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Abstract: The Navier–Stokes (NS) equations involving MHD effects with time-fractional derivatives
are discussed in this paper. This paper investigates the local and global existence and uniqueness of
the mild solution to the NS equations for the time fractional differential operator. In addition, we
work on the regularity effects of such types of equations which are caused by MHD flow.
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1. Introduction

Applied Mathematics is a sub-branch of fractional calculus with ordinary derivatives
and integrals of arbitrary orders. It has become increasingly popular thanks to demon-
strated applications in science [1–3]. These types of equations are widely used in fluid
flow [4], diffusion, anomalous diffusion [5], transmutation of distribution [6], turbulence,
rheology, and many other physical processes. To explain the existence and uniqueness of
boundary conditions, we consider the entire summary of mathematics.

Electromagnetic influencers or Magnetohydrodynamics (MHD) deal with the elec-
tronic conduction of conductive liquids in a magnetic field. A magnetic field carries currents
in a moving liquid. A current passing through a a carrier can create forces on the liquid and
affect the magnetic flux. Similar to electrokinetics, the effects of MHD represent multiple
physics problems, which require the different domains to be connected. The effects of MHD
can be explained by the NS equations of mobile dynamics and Maxwell’s equations of
Electromagnetism [7].

The full form of MHD is Magnetohydrodynamics. MHD is an analysis of the charac-
teristics and magnetic properties of electroconductive fluids. Liquefied metals, plasma, salt
water, and electrolytes all involve magnetic–liquid properties.

The term Magnetohydrodynamics is derived from magneto, meaning a magnetic
field, hydro, meaning water, and dynamics, meaning fluctuation or flux. Hannes Alfvén, a
Swedish electrical engineer, inaugurated the field of MHD, receiving the Nobel Prize in
Physics because of his work on MHD. The basic concept of MHD involves magnetic fields
that can produce currents in movable conductive liquids, which successively generate
forces on the fluids and convert the entire field. Magnetohydrodynamics is described by a
set of equations that are a combination of the NS equations of fluid dynamics and Maxwell’s
equations for electromagnetism. These differential equations (DE) must be resolved at the
same time, either analytically or numerically. Abbas et al. [8] solved ordinary differential
equations. Shafqat et al. [9], Alnahdi et al. [10], and Abuasbeh et al. [11,12] investigated
the existence and uniqueness of the fuzzy fractional evolution equations.
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Euler’s original equation is as follows:

ρ
∂w
∂ς

+ (w.∇)w = −∇P, (1)

where w is the fluid velocity vector, P is the fluid pressure, ρ is the fluid density, and ∇
indicates the gradient differential operator.

The Navier–Stokes equation of Magnetohydrodynamic flow in modern notation is

ρ

(
∂w
∂ς

+ (w.∇)w
)
= −∇P + µ∇2w− σB0

2v, (2)

where w is the velocity vector, P is the fluid pressure, ρ is the fluid density, σ is the electrical
conductivity, µ is the dynamic viscosity, and ∇2 is the Laplacian operator.

The Magnetohydrodynamic (MHD) Effect is a physical phenomenon that explains the
motion of a conductive fluid flowing under the impact of an exterior magnetic field.

The Cauchy problem for solving the incompressible NS equation incorporating MHD
effects is provided by

∂
γ
ς v− w4v + (v.∇)v = −∇p + (−σB0

2 v
ρ
), ς > 0,

∇.v = 0,
v|∂Ω = 0,
v(0, x) = a,

(3)

where ∂
γ
ς denotes the fractional order Caputo derivative at x ∈ Ω, where Ω is the smooth

boundary and time ς > 0, v = (v1(ς, x), v2(ς, x), . . . , vn(ς, x)) shows the velocity field, the
pressure is ρ = ρ(ς, x), σ is the electrical conductivity, and B0 is the magnetic field strength.
Thus, MHD is the body force and the initial velocity is defined by a [13].

