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Abstract: To improve the noise immunity, stability and sensitivity to different signal types in the
hydroelectric unit fault diagnosis model, a hydroelectric unit fault diagnosis model based on im-
proved multiscale fractional-order weighted permutation entropy (IMFWPE) is proposed. Firstly, the
fractional order and weighting theory is introduced into the permutation entropy (PE) to improve
the sensitivity to different fault signals while improving the defect of ignoring the signal amplitude
information. Additionally, considering the problem that a single scale cannot fully reflect the timing
characteristics and that the traditional coarse-grained method will shorten the timing length, a new
tool for measuring the complexity of timing signals, IMFWPE, is proposed by introducing an im-
proved multiscale method. Finally, the IMFWPE values of signals are extracted as features and input
to the classifier for fault identification of hydroelectric units. The experimental results show that the
proposed method has the best diagnostic effect when compared with other methods, has good noise
immunity and stability, and has good diagnostic capability in the actual unit environment.

Keywords: hydroelectric unit; fault diagnosis; fractional order; multiscale permutation entropy

1. Introduction

As an important core component of hydroelectric energy conversion, the safety and
stability of the hydroelectric unit operation process is crucial. Unit vibration is the main
cause of faults, and relevant studies show that about 80% of hydroelectric unit faults
are reflected in the unit vibration signal [1]. Therefore, fault identification by extracting
unit vibration signal features is the most commonly used fault diagnosis method for
hydroelectric units.

During the operation of hydroelectric units, it is subject to the combined effect of me-
chanical, hydraulic, and electromagnetic factors. Therefore, the vibration signal of the unit
is nonlinear, nonstationary, and contains a certain amount of noise interference. Entropy is
an important tool to measure the complexity of time series. Entropy theories such as Shan-
non entropy (ShanEn) [2,3], approximate entropy (ApEn) [4–6], sample entropy (SE) [7–9],
permutation entropy (PE) [10–13], slope entropy [14,15], and Tsallis entropy [16,17], etc.,
have been widely used in the field of fault diagnosis in recent years. Among them, PE has
the advantages of theoretical simplicity, fewer input parameters, fast computation, and
good noise immunity, when compared with other entropy algorithms [12]. However, PE is
often limited by a single scale when analyzing time series, which makes PE ignore or omit
potential information related to the target state in the series. For this reason, multiscale
permutation entropy (MPE) has been proposed in conjunction with the coarse-graining
process [18]. Zhang et al. [19] use MPE to extract features of bearing signals, and inputs
them into the support vector machine (SVM) optimized by the seagull optimization al-
gorithm (SOA) for the identification of bearing faults. Zhao et al. [20] obtain multiscale
features with high dimensionality by MPE and downscale the features by linear local
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tangent space alignment (LLTSA), and finally introduce the least-squares support vector
machine (LSSVM) for fault identification. Nevertheless, the traditional coarse-graining
method makes the time-series length much shorter and reduces the stability of its calcu-
lation [21,22], and the defect that PE itself only considers the time-series structure and
lacks amplitude information also affects the effectiveness of the MPE algorithm for feature
extraction [23–25]. In recent years, the applications of fractional order in the fields of
image [26], chemistry [27,28], automation [29–33], and signal analysis [34] have gradually
increased. Some scholars have tried to combine it with entropy for signal processing and
obtained good results. However, how to combine the two methods still remains to be
discussed. To address these problems, this paper introduces the idea of fractional order
and weighting based on the improved coarse-graining method and proposes improved
multiscale fractional-order weighted permutation entropy (IMFWPE).

In summary, the main contributions and innovations of this paper are as follows: First,
the fractional-order entropy and weighting ideas are combined with PE to improve its
sensitivity in capturing time-series features. Additionally, based on this, a new time-series
feature extraction method, IMFWPE, is proposed for the incomprehensiveness of single
scale and the instability of the traditional coarse-granulation method; its noise resistance
and feature extraction ability are discussed, and IMFWPE is proved to be superior to IMFPE,
IMPE, and MSE. Then, the feature extraction method based on IMFWPE is combined
with a classifier to propose a new fault diagnosis method for hydroelectric units. Finally,
the stability and superiority of the proposed method are verified through rotor failure
simulation experiments and comparison with other models.

