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Abstract: In this paper, the mixed convective heat transfer mechanism of nanofluids is investigated.
Based on the Buongiorno model, we develop a novel Cattaneo–Buongiorno model that reflects the
non-local properties as well as Brownian motion and thermophoresis diffusion. Due to the highly
non-linear character of the equations, the finite difference method is employed to numerically solve
the governing equations. The effectiveness of the numerical method and the convergence order are
presented. The results show that the rise in the fractional parameter δ enhances the energy transfer
process of nanofluids, while the fractional parameter γ has the opposite effect. In addition, the effects
of Brownian motion and thermophoresis diffusion parameters are also discussed. We infer that the
flow and heat transfer mechanism of the viscoelastic nanofluids can be more clearly revealed by
controlling the parameters in the Cattaneo–Buongiorno model.

Keywords: nanofluids; Brownian motion and thermophoresis; fractional derivative; mixed convection

1. Introduction

Compared with natural convection and forced convection, mixed convection is more
common and significant in all areas of life, industry, and scientific research, and it holds
great prospects for research, such as nuclear reactors, electronic cooling technology, and
other industrial processes. More and more researchers are involved in the research of
mixed convection. Fan et al. [1] analyzed the laminar mixed convective heat transfer
in a level channel of nanofluids. Abu-Nada and Chamkha [2] numerically simulated a
stable laminar mixed convective flow of a water–CuO nanofluid in a lid-driven cavity
with wavy wall. Aaiza et al. [3] studied the energy transfer of the mixed convective
unsteady magnetohydrodynamic (MHD) flow of nanofluids in saturated porous media
channels. Aman et al. [4] analyzed the MHD mixed convection Poiseuille flow of gold
nanoparticles, taking into account the effects of thermal radiation, chemical reaction, and
thermal diffusion. Chakravarty et al. [5] employed the Darcy–Brinkman–Forchheimer
model for numerical simulation to study the mixed convection heat transfer of fluids.
Khanafer and Vafai [6] studied the double-diffusion mixed convective flow in a lid-driven
vessel filled with a liquid-saturated porous medium. Moolya and Anbalgan [7] numerically
investigated and optimized the influence of vital parameters on double-diffusion mixed
convection. In addition, the stability of mixed convection under different specific conditions
was also verified [8,9].

Recently, nanofluids have been widely used to improve various heat transfer properties
based on their superior characteristics [10–12], such as macro and micro heat exchangers,
aerospace applications, electronic equipment cooling, and other heat transfer enhancement
fields. Choi first proposed the concept of the nanofluids [13]. Subsequently, Xuan et al. [14]
refined the theory of thermal conductivity of nanofluids. In particular, for complex nanoflu-
ids, it is vital to introduce the improved constitution equation to describe the heat transfer
phenomena. In 2006, the Buongiorno model was proposed [15], which concluded that
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Brownian motion and thermophoresis are the significant slip mechanisms for nanofluids,
and explained the principles of the Brownian and thermophoresis diffusion. Since then,
the model has been broadly applied by researchers, and the research on the nanofluids
made great progress. Ahmed et al. [16] used the Buongiorno model to study the flow of
nanofluids in a heat-generated porous medium-filled wavy enclosures. Bansch et al. [17]
applied the Buongiorno model to analyze the existence of steady-state problem solutions of
convection transfer of nanofluids. Sohail et al. [18] numerically calculated the flow of fluid
on a stretched sheet applying the Buongiorno model. However, the heat and mass diffusion
in the model adopts the classical Fourier and Fick’s laws, ignoring thermal relaxation and
mass relaxation effects. In subsequent studies, scholars made different improvements to
the model. Rana et al. [19] employed the modified Buongiorno model to study 3D flow and
heat transfer of nanoliquids. Puneeth et al. [20] applied the modified Buongiorno model to
study the jet flow of ternary nanofluids. It is worth noting that traditional constitutive rela-
tions cannot be used to describe the special properties of nanofluids, and fractional calculus
theory is widely applied because of its non-locality and long memory characteristics [21,22].
Aman et al. [23] researched the heat and mass transfer of graphene nanofluids through
a vertical plate by fractional derivative. Zhao et al. [24] first introduced fractional order
into boundary layer equations to study the heat transfer of unstable natural convection
boundary layers. Chen et al. [25] discussed the boundary layer flow of fractional viscoelas-
tic MHD fluids on a stretched thin plate. Liu et al. [26] introduced fractional derivatives
to describe heat conduction in the Cattaneo–Christov model. Cao et al. [27] applied the
fractional Maxwell model to analyze the flow and heat of nanofluids on a moving plate.
Zhao et al. [28] described the unsteady Marangoni convection of fractional Maxwell fluids.
Recently, the double fractional Maxwell model was widely studied by researchers [29–32].
The results display that the double fractional Maxwell model is more flexible and accurate
in explaining the flow of viscoelastic fluids.

