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Abstract: In this paper, a collocation method based on the Jacobi polynomial is proposed for a class
of optimal-control problems of a fractional distributed system. By using the Lagrange multiplier
technique and fractional variational principle, the stated problem is reduced to a system of fractional
partial differential equations about control and state functions. The uniqueness of this fractional
coupled system is discussed. For spatial second-order derivatives, the proposed method takes
advantage of Jacobi polynomials with different parameters to approximate solutions. For a temporal
fractional derivative in the Caputo sense, choosing appropriate basis functions allows the collocation
method to be implemented easily and efficiently. Exponential convergence is verified numerically
under continuous initial conditions. As a particular example, the relation between the state function
and the order of the fractional derivative is analyzed with a discontinuous initial condition. Moreover,
the numerical results show that the integration of the state function will decay as the order of the
fractional derivative decreases.

Keywords: collocation method; fractional optimal-control problem; fractional variational principle;
exponential convergence

1. Introduction

Optimal-control problems minimize a function (or a functional) with the states and
control inputs of the system over a set of admissible control functions [1], which arises in
many scientific and engineering problems, such as aeronautics [2] and economics [3]. In [4],
by applying optimal control theory, the dynamics of a basic oncolytic virotherapy model
was studied. The constrained dynamics of the optimal-control problem may be divided
into two major classes: an ordinary differential equation (ODE) and a partial differential
equation (PDE). The fractional differential equation usually came up by replacing the
conventional derivatives in ODE/PDE with some sorts of fractional derivatives, whose
order of derivative turns out to be some real numbers or even complex numbers. In recent
years, with the development of fractional calculus, it has been verified that fractional
differential equations model dynamical systems and physical processes more accurately
than classic ODEs and PDEs do, and fractional controllers perform better than integer order
controllers as well. In this paper, we shall investigate a class of fractional optimal-control
problems. The dynamics of the system are described by a partial differential equation
with a Caputo fractional derivative on a temporal variable and a second-order derivative
on a spatial variable, comprising what is called a fractional optimal-control problem of
a distributed system. Although integer-order optimal-control problems and fractional
variational problems regarding a single variable have been extensively discussed [5–11], the
optimal-control problems related to the fractional distributed system are not systematically
developed yet. Therefore, it is meaningful to further study this topic.
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As a matter of course, the above-mentioned optimal-control problems have to be
solved to examine their further features. However, only few of them can be handled via
analytical techniques. Therefore, tremendous efforts have been made regarding numerical
methods. By means of a fractional variational principle and the Lagrange multiplier tech-
nique, the underlying fractional optimal-control problem can be converted to a system of
partial differential equations with temporal fractional derivatives. As one of the pioneer-
ing works, two classes of the fractional variational problem with the Riemann–Liouville
derivative are considered in [12], where the necessary condition (i.e., the Euler–Lagrange
equation) for both cases are analytical deduced. In [13], a general formulation for a class
of fractional optimal-control problems was derived by using techniques of calculus of
variations, the Lagrange multiplier, and the formula for fractional integration by parts.
Based on the foundations mentioned above, several numerical methods have been applied
to solve fractional optimal-control problems. In [14], the dynamic system of fractional
optimal-control problems are considered as fractional partial differential equations with a
Caputo derivative, and numerical solutions of this problem are obtained by means of eigen-
functions. In [15], the modified Grünwald–Letnikov approach is employed to establish a
central difference numerical scheme for both time-invariant and time-variant cases. In [16],
the fractional optimal-control problem is converted into a general integer order problem
by using Oustaloup’s approximation for the fractional derivative operator. This method is
allowed to solve a more complex problem of a fractional-free, final-time optimal-control
problem. In [17,18], the considered fractional optimal-control problems are both reduced to
a system of algebraic equations by using the normalized Legendre orthogonal basis. Nev-
ertheless, in [17], the fractional integration and multiplication are approximated directly,
while in [18], the fractional optimal-control problems are transformed into an equivalent
variational problem. In [19], the fractional optimal-control problem of a distributed system
is solved in cylindrical coordinates. Applying the method of separation of variables and
eigenfunctions, an equivalent problem in terms of generalized state and control variables
is defined, and it is computed by the Grünwald–Letnikov approach. Overall, numerical
methods based on approximation by smooth polynomials are perfectly suitable for optimal-
control problems defined on a bounded domain with regular boundary conditions. For
instance, see [20–22]. A hybrid meshless method for fractional distributed optimal control
was presented in [23].