First, by applying the Helmholtz–Leray projector P to Equation (3), we can remove
the pressure term, which converts Equation (3) to

∂
γ
ς v− wP4v + P(v.∇)v =

(
− PσB0

2 v
ρ

)
, ς > 0,

∇.v = 0,
v|∂Ω = 0,
v(0, x) = a.

(4)

The term −wP4, having Dirichlet boundary conditions, refers to the Stokes opera-
tor A, which is evaluated in divergence-free function space. Thus, the abstract form of
Equation (3) is  cDγ

ς v(ς) = −Av + F(v, w)− PσB0
2 v

ρ
, ς > 0,

v(0) = a,
(5)

whereas (v, w) = −P(v.∇)w. If someone making sense to the Helmholtz–Leray projec-
tor P and Stokes operator A are sensible, then the result of Equation (5) is the result of
Equation (2). The main purpose of this paper is to demonstrate the existence and unique-
ness of local and global mild solutions to problem (5) in Hγ,r.

Additionally, we determine the regularity outcomes, which express significantly that

if σB0
2 v

ρ
(ς) is Hölder continuous, at that point v(ς) is a unique classical solution in order

for Av and cDγ
ς v(ς) to be Hölder continuous in Jr.

The basic idea behind the MHD is that magnetic fields in a movable conductive fluid
can initiate currents, which results in the liquid being polarized and changes the magnetic
field by itself. A combination of the NS equations of fluid dynamics and Maxwell’s
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equations for electromagnetism provide the mathematical explanation of MHD. There have
been several productive studies related to MHD effects and fluid dynamics [4,14–18].

2. Preliminaries

In this section, we define the Gamma function, fractional order integral, Riemann-
Liouville fractional derivative, Caputo fractional derivative, and additional definitions,
lemmas, and theorems. For a brief review of fractional calculus definitions and properties,
see [19,20].

Let the half space in Rn as Ω= H =(x1, . . . , xn) : xn > 0 be the open subset of Rn,
whereas n ≥ 3. Let 1 < r < ∞. Then, we have the Hödge-projection, which is a bounded
projection P on (Lr(Ω)n), of which the range is the conclusion of:=

C∞
σ (H) =

(
v ∈ (C∞(H))n : ∇.v = 0

)
, (6)

to which null space is the conclusion of

v ∈ (C∞(H))n : v = ∇.φ, φ ∈ C∞(H). (7)

For a suitable approach, let Jr=C∞
σ (H)

|.|r , which is a closed subspace of (Lr(H))n, with
A = −υP∆ the Stokes operator in the Jr-containing domain Dr(A) = Dr(∆) ∩ Jr. Stokes,
an Irish-English physicist and mathematician, defined the unbounded linear operator,
named the Stokes operator, which is used in the theory of partial differential equations and
specifically in the fields of fluid dynamics and electromagnetics.

Dr(∆) = v ∈ (W2,r(H)n) : v|∂H = 0.

Now, we have to introduce the definitions of fractional power spaces that are related to
−A. For γ > 0 and v ∈ Jr, we define

A−γv =
1

Γ(γ)

∫ ∞

0
ςγ−1e−ςAudς.

Therefore, A−γ is bounded [21], just as the injective operator on Jr. Suppose A−γ is the
inverse of A−γ; for γ > 0, we symbolize the space Hγ,r by the extent of A−γ with the
following norm:

|v|Hγ,r = |Aγv|r.

Here, we consider K, L, M, and N as four Banach spaces with norms | |K, | |L, | |M,
and | |N . All these spaces are continuously inserted in common topological vector space;
here, eςA denotes semigroup C0 on X, with the following properties.
SG1

∗: for each ς > 0, eςA is a bounded map K → L. For certain α > 0, there are positive
constants C∗ and T∗ such that

|eςA f |L ≤ C∗ς−α| f |K∀ f ∈ K and ς ∈ (0,=].

SG2
∗: for each ς > 0, eςA extends to a bounded map L → M. For certain β > 0, there are

positive constants C∗ and T∗ such that

|eςA f |M ≤ C∗ς−β| f |L∀ f ∈ L and ς ∈ (0,=].