In recent years, researchers applied fractional calculus theory to the Buongiorno model
and made different improvements and revisions. Shen et al. [33] introduced the Cattaneo
thermal conductivity model with time fractional derivative in the Buongiorno model to de-
scribe the abnormal heat transfer of nanofluids. After that, Zhang et al. [34] introduced the
spatial fractional derivative based on the improved Buongiorno model to characterize the
non-local behavior of nanofluids. To the best of our knowledge, the fractional constitutive
model is more effective and reliable to describe the flow and heat transfer phenomena of
the viscoelastic nanofluids. The Cattaneo thermal conductivity model with double time
fractional derivatives is introduced to modify the Buongiorno model.

Based on the above discussions, in this paper, a generalized Cattaneo–Buongiorno
constitutive model is proposed to explore the heat and mass transfer of nanofluids in mixed
convection. The governing equations are resolved by the finite difference method. The
accuracy of the numerical algorithm is verified. In addition, the effects of diverse important
parameters on heat transfer and mass transfer are depicted graphically and analyzed.

2. Mathematical Formulation

We propose a generalized Cattaneo–Buongiorno constitutive model, defined as follows:

q + λδ
2

∂δq
∂tδ

= −Kλ
γ
2

∂γ−1

∂tγ−1

(
∂T
∂y

)
+ hp · jp, 0 ≤ δ ≤ γ ≤ 1 (1)

where q is the heat flux, λ2 = k/K is the temperature relaxation time, k is the thermal
conductivity, δ and γ are the fractional parameters, and ∂δ/∂tδ and ∂γ−1/∂tγ−1 are the
Caputo’s fractional derivatives. Subscripts n f and p represent nanofluids and nanosolids,
respectively, hp = cpT is the specific enthalpy, and jp is the diffusion mass flux, which is
expressed as [27]:

jp = jp,B + jp,T = −ρpDB∇C− ρpDT
∇T
T0

, (2)



Fractal Fract. 2022, 6, 584 3 of 13

where ρp is the mass density, and DB and DT express the Brownian diffusion coeffi-
cient and thermophoresis diffusion coefficient, respectively. T is the nanofluids tempera-
ture. The fractional Maxwell model is introduced as the constitution relationship of the
viscoelastic nanofluids [29].

Consider mixed convection of fractional Maxwell nanofluids between two infinitely
long parallel plates, which is caused by the temperature difference. The distance between
the two parallel plates is d, and the system of rectangular coordinates (x, y) is selected. The
x-axis is parallel to the flow direction of the fluid, and the y-axis is perpendicular to the flow
direction of the fluid. A geometry image of the system is shown in Figure 1. The equations
of the velocity, temperature, and concentration fields can be expressed as:

ρn f
∂u
∂t

= −∇p +∇ · τ + ρn f g, (3)

(
ρcp
)

n f
∂T
∂t

= −∇ · q + hp∇ · jp, (4)

∂C
∂t

= − 1
ρp
∇ · jp − kr(C− C0), (5)

with the boundary and initial conditions:

t = 0 : u = 0, T = T0, C = C0; y = 0 : u = 0, T = T0, C = C0; y = d : u = 0, T = Tw, C = Cw, (6)

where ρn f is the density of nanofluids and ∇p is the pressure gradient, expressed as
∇p = ∂p/∂x = −ρ∞g. By invoking Boussinesq approximation, we have
ρ∞ − ρn f = ρn f βn f (T − T0). (ρβ)n f is the thermal expansion coefficient, g is the gravi-
tational acceleration,