The remainder of the paper is organized as follows. In Section 2, the basic principles
of nonlinear feature extraction methods such as fractional-order entropy, PE, IMPE, and
IMFWPE are explained, and the process of IMFWPE-based fault diagnosis is described. In
Section 3 the noise immunity and feature extraction capability of IMFWPE are analyzed
and the selection of its parameters is discussed. In Section 4, simulation and actual machine
experiments are conducted to verify the stability and superiority of the proposed method.
Finally, Section 5 concludes the whole paper.

2. IMFWPE-Based Hydroelectric Unit Fault Diagnosis Model
2.1. Fractional-Order Entropy

ShanEn is the basis of most entropies, and most of the definitions of entropy are
expanded based on the definition of ShanEn. Yuan [35] et al. combined fractional-order
calculus theory and entropy theory to propose a new fractional-order entropy algorithm.

The definition of ShanEn is

E(P) = −c
n

∑
i=1

pi ln pi (1)

where pi represents the probability distribution of a random variable i, and it is often taken
to be c = 1. Rewriting Equation (1) in derivative and limit form according to the definition
of the derivative,

E(P) = lim
t→−1

d
dt

n

∑
i=1

p−t
i (2)

where d
dt (·) is the first-order derivative.

By the definition of a class of fractional-order derivatives, assume that f (x) : R→ R
is a function and α ∈ R, then the fractional-order derivative of f (x) is

f α(x) = D(α)
x f (x) = lim

h→0
L(

f α(x + h)− f α(x)
(x + h)α − xα

) = lim
h→0

d( f α(x+h)− f α(x))
dh

d((x+h)α−xα)
dh

=
f ′(x) f α−1(x)

xα−1 (3)
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where D(α)(·) represents the fractional-order derivation process and L(·) is a L′H
..
ospital

process.
Combining Equation (2) with Equation (3) yields the definition of the new fractional-

order entropy,

Eα(P) = lim
t→−1

n

∑
i=1

D(α)
x (p−t

i ) = lim
t→−1

n

∑
i=1

−pα
i ln(pi)(p−t

i )
α−1

tα−1 = lim
t→−1

n

∑
i=1

−p−tα
i ln(pi)

tα−1 = (−1)−α
n

∑
i=1

pα
i ln(pi) (4)

where Eα(P) is the value of fractional-order entropy and α denotes the order of the fractional
order in the range of 0 < α ≤ 1.

Considering that when 0 < α ≤ 1, (−1)α may appear as a plural; rewriting Eα(P) in
the form of plural entropy,

Eα(P) = k1

n

∑
i=1

pα
i ln(pi) + i[k2

n

∑
i=1

pα
i ln(pi)] (5)

where k1 and k2 are the real and imaginary parts of (−1)α, respectively, that is,
(−1)α = k1 + ik2, k1, k2 ∈ R.

In practical applications, the fractional-order entropy value is expressed in the form of
a most-valued function,

Eα(P) = max{k1

n

∑
i=1

pα
i ln(pi), k2

n

∑
i=1

pα
i ln(pi)} (6)

2.2. Improved Multiscale Fractional-Order Weighted Permutation Entropy

PE is an entropy metric proposed by Bandt [36] in 2002 for evaluating time-series
instability. For a time series {Xi} = {x1, x2, . . . , xL} of length L, the steps to calculate PE
are as follows:

A phase space reconstruction is performed on the time series X,

Xm,l
t = (xt, xt+l , . . . , xt+(m−1)l) (7)

where Xm,l
t represents the reconstruction matrix, l represents the time delay, m repre-

sents the embedding dimension, and t is an arbitrary time point with a range of value at
t = 1, 2, . . . , L− (m− 1)l.