Moreover, ς→ eςA f is continuous into M for ς > 0 and lim
ς→0

ςβ|eςA f |M = 0 ∀ f ∈ L.

SG3
∗: for each ς > 0, eςA extends to a bounded map L → N. For certain γ > 0, there are

positive constants C∗ and =∗ such that

|eςA f |N ≤ C∗ς−γ| f |L
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∀ f ∈ L and ς ∈ (0, T].
Besides, ς→ eςA f is continuous into N for ς > 0 and lim

ς→0
ςγ|eςA f |N = 0 ∀ f ∈ L.

Definition 1. The fractional integration of order γ > 0 for a function f is defined as

Iγ
0 f (ς) =

1
Γ(γ)

∫ ς

0
(ς− s)γ−1 f (s)ds, ς > 0.

The Riemann-Liouville (RL) [22] fractional derivative for a function v : [0, ∞)→ R of
order γ ∈ R is defined by

L
0 Dγ

ς v(ς) =
dn

dςn (gn−γ ∗ v)ς, ς ≥ 0, n− 1 < γ < n.

The RL fractional order integral is defined as

Jγ
ς v(ς) := gγ ∗ v(ς) =

1
Γ(γ)

∫ ς

0
(ς− s)γ−1v(s)ds, ς ∈ [0,=].

Thus, by derivation from the definitions of the RL fractional integral, we can construct the
Caputo fractional order differential operator.

Definition 2 ([22]). The Caputo fractional order derivative is defined as follows:

c
0Dγ

ς v(ς) =
d
dς

(
J1−γ
ς [v(ς)− v(0)]

)
=

d
dς

(
1

Γ(1− γ)

∫ ς

0
(ς− s)−γ[v(s)− v(0)]ds

)
, ς > 0.

Definition 3 ([23]). The Mittag-Leffler function was introduced by the Swedish mathematician
Magnus Gustaf (Gösta) Mittag-Leffler in 1902. It is a simple conclusion of the exponential function.
Recently, researchers have been attracted to the study of the Mittag-Leffler function because of its
use in the analysis of fractional differential equations (FDE). It occurs often in the solutions of FDE
and fractional integral equations. The Mittag-Leffler function with one parameter Eγ(ς) is defined
as follows:

Eγ(ς) =
∞

∑
k=0

ςk

Γ(γk + 1)
, ς ∈ C, R(γ) > 0.

Now, let us consider the generalized Mittag-Leffler functions

Eγ(−ςγ A) =
∫ ∞

0
Mγ(s)e−sςγ Ads,

and
Eγ,γ(−ςγ A) =

∫ ∞

0
γsMγ(s)e−sςγ Ads,

where

Mγ(ς) :=
∞

∑
n=0

−ςn

n!(Γ)[−γ(n) + (1− γ)]
.

The function Mγ is known as the Mainardi function. To distinguish between the fundamen-
tal solutions for certain standard boundary value problems, Mainardi introduced a type
of functions which are a special type of Wright-type functions. The Mainardi function is
impressively adept at playing the role of a bridge between classical abstract theories and
fractional theories.

Proposition 1. (i) Eγ,γ(−ςγ A) =
1

2πı
∫

Γθ
Eγ,γ(−µςγ)(µI + A)−1dµ;

(ii) AγEγ,γ(−ςγ A) =
1

2πı
∫

Γθ
µγEγ,γ(−µςγ)(µI + A)−1dµ.
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Proof. See results [24].

Proposition 2. Let γ ∈ (0, 1) and −1 < r < ∞, λ > 0; then, the Mainardi function possesses
the following properties:

(i) Mγ(ς) ≥ 0 for all ς ≥ 0;

(ii)
∫ ∞

0 ςr Mγ(ς)dς =
Γ(r + 1)

Γ(γr + 1)
;

(iii) L{γςMγ(ς)}(z) = Eγ,γ(−z);
(iv) L{Mγ(ς)}(z) = Eγ(−z);
(v) L{γς−(1+γ)Mγ(ς−γ)}(λ) = e−λγ

.