Motivated by the above results, a collocation method with the Jacobi polynomial
is established to solve the fractional optimal-control problem. It is well-known that the
collocation method is a global numerical method with high accuracy, which was firstly
applied by Slater and Kantorovic in 1934 [24]. The computation of this method at any given
point depends on the information of the entire domain. Naturally, it has a great superiority
in solving fractional problems since the fractional derivative we used here is defined in
the Caputo sense and is non-local. In [25], a spectral Jacobi-collocation approximation for
fractional integro-differential equations of the Volterra type is proposed, and the error of
this method decaying exponentially is verified theoretically. In [26], the truncated Bessel
series is used in a collocation scheme for solving a fractional optimal-control problem with
a nonlinear fractional two-point boundary value problem. A local meshless collocation
algorithm is applied to approximate the time fractional evolution model in [27]. In [28],
by applying shifted Jacobi polynomials, the fractal-fractional derivative in the Atangana–
Riemann–Liouville sense and the fractional derivatives in the Caputo and Atangan–Baleau–
Caputo concepts have been used to study the optimal-control problem of the advection–
diffusion–reaction equation.

In this paper, we will transform the fractional optimal-control problems into a system
of fractional partial differential equations through the fractional variational principle, then
solve the resulting system by the Jacobi collocation method. The numerical results under
both continuous and discontinuous initial conditions will be provided. In the case of
the continuous initial condition, the exponential convergence and high accuracy can be
arrived with different Jacobi parameters. The influence of the fractional order on the state
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function will be analyzed in the case of the problem with a discontinuous initial condition.
The remainder of this article is organized as follows: In Section 2, we will introduce some
necessary preliminaries of fractional calculus to make this paper self-contained. In Section 3,
the formulation of the fractional optimal-control problem is given and basic property is
discussed. In Section 4, the derivation of the collocation method for solving the fractional
optimal-control problem is performed. A numerical example is given in Section 5, and our
conclusion is finally drawn in Section 6.

2. Mathematical Preparation

In this section, we introduce two frequently discussed fractional derivatives and their
fundamental properties, which are useful in the analysis of the model and computation in
what follows. We begin by recalling the Riemann–Liouville fractional integral.

Definition 1 ([29]). Let f (x) ∈ L1([a, b]), s > 0 be a finite and real number. Then,

(a Is
x f )(x) =

1
Γ(s)

∫ x

a
(x− t)s−1 f (t)dt, (1)

and

(x Is
b f )(x) =

1
Γ(s)

∫ b

x
(t− x)s−1 f (t)dt, (2)

are named as left-sided Riemann–Liouville fractional integral and right-sided Riemann–Liouville
fractional integral, respectively.

Definition 2 ([29]). Let f (x) ∈ AC([a, b]) and a In−s
t f , t In−s

b f ∈ Cn([a, b]), n− 1 < s < n, n
is a natural number. Then,

(aDs
x f )(x) =

1
Γ(n− s)

dn

dxn

∫ x

a
(x− t)n−s−1 f (t)dt, (3)

and

(xDs
b f )(x) =

(−1)n

Γ(n− s)
dn

dtn

∫ b

x
(t− x)n−s−1 f (t)dt, (4)

are named as the left-sided Riemann–Liouville fractional derivative and right-sided Riemann–
Liouville fractional derivative, respectively.