Rearranging the elements in Xm,l
t in ascending order of size and noting that the

permutation pattern as πd1,d2,...,dm , then

Xt(πd1,d2,...,dm) = (xt+(i1−1)l , xt+(i2−1)l , . . . , xt+(im−1)l) (8)

where Xt(πd1,d2,...,dm) denotes the matrix with the permutation pattern πd1,d2,...,dm , d1, d2, . . . , dm

are the ordinal numbers of the elements in the reconstruction matrix Xm,l
t . For the case of

equal elements, the sorting position is determined by the initial position of the elements
in X.

For any m-dimensional reconstruction matrix Xm,l
t , there are m! kinds of permuta-

tion patterns, and the probability of occurrence of any one permutation pattern can be
expressed as

P(πd1,d2,...,dm) =
N(πd1,d2,...,dm)

L− (m− 1)l
(9)

where P(πd1,d2,...,dm) represents the probability that the permutation pattern is πd1,d2,...,dm

and N(·) denotes the number of occurrences of the corresponding permutation pattern.



Fractal Fract. 2022, 6, 588 4 of 16

The PE of the time series {Xi} = {x1, x2, . . . , xL} is

PE(X) =
m!

∑
π=1

P(πd1,d2,...,dm) ln P(πd1,d2,...,dm) (10)

Entropy analysis from only a single scale will ignore part of the feature information
of the original time-series signal. Costa et al. proposed the concept of multiscale entropy
(MSE) in 2007 [37,38] to achieve the extraction of signal features from different time scales
by coarse-graining the time-series signal. The coarse-graining process is as follows.

For a time series {Xi} = {x1, x2, . . . , xL} of length L, a nonoverlapped sliding with
a window of length τ, and taking the average of the data within the window as the time
series at that scale,

y(τ)j =
1
τ

τ j

∑
i=τ(j−1)+1

xi (11)

where τ is the scale factor and y(τ)j denotes the new time series obtained after the coarse-
graining process when the scale factor is τ, 1 ≤ j ≤ n

τ .
However, this coarse-graining method makes the time-series length much shorter as

the scale factor τ increases, and the too-short sequence reduces the stability of entropy
calculation and affects the effect of feature extraction. An improved coarse-graining method
has been proposed for solving the problem of time-series length reduction [21]. Taking
τ = 3 as an example, the process is shown in Figure 1.
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Figure 1. Improved coarse-graining process (with τ = 3).

The new improved time-series expression is

z(τ)i =
{

y(τ)i,1 , y(τ)i,2 , y(τ)i,3 , . . .
}

(12)

where y(τ)i,j represents the new time-series element obtained according to the improved

method, and y(τ)i,j = 1
τ

τ−1
∑

f=0
x f+i+τ(i−1), i = 1, 2, . . . , τ. As a result, the improved multiscale

permutation entropy (IMPE) can be expressed as

IMPE(x,τ,m) =
1
τ

τ

∑
i=1

PE(z(τ)i ) (13)

Considering that IMPE only considers the timing structure and ignores the signal
amplitude information, a novel IMFWPE is proposed. The specific calculation steps are
as follows:
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(1) For a time series {Xi} = {x1, x2, . . . , xL} of length L, a new time series

z(τ)i = {y(τ)i,1 , y(τ)i,2 , y(τ)i,3 , . . .} is obtained by the improved coarse-graining method at
the scale factor τ.

(2) The variance of adjacent elements in the time series z(τ)i is calculated so that the weight

ω
(τ)
i,t can be defined as

ω
(τ)
i,t =

1
m

m

∑
k=1

[yi,t+(k−1)τ−Ym,τ
i,t ] (14)

where Ym,τ
i,t is the average value of all elements in the corresponding time series,

Ym,τ
i,t = 1

m

m
∑

k=1
yi,t+(k−1)τ .

