
discreteness, the Grunwald–Letnikov definition is always employed in numerical simulations.

In the theoretical analysis, Riemann–Liouville and Caputo definitions are commonly used.
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Definition 2 ([18]). The Riemann–Liouville fractional integration of a continuous function x :
(0, + ∞) −→ R is defined as:

R
a D−q

t x(t) =
1

Γ(q)

∫ t

a
(t− s)q−1x(s)ds, (2)

where q > 0, and Γ(q) is the Gamma function described by

Γ(q) =
∫ +∞

0
τq−1e−τdτ.

Definition 3 ([18]). The Riemann–Liouville fractional derivative of a continuous function x :
(0, + ∞) −→ R with order α > 0 is defined as:

R
0 Dα

t x(t) =
1

Γ(r− α)

dr

dtr

∫ t

0

x(s)

(t− s)α−r+1 ds, (3)

where r is a positive integer, and r− 1 ≤ γ ≤ r.

The Laplace transforms of the Riemann–Liouville fractional integration and derivative
are given respectively, i.e.,

L
{

R
a D−q

t x(t)
}
= s−qX(s), (4)

L
{

R
a Dα

t x(t)
}
= sαX(s)−

r−1

∑
i=0

si R
a Dα−i−1

t x(t)
∣∣∣
t=a

, (5)

where L{ ·} is a Laplace transform operator X(s) = L{x(t)}, and r is a positive integer
with r− 1 ≤ α ≤ r.

According to Equation (5), the initial conditions of the Riemann–Liouville fractional
derivative are complex and have unclear physical meanings. To improve this problem,
the Caputo definition of a fractional derivative is introduced.

Definition 4 ([19]). The Caputo fractional derivative of a continuous function x : (0, +∞) −→ R
with order α > 0 is defined as:

C
a Dα

t x(t) =
1

Γ(r− α)

∫ t

a

x(r)(s)

(t− s)α−r+1 ds, (6)

where r is a positive integer, and r− 1 ≤ α ≤ r.

In addition, the Laplace transformation of the Caputo fractional derivative is obtained,

L
{

C
a Dα

t x(t)
}
= sαX(s)−

r−1

∑
i=0

sα−i−1x(i)(a), (7)

where r is a positive integer with r− 1 ≤ α ≤ r.
According to Equation (7), the initial values of the Caputo fractional derivative are

integer-order and have practical physical meanings. We note that the Laplace transforms
of the Riemann–Liouville and Caputo fractional derivative are the same with null initial
conditions, i.e.,

L
{

R,C
a Dα

t x(t)
}
= sαX(s), (8)

when x(i)(a) = 0 for i = 0, · · · , r− 1.
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2.2. Fractional-Order PD Controller

The classical PD controller contains a proportion controller and a differentiation
controller and is described by

u(t) =
[

Kp + Kd
d
dt

]
e(t), (9)

where u(t) is the control signal, e(t) is the input of the PD controller, Kp is the proportion
coefficient, and Kd is the differentiation coefficient.

The fractional-order PD controller improves the classical integer-order differentiation
controller using a Caputo fractional derivative. Then, the fractional-order PD controller is
obtained as

u(t) =
[
Kp + Kd

C
0 Dα

t

]
e(t), (10)

where C
a Dα

t is the Caputo fractional derivative operation, which is defined in Definition
4. The Caputo fractional order α in the fractional-order PD controller is always set as
α ∈ (0, 2).

With null initial conditions, the Laplace transform of the fractional-order PD con-
troller (10) can be provided:

C(s) = L
{

u(t)
e(t)

}
= Kp + Kdsα. (11)

In the rest of this paper, the fractional-order PD controller (11) is used in the attitude
control of a type of spacecraft with flexible attachments.

3. Attitude Control Modeling of Spacecraft with Flexible Appendages

In this section, a lumped parameter model of spacecraft with flexible appendages is
proposed. Then, the corresponding attitude control model is constructed.

Figure 1 is the lumped parameter model of a spacecraft with flexible appendages,
which assumes that one side of the flexible appendages has n mass points mi (i = 1, · · · , n)
satisfying

Vi = ϕ̇li + µ̇i, i = 1, · · · , n. (12)

where ϕ is the attitude angle of the spacecraft, and Vi, li, and µi are the velocity, position,
and the elastic deformation of the mass point mi, respectively.