Proof. The proof of this proposition can be found in [25,26].

Lemma 1. For ς > 0, the operators Eγ(−ςγ A) and Eγ,γ(−ςγ A) in the uniform operator topology
are continuous and well defined from X to X. Then, continuity is uniform on [r, ∞) for every r > 0.

Lemma 2 ([27]). Let 0 < γ < 1. Then,

(i) ∀ v ∈ X, limς→0+ Eγ(−ςγ A)v = v;
(ii) ∀ v ∈ D(A) and ς > 0, CDγ

ς Eγ(−ςγ A)v = −A Eγ(−ςγ A)v;
(iii) ∀ v ∈ X, E′γ(−ςγ A)v = −ςγ−1 AEγ,γ(−ςγ A)v;

(iv) f or ς > 0 , Eγ(−ςγ A)v = I1−γ
ς

{
(ςγ−1Eγ,γ(−ςγ A)u)

}
.

Lemma 3. Suppose 1 < r < ∞ and γ1 ≤ γ2. Then, there exists a constant C = C(γ1, γ2)
such that

|e−ςAv|Hγ2,r ≤ Cς−(γ2−γ1)|v|Hγ1,r , as ς > 0, f or v ∈ Hγ1,r.

Moreover, lim
ς→0

ς(γ2−γ1)|e−ςAv|Hγ2,r = 0.

Lemma 4. Suppose 1 < r < ∞ and γ1 ≤ γ2. For any = > 0, there exists a constant C1 =
C1(γ1, γ2) such that

|Eγ(−ςγ A)|Hγ2,r ≤ C1ς−α(γ2−γ1)|v|Hγ1,r ;

and
|Eγ,γ(−ςγ A)|Hγ2,r ≤ C1ς−γ(γ2−γ1)|v|Hγ1,r ,

for all v ∈ Hγ1,r and ς ∈ (0,=]. Therefore,

lim
ς→0

ςα(γ2−γ1)||Eγ(−ςγ A)v|Hγ2,r = 0.

Proof. The proof of this lemma can be found in [24].

Theorem 1. If f (ς) defined on the interval [c, d] is Riemann-integrable, then | f (ς)| is Riemann-
integrable defined by the interval [c, d], and∣∣∣∣ ∫ d

c
f (ς)dς

∣∣∣∣ ≤ ∫ d

c
| f (ς)|dς.

Theorem 2. Suppose that f : [a, b] → R is continuous and g : I → R is continuously differen-
tiable with image g(I) ⊂ [a, b], where I ⊂ R is some open interval showing that the function

F(s) = −
∫ g(s)

a
f (ς)dς.

is continuously differentiable on I.
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Theorem 3 (Theorem 1.17 of [28]). Let =(ς) : ς ≥ 0 ⊂ X be a C0 semigroup on X. Then,

(i) The infinitesimal generator of =(ς) : ς ≥ 0; if C : D(G) ⊂ X → X, then G is said to be
dense and close and is defined by a linear operator. Therefore, ς ∈ [0, ∞) → =(ς)x ∈ X is
continuously differentiable for any x ∈ D(G).

d
dς
=(ς)x = G=(ς)x = =(ς)Gx, f or ς > 0.

(ii) Then, there exists σ > 0 such that Re(λ) > 0, meaning that λ ∈ ρ(C), and we have

(λ− IC)−1x =
∫ ∞

0
e−λς=(ς) x dς f or all x ∈ X.

Theorem 4 ([29], Lemma 9). Let γ ∈ (0, 1] and suppose that the positive sectorial operator is
A : D(A) ⊂ X → X. Thus, the operators {Eγ(−ςγ A) : ς ≥ 0} and {Eγ,γ(−ςγ A) : ς ≥ 0} are
as follows:

Eγ(−ςγ A) =
∫ ∞

0
Mγ(s)=sςγ Ads, ς ≥ 0,

and
Eγ,γ(−ςγ A) =

∫ ∞

0
γsMγ(s)=sςγ

ds, ς ≥ 0.