(3) According to the set time delay l and embedding dimension m, the time series in

z(τ)i

∣∣∣(i = 1, 2, . . . , τ) corresponding to each scale factor τ are reconstructed and or-
dered in phase space, respectively, then the probability of any of the permutation
patterns after weighting can be expressed as,

P(τ)
i (πd) =

∑
c:the arrangement pattern of Xm,l

t is the number of πd

ω
(τ)
i,c

∑
c:number of all alignment patterns

ω
(τ)
i,c

(15)

Calculate their average value as the probability of any of the permutation patterns
weighted with a scale factor is τ,

P(τ)
i (πd) =

1
τ

τ

∑
i=1

P(τ)
i (πd) (16)

(4) According to the fractional-order entropy definition, IMFWPE can be defined as

IMFWPE(X,m,l,τ,α) = max
{

k1∑ P(τ)
i

α(πd) ln P(τ)
i (πd), k2∑ P(τ)

i
α(πd) ln P(τ)

i (πd)
}

(17)

2.3. Flow of the Fault Diagnosis Method Based on IMFWPE

In this paper, we propose a new fault diagnosis method for hydroelectric units based
on IMFWPE, and its main process is as follows:

(1) Data acquisition: Use sensors to collect the vibration data of the rotor test bench in
different states, and take N sets of vibration signals of length L as samples.

(2) Feature extraction: The sample signals are processed using the improved coarse-grain
process, weights of the new sequences and the probabilities under the corresponding
permutation patterns are calculated, and finally the IMFWPE values are obtained as
the feature sample set by Equation (17).

(3) Fault identification: The training set and testing set are divided from the feature
sample set in a certain ratio, and the training set is input to the classifier for training
to construct a fault classifier. The testing set is then input to the trained classifier for
fault diagnosis, results are visualized with confusion matrix graphs, and the fault
identification is finally completed.

The flow chart of the proposed algorithm is shown in Figure 2.
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3. IMFWPE Performance Analysis and Parameter Determination
3.1. IMFWPE Noise Immunity Analysis

Owing to the complex operating environment and variable operating conditions
of hydroelectric units, the vibration signals of the units often contain certain noise, and
the extraction results of fault signal features are easily disturbed. Therefore, the feature
extraction tool is required to have good noise immunity in hydroelectric unit fault diagnosis.
The paper simulates the noise-containing signal in the low-frequency vortex band-induced
vibration fault condition of the tail pipe of a hydroelectric unit, represented by Equation (18).

h(t) = 0.39 sin(πt) + 0.21 sin(4.2πt) + 0.1 sin(33.4πt) + 0.11 sin(58.4πt) + 0.13 sin(100πt) + 0.06 sin(200πt) (18)

where h(t) denotes the vibration fault signal of the hydropower unit containing noise; z(t)
denotes Gaussian white noise, which is taken herein as 15, 10, and 5 dB. The vibration
waveforms of the noise-stained signal and the unstained signal are shown in Figure 3,
which shows that some fault features are covered by the noisy signal, making it difficult to
extract fault information.
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Figure 3. Vibration signals with different signal-to-noise ratios: (a) original signal; (b) noisy signal
(SNR = 15 dB); (c) noisy signal (SNR = 10 dB); (d) noisy signal (SNR = 5 dB).

As shown in Figure 4, the distributions of IMFWPE, IMFPE, and IMPE are analyzed
for different noise environments (SNR of 15, 10, and 5 dB). The correlation coefficients of
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the signals before and after adding noise are calculated to quantify the noise immunity
of the feature extraction tool, and the results are shown in Table 1. At SNR = 15 dB and
SNR = 10 dB, the correlation coefficients of IMFWPE and IMFPE both remain above 99%,
while the correlation coefficient of IMPE decreases with the decrease in SNR; at SNR = 5 dB,
the correlation coefficients of IMFPE and IMPE have different degrees of decrease, while
IMFWPE can still remain at 99%, which indicates that IMFWPE has stronger noise immunity.
In addition, comparing the IMPE and IMFPE algorithms, it is found that the entropy
curve becomes smoother and less volatile after adding the fractional order, and the noise
immunity of the algorithm is significantly improved.
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(a) IMPE entropy distribution; (b) IMFPE entropy distribution; (c) IMFWPE entropy distribution.