According to the angular momentum theorem, we have

Ḣ = I ϕ̈ + 2
n

∑
i=1

miliµ̈i = T, (13)

where H is the angular momentum of the centroid of the spacecraft system, T is the
external moment, and I is the moment of inertia of the spacecraft system satisfying I =

I0 + 2
n
∑

i=1
mil2

i .

In addition, spacecraft with flexible appendages have a motion equation. For example,
large-size solar panels always have flexibility due to the special material of metal–silicide
composites. Given the bending rigidity EI and structure distribution, the motion equation
of the spacecraft system can be obtained as

Mµ̈ + Cµ + Ml ϕ̈ = 0, (14)

where µ = (µ1, µ2, · · · , µn)T , l = (l1, l2, · · · , ln)T , C = diag{m1, m2, · · · , mn} is the mass
matrix of the flexible appendages, and C > 0 is always symmetric and denotes the stiffness
matrix of the flexible appendages. In addition, the flexible appendages are assumed to
be undamped.
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Figure 1. The lumped parameter model of spacecraft with flexible appendages.

Equations (13) and (14) imply

Mµ̈ + Cµ + Ml
(

T
I
− 2

I
lTMµ̈

)
= 0. (15)

Equivalently, we obtain

Qµ̈ + Cµ +
T
I

Ml = 0, (16)

where Q is also a real symmetric matrix satisfying

Q = M− 2
I

MllTM.

Because Q and C are both real symmetric invertible matrices, there exists a matrix K,
which is able to diagonalize Q and C, i.e.,{

KTQK = In,
KTCK = diag

{
ρ2

1, ρ2
2, · · · , ρ2

n
}
, Ω.

(17)

Substituting an alternative, µ = Kδ, Equations (13) and (17) can be respectively
rewritten as

I ϕ̈ + 2Θδ̈ = T, (18)

δ̈ + Ωδ +
T
I

ΘT = 0, (19)

where Θ = lT MK ∈ R1×n. Then, the Laplace transforms of Equations (18) and (19) are
obtained;

Is2 ϕ(s) = T(s)− 2s2Θδ(s), (20)

δ(s) = −
(

Θ1

s2 + ρ2
1

,
Θ2

s2 + ρ2
2

, · · · ,
Θn

s2 + ρ2
n

)T
T(s)

I
. (21)

Obviously, the transfer function of the attitude angle ϕ and external moment T is
given as

G(s) =
ϕ(s)
T(s)

=
1

Is2

(
1 +

2
I

n

∑
i=1

Θ2
i s2

s2 + ρ2
i

)
,

N(s)
D(s)

, (22)

where N(s) and D(s) are both polynomial functions of s.
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According to the fractional-order PD controller (11), the open-loop Po(s) and closed-
loop Pc(s) transfer functions of the controlled system are proposed, respectively,

Po(s) = G(s)C(s) =

(
Kp + Kdsα

)
N(s)

D(s)
, (23)

Pc(s) =
G(s)C(s)

1 + G(s)C(s)
=

(Kp + Kdsα)N(s)
D(s) + (Kp + Kdsα)N(s)

. (24)

The attitude control model of spacecraft with flexible appendages is given as the
above Equations (23) and (24). How to design the control parameters Kp, Kd, and α of the
fractional-order PD controller (11) is discussed in the next section.

4. Fractional-Order PD Controller Design

In this section, a design method for the fractional-order PD controller for the attitude
control of spacecraft with flexible appendages is presented. As we know, the gain crossover
frequency and phase margin are the two main indices for a controlled system. The gain
crossover frequency is the frequency at which the amplitude frequency curve intersects
the 0dB. When the crossing frequency is higher, the response speed becomes faster. The
phase margin is the maximum phase allowed to increase through the frequency point. The
ideal value of the phase margin is from π

6 to π
3 . To achieve the desired control performance,

the gain crossover frequency ωc and phase margin φm should be set in advance, whose
definitions are described by{

|Po(s)|s=jωc = 1,
arg(Po(s)|s=jωc) = −π + φm.

(25)

Then, according the the open-loop (23) and closed-loop (24) transfer functions of the
controlled system, we have

D(s) + (Kp + Kdsα)N(s)e−jφm
∣∣∣
s=jωc

= 0. (26)

Due to Equation (22), N(s) and D(s) are rewritten, respectively, as{
N(s) = c2ns2n + c2n−2s2n−2 + · · ·+ c2s2 + c0,

D(s) = d2n+2s2n+2 + d2ns2n + · · ·+ d4s4 + d2s2.
(27)

Substituting Equation (27) into Equation (26), we have

Dω + NωKp[cos(φm)− j sin(φm)] + NωKdωα
c

[
cos
(απ

2
− φm

)
+ j sin

(απ

2
− φm

)]
= 0, (28)

where{
Nω = (−1)nc2nω2n

c + (−1)n−1c2n−2ω2n−2
c + · · ·+ (−1)1c2ω2

c + c0,
Dω = (−1)n+1d2n+2ω2n+2

c + (−1)nd2nω2n
c + · · ·+ (−1)2d4ω4

c + (−1)1d2ω2
c .