Whereas =(ς) : ς ≥ 0 defines the C0 semi-group, which is generated by −A.

Proposition 3 ([28]). Let γ ∈ (0, 1) and consider A : D(A) ⊂ X → X to be a positive sectorial
operator. Then, for any x ∈ X, it holds that

L{Eγ(−ςγ A)x}(λ) = λγ−1(λγ + A)−1x;

L{Eγ,γ(−ςγ A)x}(λ) = (λγ + A)−1x.

Proof. The first equality can be proven analogously, meaning that the second equality is
as follows.
For any x ∈ X, we can observe that per Theorem 3,

L{Eγ,γ(−ςγ A)x}(λ) =
∫ ∞

0
e−λςςγ−1Eγ,γ(−ςγ A)xdς

=
∫ ∞

0
e−λςςγ−1( ∫ ∞

0
γsMγ(s)=(sςγ)xds

)
dς.

Now, using s = ως−γ, we can conclude that

L{Eγ,γ(−ςγ A)x}(λ) =
∫ ∞

0
e−λςςγ−1( ∫ ∞

0
γ(ως−γ)Mγ(ως−γ)=(ω)xς−γdω

)
dς

=
∫ ∞

0
ω

( ∫ ∞

0
γς−(1+γ)Mγ(ως−γ)e−λςdς

)
=(ω)xdω.

Choose
H∗ =

∫ ∞

0
γς−(1+γ)Mγ(ως−γ)e−λς.

By taking ς = τω
1
γ of Proposition 2, that is,

H∗ =
∫ ∞

0
γ(τω

1
γ )−(1+γ)Mγ(ω(τω

1
γ )−γ)e−λ(τω

1
γ )ω

1
γ dτ

= ω−1
∫ ∞

0
γτ−(1+γ)Mγ(τ

−γ)e−(λω
1
γ )dτ

= ω−1e−λγω.
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According to Theorem 4, we have

L{Eγ,γ(−ςγ A)x}(λ) =
∫ ∞

0
e−λγω=(ω)xdω = (λγ + A)−1x.

Lemma 5. If

v(ς) = a +
1

Γ(γ)

∫ ς

0
(ς− s)γ−1(Av(s) + h(s))ds, ς ≥ 0

holds, we have

v(ς) = Eγ(−ςγ A)a +
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
h(s)ds.

Proof. Using the above lemma to rewrite the problem in (5), we have

v(ς) = v(0) +
1

Γ(γ)

∫ ς

0
(ς− s)γ−1(−Av(s) + F(v(s), w(s))− PσB0

2 v
ρ
(s))ds, ς ≥ 0,

v(ς) = a +
1

Γ(γ)

∫ ς

0
(ς− s)γ−1(−Av(s) + F(v(s), w(s))− PσB0

2 v
ρ
(s))ds, ς ≥ 0.

Applying Laplace transformation,

v(λ) =
a
λ
+

1
λγ
{−Av(λ)}+ 1

λγ
{Fv(λ), w(λ)}+ 1

λγ
{−PσB0

2 v
ρ
(λ)}.

Then, by simplifying,

(λγ + A)v(λ) = aλγ−1 + F(v(λ), w(λ))− PσB0
2 v

ρ
(λ)

v(λ) = aλγ−1(λγ + A)−1 + F(v(λ), w(λ))(λγ + A)−1 − PσB0
2 v

ρ
(λ)(λγ + A)−1,

v(λ) = aλγ−1(λγ + A)−1 + F(v(λ), w(λ))(λγ + A)−1 − PσB0
2 v

ρ
(λ)(λγ + A)−1.

By taking the inverse Laplace transform and applying convolution theorem, we obtain

v(ς) = Eγ(−ςγ A)a +
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), w(s))ds

−
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)(
PσB0

2 v
ρ
(s)
)
ds.