(
ρcp
)

n f is the capacitance, and kr is the chemical reaction parameter.
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The fractional Maxwell model of nanofluids [29] is substituted into the momentum
Equation (3). The generalized Cattaneo–Buongiorno constitutive Equation (1) is substituted
into energy Equation (4) and concentration Equation (5). The governing equations of
nanofluids mixed convection model can be expressed as follows:(

λ
1−β
1

∂1−β

∂t1−β
+ λ

1+α−β
1

∂1+α−β

∂t1+α−β

)(
∂u
∂t
− (βT)n f g(T − T0)

)
= υ

∂2u
∂y2 , (7)

(
λ

1−γ
2

∂1−γ

∂t1−γ
+ λ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

)
∂T
∂t

=
k(

ρcp
)

n f

∂2T
∂y2 + σλ

1−γ
2

∂1−γ

∂t1−γ

(
DB

∂C
∂y

∂T
∂y

+
DT

T0

(
∂T
∂y

)2
)
−σλ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

(
DBT

∂2C
∂y2 +

DT T
T0

∂2T
∂y2

)
, (8)

∂C
∂t

= DB
∂2C
∂y2 +

DT
T0

∂2T
∂y2 − kr(C− C0), (9)

where α and β are the fractional parameters of shear stress and shear strain, respectively.
σ = (ρc)P is the heat capacity and υ = µ/ρ is the kinematic viscosity of nanofluids.
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By introducing the following dimensionless variables:

u∗ =
u

U0
, x∗ =

x
d

, y∗ =
y
d

, t∗ =
tU0

d
, λ1
∗ =

λ1U0

d
,

λ∗2 =
λ2U0

d
, T∗ =

T − T0

Tw − T0
, C∗ =

C− C0

Cw − C0
, kr
∗ =

krd
U0

,

the dimensionless governing equations can be written as (ignoring symbols ∗ for calcu-
lation convenience):(

λ
1−β
1

∂1−β

∂t1−β
+ λ

1+α−β
1

∂1+α−β

∂t1+α−β

)(
Re

∂u
∂t
− GrT

)
=

∂2u
∂y2 , (10)

(
λ

1−γ
2

∂1−γ

∂t1−γ
+ λ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

)
∂T
∂t

=
1

Re · Pr
∂2T
∂y2 + λ

1−γ
2

∂1−γ

∂t1−γ

(
Nb
Re

∂C
∂y

∂T
∂y

+
Nt
Re

(
∂T
∂y

)2
)
− λ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

(
Nb
Re

T
∂2C
∂y2 +

Nt
Re

T
∂2T
∂y2

)
, (11)

∂C
∂t

=
1

Re · Ln
∂2C
∂y2 +

1
Re · Ln

Nt
Nb

∂2T
∂y2 − krC, (12)

where Re is the Reynolds number, Gr is the thermal Grashof number, αm is the thermal
diffusion coefficient of nanofluids, Pr is the generalized Prandtl number, Nt is the ther-
mophoresis parameter, Nb is the Brownian motion parameter, and Ln is the Lewis number.
Their expressions are as follows:

Re =
ρU0d

µ
, Gr =

g(βT)n f (Tw − T0)d2

U0υ
, αm =

k
(ρcp)n f

, Pr =
υ

αm
, Nt =

σDT(Tw − T0)

T0υ
, Nb =

σDB(Cw − C0)

υ
, Ln =

υ

DB
.

The initial and boundary conditions are:

t = 0 : u = 0, T = 0, C = 0; y = 0 : u = 0, T = 0, C = 0; y = 1 : u = 0, T = 1, C = 1. (13)

3. Numerical Technique

The finite difference method is applied to solve the dimensionless Equations (10)–(12). De-
note xi = i∆x(i = 0, 1, 2, · · · , M), yj = j∆y(j = 0, 1, 2, · · · , N), tk = k∆t(k = 0, 1, 2, · · · , L),
where ∆x = Xmax/M and ∆y = Ymax/N are the space steps, and ∆t is the time step. The
time fractional derivative is worked out by employing the L1 algorithm.