(29)

Equivalently, Equation (28) gives{
Kp cos(φm) + Kdωα

c cos
(

απ
2 − φm

)
+ Dω

Nω
= 0,

−Kp sin(φm) + Kdωα
c sin

(
απ
2 − φm

)
= 0,

(30)

which obtains the solutions of Kp and Kd:
Kp = −Dω

Nω
· sin( απ

2 −φm)
cos(φm) sin( απ

2 −φm)+sin(φm) cos( απ
2 −φm)

,

Kd = − Dω
ωα

c Nω
· sin(φm)

cos(φm) sin( απ
2 −φm)+sin(φm) cos( απ

2 −φm)
.

(31)
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Based on Equation (31), the proportion coefficient Kp and differentiation coefficient
Kd both depend on the fractional order α given the gain crossover frequency ωc and phase
margin φm. Then, the fractional order α should be determined. The use of the fractional
order α instead of the integer order leads to better results, since the fractional order has
an extra degree of freedom. Thus, an additional error evaluation method is given. To
obtain better control performance, an error evaluation method is always used to minimize
the control error. The common error evaluation methods include the maximum absolute
error (MAE), integral absolute error (IAE), integral time-weighted absolute error (ITAE),
integral squared error (ISE), and the integral time-weighted squared error (ITSE), and the
corresponding objective functions are listed as follows:

MAE : J = max
t
|e(t)|,

IAE : J =
∫ T

0 |e(t)|dt,
ITAE : J =

∫ T
0 t|e(t)|dt,

ISE : J =
∫ T

0 [e(t)]2dt,
ITSE : J =

∫ T
0 t[e(t)]2dt,

(32)

where e(t) is the control error. In this paper, the ITAE is utilized to calculate the optimal
fractional order α. Then, combining Equation (31), all the control parameters Kp, Kd, and α
can be determined. The detailed design steps are given as follows.

The design method of the fractional-order PD controller for the attitude control of
spacecraft with flexible appendages has three steps.

• According to Equations (12)–(22), we calculate the open loop Po(s) in Equation (23)
and N(s), D(s) in Equation (27). Then, we obtain the parameters c0, c2, · · · , c2n and
d2, d4, · · · , d2n+2.

• Given the gain crossover frequency ωc and the phase margin φm, we determine the
expressions of Kp and Kd based on Equation (31). We substitute Equation (31) into
Equation (24) and obtain the closed-loop transfer function with only one independent
variable α.

• We select the ITAE in Equation (32) and calculate the optimal α, which can obtain
the minimum of the ITAE objective function. We determine Kp and Kd according to
Equation (31).

5. Numerical Simulation

In this section, a numerical example is given to demonstrate the effectiveness of the pro-
posed fractional-order PD attitude control method of spacecraft with flexible appendages.

We assumed that the flexible appendages had two mass points, i.e., n = 2 in Equation (12).
The two mass points were both m1 = m2 = 1 kg. The length of the flexible appendages
on one side was L = 4 m, and the positions of the two mass points m1, m2 were l1 = 2 m
and l2 = 4 m, respectively. The bending rigidity was selected as EI = 1.6e7 N·m2, and the
moment of inertia of the spacecraft system was I = 50 kg·m2. Obviously, Equation (13) became

Ḣ = I ϕ̈ + 2(m1l1µ̈1 + m2l2µ̈2) = T,

and the mass matrix M of the flexible appendages was

M =

[
1 0
0 1

]
.

The bending equations in Om1 and m1m2 were listed, respectively, as{
EIµ̈ = F1

(
L
2 − l

)
+ F2(L− l),

EIµ̈ = −F2(L− l).
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Combined with the initial value conditions, we obtained{
F1 = 48EI

7L3 (−16µ1 + 5µ2),
F2 = 48EI

7L3 (5µ1 − 2µ2).

Then, the stiffness matrix of the flexible appendages was calculated as

C = 107 ×
[

2.7429 −0.8571
−0.8571 0.3429

]
.