Table 1. Entropy correlation coefficient of vibration signal before and after noise addition.

Correlation Coefficient SNR = 15 SNR = 10 SNR = 5

IMFWPE 99.99% 99.99% 99.99%
IMFPE 99.68% 99.17% 97.43%
IMPE 98.71% 96.64% 92.54%

3.2. Feature Extraction Capability of IMFWPE

Liu et al. [39] used the rotor failure test bench to simulate the vibration signals of a
hydroelectric unit in four states: normal, rubbing, misalignment, and unbalance, with a
sampling frequency of 2048 Hz and 225 sets of vibration signals in each category, giving
a total of 900 sets of vibration signals. White noise with three different SNRs, 15, 10, and
5 dB, is added to these data, as shown in Figure 5.

To explore the feature extraction capability of IMFWPE, the t-distributed neighbor
embedding (T-SNE) algorithm is used to reduce the high-dimensional features of signals
extracted from different fault types to 2D for visualization. Meanwhile, IMFPE, IMPE and
MSE are introduced for comparison.

From Figure 6, the IMFWPE algorithm can effectively distinguish the different kinds of
fault signals for the unit vibration signals without noise. As a comparison, the IMFPE and
IMPE algorithms show partial overlap of features extracted from normal and misaligned
signals, and the MSE algorithm shows more overlap of features extracted from unbalanced
and misaligned signals. It can be seen that the IMFWPE algorithm has good feature
extraction capability in the absence of noise.
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To further fit the vibration signal with noise in the operating environment of the
hydroelectric units, white noise with SNR of 15, 10, and 5 dB was added to the signal. With
the increase in noise, the mixing of the extracted different state signal feature distributions
gradually becomes serious. Owing to the limitation of space, only the characteristic distri-
butions of various types of multiscale-entropy-extracted unit vibration signals under 5 dB
noise are analyzed. From Figure 6, only a very small amount of misaligned and unbalanced
signal features appears mixed in IMFWPE, while the IMFPE and IMPE algorithms show
partial mixing of features extracted from normal and misaligned signals. Additionally,
MSE shows more mixing of misaligned and unbalanced signals and normal signal features.
This shows that the IMFWPE algorithm still has good feature extraction capability in a
high-noise environment.

3.3. Parameter Selection in IMFWPE

In the IMFWPE, the parameters to be determined include the embedding dimension
m, the time delay l, the scale factor τ, and the fractional order f . For the embedding
dimension m, the values generally range from 3 to 7. When the value of m is too large, the
reconstruction of the phase space homogenize the time series, making the computational
process more complex and easier to ignore the subtle changes in the sequence; in contrast,
when the embedding dimension m is too small (m = 1, 2), the number of reconstruction
components is too small and it is difficult to accurately detect the kinetic mutations of the
signal [13]. In this paper, the embedding dimension is taken as m = 5. The value of time
delay l has little effect on the result of entropy calculation and is taken as l = 1. There
is generally no restriction on the value of the scale factor, which is generally taken to be
τ ≥ 10 [20], and in this paper, τ = 30.
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Figure 6. Distribution of signal characteristics under different noise: (a) IMFWPE visualization
(without adding noise); (b) IMFPE visualization (without adding noise); (c) IMPE visualization
(without adding noise); (d) MSE visualization (without adding noise); (e) IMFWPE visualization
(SNR = 15 dB); (f) IMFPE visualization (SNR = 15 dB); (g) IMPE visualization (SNR = 15 dB); (h) MSE
visualization (SNR = 15 dB); (i) IMFWPE visualization (SNR = 10 dB); (j) IMFPE visualization
(SNR = 10 dB); (k) IMPE visualization (SNR = 10 dB); (l) MSE visualization (SNR = 10 dB); (m) IM-
FWPE visualization (SNR = 5 dB); (n) IMFPE visualization (SNR = 5 dB); (o) IMPE visualization
(SNR = 5 dB); (p) MSE visualization (SNR = 5 dB).