Definition 3 ([29]). Let f (x) ∈ AC([a, b]), n− 1 < s < n, n is a natural number. Then,

(c
aDs

x f
)
(x) =

1
Γ(n− s)

∫ x

a
(x− t)n−s−1

{
dn

dtn f (t)
}

dt, (5)

and (c
xDs

b f
)
(x) =

(−1)n

Γ(n− s)

∫ b

x
(t− x)n−s−1

{
dn

dtn f (t)
}

dt, (6)

are named as the left-sided Caputo fractional derivative and right-sided Caputo fractional derivative,
respectively.

Theorem 1 ([29]). Let 0 < s < 1. Then, Riemann–Liouville and Caputo fractional derivatives
satisfy the following relation:

(xDs
b f )(x) =

(c
xDs

b f
)
(x) + f (b)

(b− x)−s

Γ(1− s)
. (7)

Based on Theorem 1, the Caputo fractional derivative is equivalent with the Riemann–
Liouville fractional derivative for the continuously differentiable functions satisfying Dirich-
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let boundary condition f (b) = 0. More details on fractional derivatives and their properties
can be found in monographes [29–31].

3. Analysis of Fractional Optimal-Control Problem

In this part, we focus on the formulation of a class of optimal problems with a dis-
tributed system involving the Caputo fractional derivative. The details are described as
follows.

3.1. Formulation of Model

Let 0 ≤ t ≤ 1, 0 ≤ x ≤ L, and Q, R be two positive parameters of the system.
Functions z and u depending on t and x (i.e., time and position) simultaneously represent
some performance indices. Notice that the time domain may not necessary be [0, 1], and
it can be generalized to [0, T], T > 0. Our major task is: finding an optimal control input
signal u(x, t), which minimizes the cost functional

J =
∫ 1

0

∫ L

0
Qz2(x, t) + Ru2(x, t)dxdt, (8)

subject to the system dynamic constraints

c
0Ds

t z(x, t) =
∂2z(x, t)

∂x2 + u(x, t), 0 < s < 1, (9)

the initial condition
z(x, 0) = z0(x), 0 ≤ x ≤ L, (10)

and the boundary condition

∂z(0, t)
∂x

=
∂z(L, t)

∂x
= 0, 0 < t < 1, (11)

where s is the order of Caputo fractional derivative, z(x, t) and u(x, t) are the state and
control functions, respectively. In [14], models (8)–(11) was discussed.

3.2. Fractional Variational Principle and Properties of Model

In order to deduce the necessary condition for problem (8)–(11), we impose a modified
performance index by using the Lagrange multiplier λ as

J̃ =
∫ 1

0

∫ L

0
Qz2(x, t) + Ru2(x, t) + λ

[
c
0Ds

t z(x, t)− ∂2z(x, t)
∂x2 − u(x, t)

]
dxdt. (12)

Assuming that z∗(x, t) and u∗(x, t) are the desired optimum solutions of (8)–(11),
define

z(x, t) = z∗(x, t) + ε1η1(x, t), ε1 ∈ R, (13)

u(x, t) = u∗(x, t) + ε2η2(x, t), ε2 ∈ R, (14)

where ε1, ε2 are perturbation parameters, and η1(x, t) and η2(x, t) are arbitrary test functions
satisfying η1(x, 0) = η1x(0, t) = η1x(L, t) = 0.
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Substitute Equations (13) and (14) into functional (12), then J̃ becomes a scale function
of ε1 and ε2. Obviously, J̃ has an extremum at ε1 = ε2 = 0. Differentiating J̃ with respect to
ε1, ε2 and λ, respectively, we have

∂ J̃
∂ε1

=
∫ 1

0

∫ L

0

[
2Qz(x, t)η1(x, t) + λc

0Ds
t η1(x, t)− λ

∂2η1(x, t)
∂x2

]
dxdt, (15)

∂ J̃
∂ε2

=
∫ 1

0

∫ L

0
[2Ru(x, t)η2(x, t)− λη2(x, t)]dxdt, (16)

∂ J̃
∂λ

=
∫ 1

0

∫ L

0

[
c
0Ds

t z(x, t)− ∂2z(x, t)
∂x2 − u(x, t)

]
dxdt. (17)

Applying fractional integration by parts formulae (see [29] (Page 76, Lemma 2.7)) to (15),
we obtain∫ 1

0

∫ L

0
λ

[
c
0Ds

t η1(x, t)− ∂2η1(x, t)
∂x2

]
dxdt =

∫ 1

0

∫ L

0
η1(x, t)

[
tDs

1λ− ∂2λ(x, t)
∂x2

]
dxdt

+
∫ 1

0
[λx(L, t)η1(L, t)− λx(0, t)η1(0, t)]dt +

∫ L

0
η1(x, 0)t Is

1λ(x, 0)dx.