First, the L1 algorithm is imported as (0 < α < 1) [35]:

∂α f (tk)
∂tα = ∆t−α

Γ(2−α)

k−1
∑

s=0
αs[ f (tk−s)− f (tk−s−1)] + O(∆t2−α)

= ∆t−α

Γ(2−α)

[
f (tk)− αk−1 f (t0)−

k−1
∑

s=1
(αs−1 − αs) f (tk−s)

]
+ O(∆t2−α),

(14)

where αs = (s + 1)1−α − s1−α, s = 0, 1, 2, . . . , R
Second, the integer order discretization in the system of control equations is as follows:

∂u
∂t

∣∣∣∣
t=tk

=
uk

i,j − uk−1
i,j

∆t
+ O(∆t), (15)

∂2u
∂y2

∣∣∣∣
t=tk

=
uk

i,j+1 − 2uk
i,j + uk

i,j−1

∆y2 + O(∆y2), (16)

∂C
∂y

∂T
∂y

∣∣∣∣
t=tk

=
Ck−1

i,j − Ck−1
i,j−1

∆y

Tk
i,j − Tk

i,j−1

∆y
+ O(∆t + ∆y), (17)

(
∂T
∂y

)2
∣∣∣∣∣
t=tk

=
Tk−1

i,j − Tk−1
i.j−1

∆y

Tk
i,j − Tk

i,j−1

∆y
+ O(∆t + ∆y), (18)
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T
∂2C
∂y2

∣∣∣∣
t=tk

= Tk
i,j

Ck−1
i,j+1 − 2Ck−1

i,j + Ck−1
i,j−1

∆y2 + O(∆t + ∆y2), (19)

T
∂2T
∂y2

∣∣∣∣
t=tk

= Tk−1
i,j

Tk
i,j+1 − 2Tk

i,j + Tk
i,j−1

∆y2 + O(∆t + ∆y2). (20)

Third, we disperse time fractional derivatives at
(
xi, yj, tk

)
(0 < α < 1) as follows:

∂α

∂tα

(
∂u
∂t

)∣∣∣∣
t=tk

=
∆t−1−α

Γ(2− α)

(
uk

i,j − uk−1
i,j −

k−1

∑
s=1

(αs−1 − αs)
(

uk−s
i,j − uk−s−1

i,j

))
+ O(∆t), (21)

∂αT
∂tα

∣∣∣∣
t=tk

=
∆t−α

Γ(2− α)

(
Tk

i,j −
k−1

∑
s=1

(αs−1 − αs)Tk−s
i,j

)
+ O

(
∆t2−α

)
, (22)

∂α

∂tα

(
∂C
∂y

∂T
∂y

)∣∣∣∣
t=tk

=
∆t−α

Γ(2− α)∆y2

((
Ck−1

i,j − Ck−1
i,j−1

)(
Tk

i,j − Tk
i,j−1

)
−

k−1

∑
s=1

(αs−1 − αs)
(

Ck−s−1
i,j − Ck−s−1

i,j−1

)(
Tk−s

i,j − Tk−s
i,j−1

))
+ O(∆t + ∆y), (23)

∂α

∂tα

(
T

∂2C
∂y2

)∣∣∣∣
t=tk

=
∆t−α

Γ(2− α)∆y2

(
Tk

i,j

(
Ck−1

i.j+1 − 2Ck−1
i,j + Ck−1

i,j−1

)
−

k−1

∑
s=1

(αs−1 − αs)Tk−s
i,j

(
Ck−s−1

i,j+1 − 2Ck−s−1
i,j + Ck−s−1

i,j−1

))
+ O(∆t + ∆y2). (24)

Then, the results of the iterative Equations of (10)–(12) are:

− r8uk
i,j−1 + (r6 + r7 + 2r8)uk

i,j − r8uk
i,j+1 = (r6 + r7)uk−1

i,j + r6 A1 + r7 A2 + r6r10

(
Tk

i,j − A3

)
+ r7r10

(
Tk

i,j − A4

)
+ Rk

1i,j, (25)(
−r3 + r1r4

(
Ck−1

i,j − Ck−1
i,j−1

)
+ r1r5

(
Tk−1

i,j − Tk−1
i,j−1

)
+ r2r5Tk−1

i,j

)
Tk

i,j−1 +
(
−r3 + r2r5Tk−1

i,j

)
Tk

i,j+1

+
(

r1 + r2 + 2r3 − r1r4

(
Ck−1

i,j − Ck−1
i,j−1

)
− r1r5

(
Tk−1

i,j − Tk−1
i,j−1

)
+ r2r4

(
Ck−1

i,j+1 − 2Ck−1
i,j + Ck−1

i,j−1

)
− 2r2r5Tk−1

i,j

)
Tk

i,j

= (r1 + r2)Tk−1
i,j + r1B1 + r2B2 − r1r4B3 − r1r5B4 + r2r4B5 + r2r5B6 + Rk

2i,j,

(26)

− r9Ck
i,j−1 + (1 + 2r9 + kr∆t)Ck

i,j − r9Ck
i,j+1 = Ck−1

i,j + r9
Nt
Nb

(
Tk

i,j+1 − 2Tk
i,j + Tk

i,j−1

)
+ Rk

3i,j. (27)

where |R1| ≤ C(∆t + ∆y2), |R2| ≤ C(∆t + ∆y), |R3| ≤ C(∆t + ∆y2) and

r1 =
λ

1−γ
2 ∆t−(1−γ)

Γ(2− (1− γ))
, r2 =

λ
1+δ−γ
2 ∆t−(1+δ−γ)

Γ(2− (1 + δ− γ))
, r3 =

∆t
Re · Pr∆y2 ,

r4 =
Nb
Re

∆t
∆y2 , r5 =

Nt
Re

∆t
∆y2 , r6 =

λ
1−β
1 ∆t−(1−β)

Γ(2− (1− β))
, r7 =

λ
1+α−β
1 ∆t−(1+α−β)

Γ(2− (1 + α− β))
,

r8 =
∆t

Re · ∆y2 , r9 =
∆t

Re · Ln∆y2 , r10 =
Gr∆t

Re
,

A1 =
k−1

∑
s=1

[(1− β)s−1 − (1− β)s]
(

uk−s
i,j − uk−s−1

i,j

)
,

A2 =
k−1

∑
s=1

[(1 + α− β)s−1 − (1 + α− β)s]
(

uk−s
i,j − uk−s−1

i,j

)
,

A3 =
k−1

∑
s=1

[(1− β)s−1 − (1− β)s]T
k−s
i,j ,

A4 =
k−1

∑
s=1

[(1 + α− β)s−1 − (1 + α− β)s]T
k−s
i,j ,

B1 =
k−1

∑
s=1

[(1− γ)s−1 − (1− γ)s](T
k−s
i,j − Tk−s−1

i,j ),

B2 =
k−1

∑
s=1

[(1 + δ− γ)s−1 − (1 + δ− γ)s](T
k−s
i,j − Tk−s−1

i,j ),
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B3 =
k−1

∑
s=1

[(1− γ)s−1 − (1− γ)s]
(

Ck−s−1
i,j − Ck−s−1

i,j−1

)
(Tk−s

i,j − Tk−s
i,j−1),

B4 =
k−1

∑
s=1

[(1− γ)s−1 − (1− γ)s]
(

Tk−s−1
i,j − Tk−s−1

i,j−1

)
(Tk−s

i,j − Tk−s
i,j−1),

B5 =
k−1

∑
s=1

[(1 + δ− γ)s−1 − (1 + δ− γ)s]T
k−s
i,j

(
Ck−s−1

i,j+1 − 2Ck−s−1
i,j + Ck−s−1

i,j−1

)
,

B6 =
k−1

∑
s=1

[(1 + δ− γ)s−1 − (1 + δ− γ)s]T
k−s−1
i,j

(
Tk−s

i,j+1 − 2Tk−s
i,j + Tk−s

i,j−1

)
.