Thus, the motion equation of the spacecraft system (14) became[
µ̈1
µ̈2

]
+ 107 ×

[
2.7429 −0.8571
−0.8571 0.3429

]
×
[

µ1
µ2

]
+

[
2
4

]
ϕ̈ = 0.

The equivalent Equation (16) was obtained, and the corresponding parameters were

Q =

[
0.84 −0.32
−0.32 0.36

]
, K =

[
1.19 0.6195

0.2882 2.029

]
, Ω = 107 ×

[
3.325 0

0 0.3093

]
.

In this case, the parameter B in Equation (18) was determined as

Θ = [ 3.5328 9.3548 ].

According to Equation (22), the transfer function of the attitude angle and external
moment was given as

G(s) =
1

50s2

(
1 +

2
50

[
3.53282 × s2

s2 + 3.325× 107 +
9.35482 × s2

s2 + 0.3093× 107

])
.

Equivalently, the polynomial functions D(s) and N(s) were obtained as

G(s) =
0.1× s4 + 3.086× 106 × s2 + 2.057× 1012

s6 + 3.634× 107 × s4 + 1.029× 1014 × s2
,

N(s)
D(s)

.

According to the steps of the proposed fractional-order PD controller, we chose the
gain crossover frequency ωc = 8Hz and phase margin φm = π

4 rad. We selected the ITAE in
Equation (32) and calculated the optimal α; the relationship between the ITAE and order
α is shown in Figure 2. The minimum of the ITAE objective function was 0.067 with the
optimal order α = 0.77. Based on Equation (31), the optimal control parameters were
obtained as

Kp = 1408.5, Kd = 488.1, α = 0.77.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

J

X: 0.77

Y: 0.067

Figure 2. The relationship between the ITAE and order α.



Fractal Fract. 2022, 6, 601 9 of 12

To compare the control performance, the traditional integer-order PD controller was
used as a reference. The fractional-order PD control process was numerically simulated
by the FOTF Toolbox in MATLAB Simulink. From Equation (31), the corresponding
parameters of the integer-order PD controller were K IO

p = 2264 and K IO
d = 283 with α = 1.

The Bode diagrams under fractional-order and integer-order PD controllers are both shown
in Figures 3 and 4. Obviously in Figures 3 and 4, the proposed PD controller satisfied the
given gain crossover frequency ωc = 8 Hz and phase margin φm = π

4 rad.
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To check the stability of the closed-loop system under the fractional-order PD controller,
the corresponding root locus is shown in Figure 5. Obviously, the whole root locus was
located in the lefthalf plane, which ensures the stability of the controlled system. In addition,
the Nyquist diagram under the fractional-order PD controller is given in Figure 6. The
Nyquist curve did not circle the critical point (−1, 0), which benefits the dynamics analysis
of the closed control loop.
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Figure 5. Root locus under the fractional-order PD controller Kp = 1408.5, Kd = 488.1, α = 0.77.
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Figure 6. Nyquist diagram under the fractional-order PD controller Kp = 1408.5, Kd = 488.1,
α = 0.77.
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Moreover, the step responses under the fractional-order and integer-order PD con-
trollers are given in Figure 7. According to Figure 7, the control performance under the
fractional-order PD controller had higher error precision, smaller overshoot, and a faster
response time, which verified the effectiveness of the proposed fractional-order PD attitude
control for spacecraft with flexible appendages.

Figure 7. Step responses under fractional-order and integer-order PD controllers (abbreviated as
FOPD and PD, respectively).

6. Conclusions

In this paper, a fractional-order PD attitude control method for spacecraft with flexible
appendages was proposed. Firstly, a lumped parameter model of spacecraft with flexible
appendages was obtained based on the angular momentum theorem and motion equation.
Then, the transfer function of the attitude angle and external moment was determined
according to the lumped parameter model. The design steps of the fractional-order PD
control were listed. With the given gain crossover frequency and phase margin, the
relationships of the control parameters were obtained. In addition, the optimal control
parameters were calculated by choosing the minimum of the ITAE objective function.
Finally, a numerical example was given to illustrate the effectiveness of the obtained
control method. The numerical results showed that the fractional-order PD had higher
error precision, a smaller overshoot, and a faster response time, which would improve the
attitude control performance of spacecrafts with flexible appendages.