To minimize J̃ (the same as to minimize J), it is required that results of (15)–(17) are zeros
when ε1 = ε2 = 0. Then, by the arbitrariness of λ, one could assume λx(0, t) = λx(L, t) = 0,
λ(x, 1) = 0 to have

c
t Ds

1λ(x, t) =
∂2λ(x, t)

∂x2 − 2Qz∗(x, t), (18)

λ(x, t) = 2Ru∗(x, t), (19)

c
0Ds

t z∗(x, t) =
∂2z∗(x, t)

∂x2 + u∗(x, t), (20)

since η1(x, t) and η2(x, t) are arbitrary.
Substituting (19) into (18), it is easy to find that the desired optimal solutions u∗(x, t), z∗(x, t)

satisfy the following coupled equations:

c
t Ds

1u(x, t) =
∂2u(x, t)

∂x2 − Q
R

z(x, t), (21)

c
0Ds

t z(x, t) =
∂2z(x, t)

∂x2 + u(x, t), (22)

with the initial and boundary conditions

z(x, 0) = z0(x), u(x, 1) = 0,
∂z(0, t)

∂x
=

∂z(L, t)
∂x

= 0,
∂u(0, t)

∂x
=

∂u(L, t)
∂x

= 0.

Now, the problem (8)–(11) has been converted to a fractional coupled system (21) and (22).
Next, we discuss the uniqueness of system (21) and (22) because of the fact that

existence result directly follows from the linearity of system itself (see [29] (Chapter
6)). Suppose that (u1, z1) and (u2, z2) are two pairs of solutions of (21) and (22); then,
ũ := u1 − u2 and z̃ := z1 − z2 must be the solutions of (21) and (22) by superposition
principle. Therefore,

c
t Ds

1ũ(x, t) =
∂2ũ(x, t)

∂x2 − Q
R

z̃(x, t), (23)

c
0Ds

t z̃(x, t) =
∂2z̃(x, t)

∂x2 + ũ(x, t). (24)
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Multiplying ũ and z̃ to (23) and (24), respectively, then subtracting one to another, then
integrating from 0 to L with respect to x, we have

R
∫ L

0
ũc

t Ds
1ũdx + Q

∫ L

0
z̃c

0Ds
t z̃dx = Q

∫ L

0
z̃z̃xxdx + R

∫ L

0
ũũxxdx. (25)

In view of

Q
∫ L

0
z̃z̃xxdx + R

∫ L

0
ũũxxdx

= Q
(

z̃z̃x|L0 −
∫ L

0
z̃2

xdx
)
+ R

(
ũũx|L0 −

∫ L

0
ũ2

xdx
)

≤ 0,

we conclude that either one of the following inequalities hold:

R
∫ L

0
ũ · (c

t Ds
1ũ)dx ≤ 0 or Q

∫ L

0
z̃ · (c

0Ds
t z̃)dx ≤ 0. (26)

If the former case is true, we assume that ũ is approximated by smooth polynomials
ϕ(x) and φ(t), which is ũ = ϕ(x)φ(t). Then,∫ L

0
ũ · (c

t Ds
1ũ)dx =

∫ L

0
ϕ(x)φ(t) · ϕ(x)(c

t Ds
1φ(t))dx

= φ(t) · (c
t Ds

1φ(t))
∫ L

0
ϕ2(x)dx. (27)

Furthermore, notice that∫ 1

0
φ(t) · (c

t Ds
1φ(t))