The initial and boundary conditions of the discrete scheme are:

t = 0 : u = 0, T = 0, C = 0; y = 0 : u = 0, T = 0, C = 0; y = N : u = 0, T = 1, C = 1. (28)

4. Validation of the Numerical Method
To examine the validity of the numerical method, the source terms f1(x, y, t), f2(x, y, t), and

f3(x, y, t) are introduced into the governing equations. The expressions of the source terms are ob-
tained in the governing equations through the analytical solutions. Next, a set of numerical solutions
are acquired by the numerical method for comparison with the analytical solutions. As follows:(

λ
1−β
1

∂1−β

∂t1−β
+ λ

1+α−β
1

∂1+α−β

∂t1+α−β

)(
Re

∂u
∂t
− GrT

)
=

∂2u
∂y2 + f1(y, t), (29)

(
λ

1−γ
2

∂1−γ

∂t1−γ + λ
1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

)
∂T
∂t = 1

Re·Pr
∂2T
∂y2 + λ

1−γ
2

∂1−γ

∂t1−γ

(
Nb
Re

∂C
∂y

∂T
∂y + Nt

Re

(
∂T
∂y

)2
)

−λ
1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

(
Nb
Re T ∂2C

∂y2 + Nt
Re T ∂2T

∂y2

)
+ f2(y, t),

(30)

∂C
∂t

=
1

Re · Ln
∂2C
∂y2 +

1
Re · Ln

Nt
Nb

∂2T
∂y2 − krC + f3(y, t), (31)

with the new initial and boundary conditions:

t = 0 : u = 0, T = 0, C = 0; y = 0 : u = 0, T = 0, C = 0; y = 1 : u = 0, T = 0, C = 0. (32)

where

f1(y, t) = − 2λ
1−β
1 y2(y−1)2(t1+βGrΓ(1+β)−tβReΓ(2+β))

Γ(1+β)Γ(2+β)

− 2λ
1+α−β
1 y2(y−1)2(t1−α+βGrΓ(1−α+β)−t−α+βReΓ(2−α+β))

Γ(1−α+β)Γ(2−α+β)

−2(1− y)2t2 + 8y(1− y)t2 − 2y2t2,

(33)

f2(y, t) = 2λ
1−γ
2 tγy2(y−1)2

Γ(1+γ)
+

2λ
1+δ−γ
2 t−δ+γy2(y−1)2

Γ(1−δ+γ)
− 2(1−y)2t2−8y(1−y)t2+2y2t2

Re·Pr

− 96λ
1−γ
2 t3+γy2(2y2−3y+1)2

(Nb+Nt)
Re·Γ(4+γ)

+
48λ

1+δ−γ
2 t3−δ+γy2(y−1)2(6y2 Nb+6y2 Nt−6yNb−6yNt+Nb+Nt)

Re·Γ(4−δ+γ)
,

(34)

f3(y, t) = 2y2(1− y)2t− (2− 12y + 12y2)t2(1 + Nt/Nb)
Re · Ln

+ Kr · y2(1− y)2t2. (35)

The following analytical solutions are obtained:

u(y, t) = T(y, t) = C(y, t) = y2(1− y)2t2. (36)

In Figure 2, the velocity, temperature, and concentration distributions of nanofluids along
t direction are given by numerical and analytical solutions, respectively. It can be seen that the
arithmetic solutions coincide well with the analytical solutions, which shows the correctness of the
numerical algorithm. To examine the convergence order of the numerical method, Tables 1–3 give
the L2 error, the L∞ error, and the convergence order of the momentum, energy, and concentration
equations for different time steps ∆t. The convergence order can reach the first order, as we expected.
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Table 1. The truncation error and convergence order of velocity u with ∆y = 0.01.

∆t L2 Error Order L∞ Error Order

0.1 3.0723 × 10−3 - 4.4143 × 10−3 -
0.05 1.5496 × 10−3 0.9874 2.2262 × 10−3 0.9876

0.025 7.7837 × 10−4 0.9934 1.1181 × 10−3 0.9935
0.0125 3.9022 × 10−4 0.9962 5.6051 × 10−4 0.9962

Table 2. The truncation error and convergence order of temperature T with ∆y = 0.01.