As one of the important parameters in IMFWPE, the optimal value of fractional order
f should meet the requirement of making a large distinction between different types of
unit fault vibration signal characteristics for subsequent fault diagnosis. To determine the
optimal value of f , the IMFWPE values of the four types of 225 group unit signals were
calculated and error maps plotted on the interval [0.1, 1] with an interval of 0.1 for the
search, as shown in Figure 7. When the order is 1, it is obvious that the misalignment
signal extracted by the integer order overlaps with the robbing signal; when the order is
0.2, the misalignment signal also overlaps with the normal signal; when the order is 0.1,
the different types of unit vibration fault signals can be accurately distinguished. Therefore,
the fractional order f = 0.1 was used.
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4. Experimental Verification
4.1. Case 1

The test bench consists of an HZXT-008 rotor rolling-bearing comprehensive fault-
simulation test bench, which is mainly composed of a motor, bearing housing, coupling,
control box, rotor, rolling bearing, three-directional acceleration sensor, data collector, and
computer, as shown in Figure 8. By adding unbalanced adjustment parts, mass blocks, and
rubbing parts, vibration signals are simulated for hydroelectric units in four different states:
normal, unbalance, misalignment, and rubbing. The sampling frequency is 2000 Hz, and a
total of 600 groups of sample data are collected. A single sample contains 2048 sampling
points. The vibration signals in different states are shown in Figure 9.

We divided the collected vibration signal sample data into training and test sets
proportionally, which were input into the IMFWPE-based fault diagnosis model for fault
identification. The final determination results are analyzed by using a confusion matrix,
while different classifiers are introduced to compare the results of different models, as
shown in Figure 10.
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According to Figure 10 and Table 2, it can be seen that the method proposed in the
thesis has strong recognition ability for vibration signals in different states, and can make
accurate judgments for vibration signals in different states; the fault recognition accuracy
rate reaches 100%. The IMFWPE-RF model also has a relatively good performance, with an
accuracy of 99.15% and only one case of misclassification of an imbalance fault. The IMFPE-
XGBoost model and IMFPE-RF model performed generally with 94.93% and 94.14% fault
identification accuracy, respectively, with some misclassification of misaligned faults and
normal states, and a small number of misclassification cases of rubbing faults and normal
states. The accuracy of the IMPE-XGBoost model is 93.41%, and it cannot carry out accurate
identification of the rubbing fault, misalignment fault, or normal state, compared to the
worse performance of IMPE-RF model, with an accuracy of 90.84%. The MSE-XGBoost
model has problems in distinguishing misalignment faults from normal states, with more
cases of misclassification and an accuracy rate of 92.61%; the MSE-RF model showed
more misclassifications for misalignment faults and normal states, with a diagnosis rate
of 89.07%.

Table 2. Fault diagnosis results of different models.