∫ L

0
ϕ2(x)dxdt =

∫ 1

0
φ(t) · (c

t Ds
1φ(t))dt ·

∫ L

0
ϕ2(x)dx

=
∫ 1

0
(0Ds

t φ(t)) · φ(t)dt ·
∫ L

0
ϕ2(x)dx

=
∫ 1

0

(
0Ds/2

t φ(t)
)2

dt ·
∫ L

0
ϕ2(x)dx

≥ 0,

which implies that the right hand side of (27) is non-negative. Combining (26), one can
immediately know that ∫ L

0
ũ · (c

t Ds
1ũ)dx ≡ 0. (28)

That is to say, ũ is zero. The other argument for z̃ is similar. Thus, the pair of solutions of
problem (21) and (22) is unique.

In order to observe the property of state function z(x, t), we integrate both sides of (22)
from 0 to L, ∫ L

0

c
0Ds

t z(x, t)dx =
∫ L

0

∂2z(x, t)
∂x2 dx +

∫ L

0
u(x, t)dx. (29)

Obviously, the first term on the right side is zero according to boundary conditions. u(x, t)
is bounded because the problem is well-posed. That is, there exists a real number M
satisfying ζ(t) =

∫ L
0 u(x, t)dx < M for any t ∈ [0, 1]. Regarding the left hand side, it is easy

to deduce that there exists t∗l ∈ [0, 1], such that

∫ L

0

c
0Ds

t z(x, t)dx =
t1−s

Γ(2− s)

∫ L

0
zt(x, t∗l )dx. (30)
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Equations (29) and (30) lead to the relation between the change rate of energy of z(x, t) and
time t as ∫ L

0
u(x, t)dx =

t1−s

Γ(2− s)

∫ L

0
zt(x, t∗l )dx. (31)

On account of the fact that Equations (21) and (22) are coupled, it is easy to arrive at the
following identity: ∫ L

0
z(x, t)dx = − (1− t)1−s

Γ(2− s)

∫ L

0
ut(x, t∗r )dx. (32)

Combining (31) and (32), we obtain

Φ(t, s) :=
∫ L

0
z(x, t)dx = C · (1− t)1−s

Γ(1− s)Γ(2− s)
, 0 < s, t < 1, (33)

where C = −t∗−s
r
∫ L

0 zt(x, t∗l )dx ≥ 0. This indicates that the volume of z(x, t) in the
temporal direction will decay as the order s decreases, due to the non-negativity assumption
of z(x, 0) and the diffusion property of the considered system. Conversely, if zt is positive for
each fixed x, then solution z(x, t) will blow up eventually, which is physically impossible.

4. Numerical Algorithm

In this section, a collocation method is proposed to the solve fractional optimal control
problem (8)–(11). Firstly, we recall the definition and properties of the Jacobi polynomials,
occasionally called hypergeometric polynomials, which are used in our collocation method.
From now on, we use symbols α and β to parameterize the Jacobi polynomials and let s,
0 < s < 1 be the order of fractional derivative. Notice that when s approaches one, the
corresponding fractional derivatives reduce to conventional integer-order derivatives.

Recently, Jacobi polynomial for solving differential equations has become increasingly
popular because of the high accuracy of interpolation for ODE/PDE with certain regular-
ity [32,33]. The well-known Jacobi polynomial Jα,β

n with indices α, β > −1 of degree n are
defined on interval [−1, 1] and can be expressed as

Jα,β
n (ξ) =

(−1)n

2n · n!
(1− ξ)−α(1 + ξ)−β dn

dξn

[
(1− ξ)α+n(1 + ξ)β+n

]
, − 1 ≤ ξ ≤ 1, (34)

which is a solution of the second order linear homogeneous differential equation

(1− ξ2)
d2Y(ξ)

dξ2 + [β− α− (α + β + 2)ξ]
dY(ξ)

dξ
+ n(n + α + β + 1)Y(ξ) = 0.