∆t L2 Error Order L∞ Error Order

0.1 1.8800 × 10−3 - 2.7568 × 10−3 -
0.05 9.6757 × 10−4 0.9583 1.4177 × 10−3 0.9594

0.025 4.9147 × 10−4 0.9773 7.1997 × 10−4 0.9775
0.0125 2.4796 × 10−4 0.9870 3.6353 × 10−4 0.9859

Table 3. The truncation error and convergence order of concentration C with ∆y = 0.01.

∆t L2 Error Order L∞ Error Order

0.1 4.0470 × 10−4 - 5.4928 × 10−4 -
0.05 1.8991 × 10−4 1.0915 2.5773 × 10−4 1.0917

0.025 9.1774 × 10−5 1.0492 1.2564 × 10−4 1.0366
0.0125 4.5249 × 10−5 1.0202 6.3692 × 10−5 0.9801

5. Results and Discussion
The governing Equations (10)–(12) with conditions (13) are resolved by the finite difference

method. The space and time steps are ∆y = 0.01, ∆t = 0.02, respectively. In this section, we mainly
discuss the influence of fractional parameters, Brownian parameters, and thermophoresis parameters
on the temperature and concentration of the nanofluids.

5.1. Effects of the Fractional Parameters on the Temperature Field
Figure 3 describes the relationship between fractional parameters δ and γ and the temperature

of nanofluids in the y direction. Particularly, the temperature distributions under different fractional
order parameter δ when γ = 0.9 are shown in Figure 3a. With the increase in δ in the same location,
the temperature profile rises uniformly, which means that the heat transfer process of the nanofluids
is enhanced with the augment in the fractional parameter δ. Figure 3b gives the temperature
distributions under different fractional order parameter γ when δ = 0.1. The results manifest that the
greater the fractional parameter γ, the lower the temperature of the nanofluids. It follows that the
nanofluids heat transfer process is weakened with the growth of fractional parameter γ.
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Figure 3. Temperature distributions with respect to y: (a) for different δ; (b) for different γ.

Figure 4 shows the effect of different fractional order parameters δ and γ on the temperature of
nanofluids in the t direction. Figure 4a reveals that with the passage of time, the temperature always
first elevates to a peak, then decreases, and finally reaches a stable value. Figure 4b describes the
temperature distributions when γ = 1, 0.9, 0.8, 0.7. There is a peak in temperature as the fractional
parameter γ decreases. A smaller γ corresponds to a higher temperature peak. Similarly, for each
value of γ, the temperature eventually reaches a stable level and does not change any more.
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5.2. Effects of the Fractional Parameters on the Concentration Field
Figure 5 describes the influence of different fractional parameters δ and γ on the concentration

of nanofluids in the y direction. The result from Figure 5a shows that the concentration of nanofluids
presents a downward trend with the enlargement of fractional parameter δ; that is, the distribution
of nanoparticles becomes more sparse in the same region of y. This is mainly because the increase
in the temperature reduces the concentration of nanoparticles in the flow region. When δ = 0.1,
the concentration distributions for different parameter γ are given in Figure 5b. As the fractional
parameter γ decreases, the concentration presents a downward trend. Overall, the above results
demonstrate that the fractional parameters δ and γ affect the movement of nanoparticles by changing
the temperature, and then affect the mass transfer process of nanofluids.
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The influence of different fractional order parameters δ and γ on concentration distribution in
the t direction is shown in Figure 6. As can be seen in Figure 6a, with the rise in parameter δ, the peak
value of concentration distribution decreases, but eventually tends to be stable. Figure 6b shows the
concentration distributions under different fractional parameter γ. The peak of the concentration
rises as the value of γ increases. It is because the increase in temperature difference of nanofluids
leads to the enhancement of the thermophoresis of nanoparticles and the nanoparticles quickly shift
from the higher temperature district to the lower temperature district, making the concentration of
the nanoparticles decrease and reach the stable state more rapidly.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 10 of 14 
 

 

The influence of different fractional order parameters δ  and γ  on concentration 
distribution in the t  direction is shown in Figure 6. As can be seen in Figure 6a, with the 
rise in parameter δ , the peak value of concentration distribution decreases, but 
eventually tends to be stable. Figure 6b shows the concentration distributions under 
different fractional parameter γ . The peak of the concentration rises as the value of γ  
increases. It is because the increase in temperature difference of nanofluids leads to the 
enhancement of the thermophoresis of nanoparticles and the nanoparticles quickly shift 
from the higher temperature district to the lower temperature district, making the 
concentration of the nanoparticles decrease and reach the stable state more rapidly. 