Diagnostic Accuracy IMFWPE IMFPE IMPE MSE

XGBoost 100% 94.93% 93.41% 92.61%
RF 99.15% 94.14% 90.84% 89.07%

To avoid the overfitting phenomenon and to verify the generalization ability and
stability of the models, we use K-fold cross-validation. The number of folds K = 2, 3, 4, 5,
6, 7, 8, and 9 is applied. To reduce the effect of randomized experiments on the results,
30 independent replicate experiments were conducted for each type of model. The mean
and standard deviation were calculated, and the results are shown in Figure 11.
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As shown in Figure 11, the accuracy of the IMFWPE-XGBoost model was 98.06%,
98.39%, 99.61%, 99.00%, 98.53%, 99.09%, 99.06%, and 99.09% at different folding numbers,
respectively, with a mean accuracy of 98.85%. The accuracy of the IMFWPE-RF model at
different folds was 98.17%, 98.97%, 98.92%, 99.03%, 98.94%, 98.94%, and 98.84%, with an
average accuracy of 98.84%. Compared with the results of other methods, the proposed
method in terms of diagnostic accuracy has obvious advantages in diagnostic accuracy.
Meanwhile, the standard deviations of the diagnostic rates of the IMFWPE-XGBoost model
were 1.01, 0.90, 0.52, 0.67, 0.81, 0.46, 0.57, and 0.51, respectively, with a mean value of
0.68. The IMFWPE-RF model results were 1.58, 0.95, 1.05, 0.96, 0.82, 0.96, 1.11 and 0.96,
with a mean value of 1.05. The standard deviations of the other comparison models
were generally larger, which can indicate that the proposed method has good stability.
In addition, based on the superior performance of IMFWPE-XGBoost and IMFWPE-RF
models when compared with other models, it can be verified that IMFWPE is a good tool
for data feature extraction.

4.2. Case 2

The analysis and experimental results reported above were obtained in the experimen-
tal bench environment, and there is a lack of fault verification for the proposed method
in an actual hydroelectric unit operation environment. Therefore, in order to verify the
capability of the proposed method for actual unit fault diagnosis, actual machine experi-
ments were conducted. The vibration signal data in this paper were taken from unit 3 of a
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hydroelectric station, model ZZA315-LJ-800, with a rated power of 200 MW. The inspector
found abnormal sound at the upper frame, worm housing, and tail pipe of the unit, and the
unit turbine chamber ring steel plate was detached. The vibration data of the unit under
normal operation and abnormal condition were exported from the monitoring system, and
80 sets of samples under normal and abnormal conditions were collected. The specific
vibration signals are shown in Figure 12.
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The vibration signal of the unit is extracted by IMFWPE and its features are visualized
by t-SNE, as shown in Figure 13a. It can be clearly seen that the signal features extracted by
IMFWPE are completely separated without any overlap, thus proving that the proposed
method is effective for the extraction of fault signal features of hydroelectric units. The
extracted signal features are input to the classifier for diagnosis, and the results are shown
in Figure 13b. It can be seen that the diagnosis rate reaches 100% and there is no misclassi-
fication. This shows that the proposed method is still effective in an actual hydroelectric
unit environment.
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5. Conclusions

By introducing fractional-order entropy and weighting theory, this paper proposes a
fault diagnosis method for hydroelectric units based on IMFWPE, and draws the following
conclusions through a simulation experiment:

(1) The fractional-order entropy concept and weighting theory were introduced on the ba-
sis of PE. On the basis of improved coarse-graining process, a new tool for measuring
the complexity of time-series IMFWPE was proposed. By analyzing the distribution
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of entropy values of simulated signals with different signal-to-noise ratios and their
correlation coefficients, the good noise immunity was verified.

(2) The feature extraction ability of four multiscale entropies, IMFWPE, IMFPE, IMPE,
and MSE, for different types of rotor fault vibration signals under different noises was
compared and visualized using the t-SNE algorithm. The results showed that IMFWPE
had good feature extraction ability under different noise intensity environments.

(3) Through the diagnostic analysis of four types of rotor fault signals, the proposed
method was combined with RF and XGBoost classifiers, and independent repetitive
experiments were conducted using the cross-validation method. The results show that
the proposed method has good performance at no less than 98.06% under different
folding numbers, and the standard deviation of the proposed method is only 0.68.
The proposed method has the best performance among the compared models, which
verifies the superiority and stability of the method.

(4) The proposed method is applied to actual data from hydroelectric units. Its diagnosis
rate reaches 100%, which verifies that the method can still achieve good results in an
actual hydroelectric unit environment.

The proposed method outperforms other comparisons in terms of accuracy, noise
immunity, stability, and sensitivity to features, indicating its good advantages and potential
in the field of hydroelectric unit fault diagnosis. In future research, more exploration is
required for the treatment of plural forms in the fractional order and permutation entropy
incorporation process to uncover additional feature details.
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