In order to use these polynomials on the interval [0, L], we take the change of variable
x = L

2 (ξ + 1). Therefore, 0 ≤ x ≤ L is due to the range of ξ. The derivative of Jα,β
n on the

interval [0, L] can be represented by

dm

dtm Jα,β
n

(
2x
L
− 1
)
=

Γ(n + m + α + β + 1)
Γ(n + α + β + 1)Lm Jα+m,β+m

n−m

(
2x
L
− 1
)

, (35)

where m = 1, 2, 3, · · · .
One advantage of Jacobi polynomial is that its fractional derivatives still have a

recurrence form. For special cases, the Riemann–Liouville fractional derivative of Jα,β
n can

be presented in the form of the Jacobi polynomial. Let 0 < α < 1, β = 0; we have

0Dα
x J−α,0

n

(
2x
L
− 1
)
=

Γ(n + 1)x−α

Γ(n− α + 1)
J0,−α
n

(
2x
L
− 1
)

, (36)
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and when α = 0, 0 < β < 1, it reads that

xDβ
1 J0,−β

n

(
2x
L
− 1
)
=

Γ(n + 1)(L− x)−β

Γ(n− β + 1)
J−β,0
n

(
2x
L
− 1
)

. (37)

Next, we present the basic idea of the collocation method with Jacobi polynomials.
Denoting sets

{
xα,β

j

}
, 0 ≤ j ≤ M and

{
ts

j

}
, 0 ≤ j ≤ N as the nodes of Jacobi–Gauss–

Lobatto (JGL) quadratures on the interval [−1, 1], we set the JGL points
{

xα,β
L,j

}
, 0 ≤ j ≤ M

and
{

ts
1,j

}
, 0 ≤ j ≤ N on [0, L]× [0, 1] as

xα,β
L,j =

L
2

(
xα,β

j + 1
)

, 0 ≤ j ≤ M,

ts
1,j =

1
2

(
ts

j + 1
)

, 0 ≤ j ≤ N.

Let {ψi(t), φj(x)}, {ψ̂i(t), φj(x)} be the pairs of Jacobi basis polynomials; the approxima-
tions for solutions zN and uN can be expanded as

zN(x, t) =
N

∑
i=0

M

∑
j=0

aijφj(x)ψi(t), (38)

uN(x, t) =
N

∑
i=0

M

∑
j=0

bijφj(x)ψ̂i(t), (39)

by using the method of separation of variables. Here, {ψi(t), φj(x)} and {ψ̂i(t), φj(x)} are
different Jacobi basis polynomials, as follows:

φj(x) = Jα,β
j

(
2x
L
− 1
)

,

ψi(t) = J−s,0
i (2t− 1),

ψ̂i(t) = J0,−s
i (2t− 1).

Inserting (38) and (39) into (21) and (22) leads to

N

∑
i=0

M

∑
j=0

bijφj(x) · tDs
1ψ̂i(t) =

N

∑
i=0

M

∑
j=0

bijψ̂i(t)
∂2φj(x)

∂x2 − Q
R

N

∑
i=0

M

∑
j=0

aijφj(x)ψi(t),

N

∑
i=0

M

∑
j=0

aijφj(x) · c
0Ds

t ψi(t) =
N

∑
i=0

M

∑
j=0

aijψi(t)
∂2φj(x)

∂x2 +
N

∑
i=0

M

∑
j=0

bijφj(x)ψ̂i(t).

Combining the relation (7) and the Riemann–Liouville fractional derivative (36) and (37),
we obtain

c
0Ds

t J−s,0
i (2t− 1) =

Γ(i + 1)t−s

Γ(i− s + 1)
J0,−s
i (2t− 1)−

J−s,0
i (−1)t−s

Γ(1− s)
, (40)

and
c
t Ds

1 J0,−s
i (2t− 1) =

Γ(i + 1)(1− t)−s

Γ(i− s + 1)
J−s,0
i (2t− 1)−

J0,−s
i (1)(1− t)−s

Γ(1− s)
. (41)

The second-order derivative of Jacobi polynomial can be expressed as

∂2φj(x)
∂x2 =

Γ(j + 3 + α + β)