Author Contributions: Conceptualization, Y.Z. and S.Z.; methodology and software, S.Z.; validation,
S.Z.; writing—original draft preparation, S.C. and S.Z.; writing—review and editing, S.Z.; supervision,
S.Z.; project administration, S.Z.; funding acquisition, S.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grants 12172283 and 52001259; the State Key Laboratory of Mechanics and Control of Mechanical
Structures (Nanjing University of Aeronautics and astronautics) under Grant MCMS-E-0122G02; the
Young Talent fund of University Association for Science and Technology in Shaanxi, China under
Grant 20200502; the Shenzhen Science and Technology Program under Grant JCYJ20210324122010027;
the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515111073; and



Fractal Fract. 2022, 6, 601 12 of 12

the Science and Development Program of Local Lead by Central Government, Shenzhen Science and
Technology Innovation Committee under Grant 2021Szvup111.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: We would like to thank the Editor-in-Chief, Associate Editor, and anonymous
reviewers for their efforts to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boyarchuk, M.V.; Gusev, S.A.; Teminovskiy, I.V.; Terekhov, V.Y. Investigation testing of structural members of large-sized

reconfigurable spacecraft antenna reflectors. Int. J. Appl. Eng. Res. 2017, 12, 1529–1535.
2. Kabanov, S.; Mitin, F. Optimization of the stages of unfolding a large-sized space-based reflector. Acta Astronaut. 2020, 176,

717–724. [CrossRef]
3. Fracchia, G.; Biggs, J.D.; Ceriotti, M. Analytical low-jerk reorientation maneuvers for multi-body spacecraft structures. Acta

Astronaut. 2021, 178, 1–14. [CrossRef]
4. Liu, L.; Wang, X.; Sun, S.; Cao, D.; Liu, X. Dynamic characteristics of flexible spacecraft with double solar panels subjected to

solar radiation. Int. J. Mech. Sci. 2019, 151, 22–32. [CrossRef]
5. Gasbarri, P.; Monti, R.; Sabatini, M. Very large space structures: Non-linear control and robustness to structural uncertainties.

Acta Astronaut. 2014, 93, 252–265. [CrossRef]
6. Wei, C.; Luo, J.; Dai, H.; Duan, G. Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed

performance. IEEE T. Cybernetics 2018, 49, 4004–4016. [CrossRef] [PubMed]
7. Li, Y.; Wang, C.; Huang, W. Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple

revolute clearance joints. Mech. Syst. Signal Process. 2019, 117, 188–209.
8. Liu, H.; Guo, L.; Zhang, Y. An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts.

Nonlinear Dyn. 2012, 67, 2081–2088. [CrossRef]
9. Sari, N. N.; Jahanshahi, H.; Fakoor, M. Adaptive fuzzy PID control strategy for spacecraft attitude control. Int. J. Fuzzy Syst. 2019,

21, 769–781. [CrossRef]
10. Golestani, M.; Alattas, K.A.; Din, S.U.; El-Sousy, F.F.; Mobayen, S.; Fekih, A. A low-complexity PD-like attitude control for

spacecraft with full-state constraints. IEEE Access 2022, 10, 30707–30715. [CrossRef]
11. Liu, L.; Zhang, L.; Pan, G.; Zhang, S. Robust yaw control of autonomous underwater vehicle based on fractional-order PID

controller. Ocean Eng. 2022, 257, 111493. [CrossRef]
12. Zhang, S.; Liu, L.; Xue, D.; Chen, Y. Stability and resonance analysis of a general non-commensurate elementary fractional-order

system. Fract. Calc. Appl. Anal. 2020, 23, 183–210.
13. Liu, L.; Wang, J.; Zhang, L.; Zhang, S. Multi-AUV dynamic maneuver countermeasure algorithm based on interval information

game and fractional-order DE. Fractal Fract. 2022, 6, 235. [CrossRef]
14. Mohammadzadeh, H.S.; Tabatabaei, M. Design of non-overshooting fractional-order PD and PID controllers for special case of

fractional-order plants. J. Control Autom. Elec. 2019, 30, 611–621. [CrossRef]
15. Saleem, O.; Hasan, K. M. Robust stabilisation of rotary inverted pendulum using intelligently optimised nonlinear self-adaptive

dual fractional-order PD controllers. Int. J. Syst. Sci. 2019, 50, 1399–1414. [CrossRef]
16. Çelik, E. Design of new fractional order PI–fractional order PD cascade controller through dragonfly search algorithm for

advanced load frequency control of power systems. Soft Comput. 2021, 25, 1193–1217. [CrossRef]
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