(a) (b) 

Figure 5. Concentration distributions with respect to y : (a) for different δ ; (b) for different γ . 

(a) (b) 

Figure 6. Concentration distributions with respect to t : (a) for different δ ; (b) for different γ . 

5.3. Effects of Nb  and Nt  
Figure 7 describes the temperature and concentration distributions with different 

Brownian motion parameter Nb . Figure 7a displays that the temperature change rate 
increases with the rise in Nb . Physically, the adding of Brownian motion contributes to 
the efficient movement of nanoparticles between plates, thus, improving the heat transfer 
efficiency of nanofluids. Different from the temperature, the concentration gradually 
descends with larger Nb . The performances of different thermophoresis parameter Nt  
on temperature and concentration distributions are shown in Figure 8. The temperature 
presents an upward trend with the augment of Nt , which is due to the effect of heat 
capacity of nanoparticles. However, the improvement in the thermophoresis results in a 

Figure 6. Concentration distributions with respect to t: (a) for different δ; (b) for different γ.

5.3. Effects of Nb and Nt
Figure 7 describes the temperature and concentration distributions with different Brownian

motion parameter Nb. Figure 7a displays that the temperature change rate increases with the
rise in Nb. Physically, the adding of Brownian motion contributes to the efficient movement of
nanoparticles between plates, thus, improving the heat transfer efficiency of nanofluids. Different
from the temperature, the concentration gradually descends with larger Nb. The performances of
different thermophoresis parameter Nt on temperature and concentration distributions are shown in
Figure 8. The temperature presents an upward trend with the augment of Nt, which is due to the
effect of heat capacity of nanoparticles. However, the improvement in the thermophoresis results in
a decrease in concentration, which is consistent with the results [36]. Therefore, the enhancement
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of Brownian diffusion and thermophoresis promotes the heat transfer of nanofluids, which plays a
crucial part in the diffusion process of nanoparticles.
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6. Conclusions
In this paper, we investigate the mixed convection of fractional nanofluids considering Brownian

motion and thermophoresis. The arithmetic solutions of the fractional equations are obtained
by employing the finite difference method. The effects of fractional order parameters, Brownian
motion parameters, and thermophoresis parameters on the temperature and concentration are
discussed. The consequences manifest that the rise in fractional parameter δ enhances the energy
transfer process of nanofluids, while the augment of fractional parameter γ weakens the heat transfer.
However, the opposite effects are found in the concentration distribution. In fact, the change in
temperature affects the effective movement of nanoparticles, which is also an important reason for
the increase and decrease in concentration. In addition, the enhancement of Brownian diffusion and
thermophoresis promotes the heat transfer of nanofluids, which plays a crucial part in the diffusion
process of nanoparticles.
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Nomenclature
q Heat flux
k Thermal conductivity
K Permeability
hp Specific enthalpy
T Nanofluids temperature
jp Diffusion mass flux
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coefficient
E Shear modulus
p Pressure
g Gravitational acceleration
kr Chemical reaction parameter
Re Reynolds number
Gr Grashof number
Pr Generalized Prandtl number
Nt Thermophoresis parameter
Nb Brownian motion parameter
Ln Lewis number
Greek Symbols
α, β, δ, γ Time fractional derivative parameters
τ Shear stress
ε Shear strain
µ Dynamic viscosity
λ1 Relaxation time
λ2 Temperature relaxation time
ρp Mass density
ρn f Density of the nanofluids
(ρβ)n f Thermal expansion coefficient
(ρcp)n f Capacitance

σ Heat capacity of nanoparticle materials
υ Kinematic viscosity
Γ Gamma function
Subscripts
n f Nanofluids
p Nanoparticles
ω Wall condition
Superscript
∗ Dimensionless form
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