Γ(j + 1 + α + β)L2 Jα+2,β+2
j−2

(
2x
L
− 1
)

. (42)
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Eventually, a numerical scheme for solving (8)–(11) is established as follows:

N

∑
i=0

M

∑
j=0

bij

[
Γ(i + 1)(1− t)−s

Γ(i− s + 1)
J−s,0
i (2t− 1)−

J0,−s
i (1)(1− t)−s

Γ(1− α)

]
Jα,β
j

(
2x
L
− 1
)

=
N

∑
i=0

M

∑
j=0

[
bij

Γ(j + 3 + α + β)L−2

Γ(j + α + β + 1)
J2+α,2+β
j−2

(
2x
L
− 1
)

J0,−s
i (2t− 1)

−Q
R

aij J
α,β
j

(
2x
L
− 1
)

J−s,0
i (2t− 1)

]
, (43)

and

N

∑
i=0

M

∑
j=0

aij

[
Γ(i + 1)t−s

Γ(i− s + 1)
J0,−s
i (2t− 1)−

J−s,0
i (−1)t−s

Γ(1− α)

]
Jα,β
j

(
2x
L
− 1
)

=
N

∑
i=0

M

∑
j=0

[
aij

Γ(j + 3 + α + β)L−2

Γ(j + α + β + 1)
J2+α,2+β
j−2

(
2x
L
− 1
)

J−s,0
i (2t− 1)

+bij J
α,β
j

(
2x
L
− 1
)

J0,−s
i (2t− 1)

]
. (44)

Note that JGL points
{

xα,β
L,j

}
, 0 ≤ j ≤ M and

{
ts
1,j

}
, 0 ≤ j ≤ N include ts

1,0 = 0,

ts
1,N = 1, xα,β

L,0 = 0, xα,β
L,M = L, which are necessarily used to satisfy the initial and boundary

conditions.

5. Numerical Experiment

In this section, we present two numerical examples to verify the efficiency of our
algorithm. The same as the former part s is the order of fractional derivative, and α, β
are Jacobi polynomials parameters. We first discuss an example with an exact solution to
illustrate the implementation and efficiency of the proposed numerical method; then, a
fractional optimal-control problem with noncontinuous initial input signal is considered.
The MATLAB R2015b software is used for all computations in this section.

5.1. Numerical Solution for System with Smooth Initial Input Signal

As the first example, we assume that systems (21) and (22) have an analytical solution
given by

u(x, t) = (t− 1) cos(xπ),

z(x, t) = (1− t) cos(xπ).

Without loss of generality, we assume R = Q = L = 1 to simplify the computing procedures.
In order to balance both sides of these equations, let

f1(x, t) =
1

Γ(2− α)
(1− t)1−s cos(xπ) + cos(xπ)

[
π2(1− t) + t− 1

]
, (45)

and
f2(x, t) =

1
Γ(2− α)

t1−s cos(xπ) + cos(xπ)
[
π2(t− 1) + t− 1

]
, (46)

which are purposively added to the right hand side parts of Equations (21) and (22),
respectively. Therefore, the initial input signal is governed by a cosine waveform

z0(x) = − cos(xπ), 0 ≤ x ≤ 1. (47)
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One important advantage of the collocation method is the high accuracy. Firstly, we
compare the exact and numerical solutions for s = 0.7, α = β = 3. Figure 1a,b shows the
exact and numerical solutions of state and control functions by severally fixing x = 0.2
and t = 0.5 and choosing N = M = 10 in collocation method. Note that the numerical
solutions of both z(x, t) and u(x, t) are highly aligned with the exact solutions. Table 1 lists
the maximum absolute errors (MAE) of the exact and numerical solution at x = 0.2 and
t = 0.5 with four kinds of Jacobi polynomials parameters, which are

• α = β = −0.5 (Chebyshev polynomials of the first kind),
• α = β = 0.5 (Chebyshev polynomial of the second kind),
• α = β = 0 (Legendre polynomials),
• α = 2, β = 3 (non-specified Jacobi polynomials).

The result shows that the proposed algorithm provides high accuracy in cases of
different Jacobi parameters. Figure 1c,d show that the relation between the degree M, N
(M = N) of the polynomial and the logarithm of error (E) is almost linear, which indicates
that the error decays exponentially.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

time t

z
(0

.2
,t
) 

&
 u

(0
.2

,t
)

 

 

exact u

numerical u

exact z

numerical z

(a) x = 0.2.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

space x

z
(x

,0
.5

) 
&

 u
(x

,0
.5

)

 

 

exact u

numerical u

exact z

numerical z

(b) t = 0.5.

4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

N

lo
g
E

(c) The error of u(x, t).

4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

N

lo
g
E

(d) The error of z(x, t).

Figure 1. Numerical and analytical solution of system (21) and (22) (see (a,b)); the relation between
N and error (E) with s = 0.7 and α = β = 3 (see (c,d)).
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Table 1. Maximum absolute errors (MAE).

M α β MAE of z MAE of u

5 1.05 ×10−3 1.13 ×10−3

10 −0.5 −0.5 3.36×10−8 3.43×10−8

15 2.89×10−15 3.09×10−14

5 2.78×10−3 2.96×10−3

10 0.5 0.5 1.82×10−7 1.86×10−3

15 4.51×10−14 5.00×10−14

5 1.98×10−3 2.12×10−3

10 0 0 9.45×10−8 9.65×10−8

15 2.62×10−14 2.98×10−14

5 5.95×10−3 7.90×10−3

10 2 3 1.80×10−6 2.87×10−6

15 2.87×10−13 4.13×10−13

5.2. Numerical Solution for System with Discontinuous Initial Input Signal

In this part, a kind of discontinuous initial condition is considered. Similarly, we take
R = Q = L = 1, and we solve systems (21) and (22) with the initial condition expressed by
a step-function signal

z0(x) =

{
10, 0 ≤ x < 0.5,

0, 0.5 ≤ x ≤ 1.

In computation, we select N = M = 11 and α = β = −0.5. The numerical solution for
s = 0.9 is displayed in Figure 2a. One can observe that the state function z(x, t) becomes
increasingly smooth after a short time because of the influences of diffusion and Neumann
boundary conditions. Meanwhile, the state function will converge to a stable equilibrium
that is not identical zero because the control input is not zero.

In Figure 2b–d, we sketched the curves of the control function with three different
fractional orders (s = 0.4, s = 0.6 and s = 0.9999) as time goes by. In this case, we set
α = β = 1. This shows that when s is relatively small (s = 0.4), the state function z(x, t)
decays much faster than the case of relatively large s (s = 0.6). This coincides with the
memory property of the fractional derivative, which is sometimes called the heavy tail
feature. When s approaches 1, a comparatively slow and uniform decay phenomenon can
be viewed, which matches our previous analysis.

0
0.05

0.1
0.15

0

0.5

1
−5

0

5

10

15

tx

z
(x

,t
)

(a) Solution with s = 0.9.
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(b) s = 0.4.

Figure 2. Cont.
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(c) s = 0.6.
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Figure 2. The state function at different moments with α = β = −0.5 (see (a)) and α = β = 1
(see (b–d)).

6. Conclusions

In this paper, a collocation method based on the Jacobi polynomial is presented for
solving a class of optimal-control problems with a fractional distributed system. The prob-
lem is transformed into a system of fractional diffusion equations by using the fractional
variational principle. The major feature of the resulting system is that both left-sided and
right-sided fractional derivatives are involved, which makes it more difficult to handle. We
approximate the numerical solutions in terms of the Jacobi polynomials in both temporal
and spatial directions. The efficiency and exponential convergence are verified numerically.
The numerical simulations show that the proposed method is validated for fractional
optimal-control problem containing continuous or discontinuous initial conditions. In the
case of discontinuous initial conditions, the results shows that the state function decays
much faster when the order of fractional derivative s is relatively small, which coincides
with the heavy tail feature of the fractional derivative.
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