Definition 4. A function v : [0, ∞) → Hγ,r is said to be a global mild solution of problem 5 in
Hγ,r if v ∈ C

(
[0, ∞), Hγ,r) for ς ∈ [0, ∞):

v(ς) = Eγ(−ςγ A)a +
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), w(s))ds (8)

−
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
(PσB0

2 v(s)
ρ

)ds.
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Definition 5. Let 0 < = < ∞. A function v : [0,=]→ Hγ,r is supposed to be a local mild solution
of problem (5) in Hγ,r if v ∈ ([0,=], Hγ,r) and if v satisfies the above equation for ς ∈ [0,=].
Conveniently, we can define two operators ϕ(ς), v(v, w)(ς):

ϕ(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)(
− PσB0

2 v(s)
ρ

)
ds,

v(v, w)(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), w(s))ds.

Lemma 6. Suppose that (X, ||.||x) is a Banach space with the positive real number L and the
bilinear operator G : X ∗ X → X such that

||G(v, w)||x ≤ L||v||x||w||x,

then, for any v0 ∈ X with ||v0||x <
1

4L
, the equation v = v0 + G(v, v) has a unique solution

v ∈ X.

Proposition 4. : Let l < r < ∞ and γ < β. For any ς > 0, eıA there is a bounded map between
Hγ,r → Hβ,r. Further, for each = > 0 there is a constant C depending on r, β, γ such that

|eıA f |Hβ,r ≤ Cς−(β−γ)| f |Hγ,r

for all Hγ,r and ς ∈ (0,=]. Moreover,

lim
ς→0

ς(β−γ)|eıA f |Hβ,r = 0.

3. Global and Local Uniqueness and Existence in Hγ,r

For the uniqueness and existence of the mild solution to problem (5) when solving
with Hγ,r, we have to discuss adequate circumstances for the solution. We assume that

− PσB0
2 v

ρ
(ς) is continuous, f or ς > 0 and

∣∣− PσB0
2 v(ς)

ρ

∣∣
r = o(ς−γ(1−β)), (9)

for 0 < β < 1 as ς→ 0.

Theorem 5. Let 1 < r < ∞ and 0 < γ < 1, and let (9) hold for every a ∈ Hγ,r. Suppose that

C1|a|Hγ,r + B1M∞ <
1

4L
,

whereas M∞ = sup
s∈(0,∞)

(
sγ(1−β)(−PσB0

2 v(s)
ρ

)

)
; then, if

n
2r
− 1

2
< β, there subsequently exists

a unique function v : [0, ∞)→ Hγ,r and α > max
(

β,
1
2

)
satisfying the following:

(i) v : [0, ∞)→ Hγ,r is continuous and v(0) = a;
(ii) v : [0, ∞)→ Hα,r is continuous and lim

ς→0
ςγ(α−β)|v(ς)|Hα,r = 0;

(iii) v satisfies (8) for ς ∈ [0, ∞).

Proof. Suppose α =
1 + β

2
; then, we can describe X∞, which is the space of all the curves

v : (0, ∞)→ Hγ,r. Moreover, X∞ = X[∞] such that:
(i) v : [0, ∞)→ Hγ,r is continuous and bounded;
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(ii) v : (0, ∞)→ Hα,r is continuous and bounded, therefore, lim
ς→0

ςγ(α−β)|v(ς)|Hα,r = 0,

and its common form is provided by

||v||X∞ = max
(

sup
ς≥0
|v(ς)|Hγ,r , sup

ς≥0
ςγ(α−β)|v(ς)|Hα,r

)
.

It is clear that X∞ is a non-empty complete metric space. Now, because we know that
F : Hα,r ∗Hα,r → Jr is bounded and a bilinear mapping, there exists M such that v, w ∈ Hα,r,

|F(v, w)|r ≤ M|v|Hα,r |w|Hα,r

|F(v, v)− F(w, w)|r ≤ M
(
|v|Hα,r + |w|Hα,r

)
|v− w|Hα,r .

Step 1
Let v, w ∈ X∞. The operator v(v(ς), w(ς)) is a part of C ([0,=], Hγ,r) along with C(0, ∞),
Hγ,r. Now, randomly considering ς0 ≥ 0 be fixed and ε > 0 to be very small, and again
supposing that ς > ς0 (and analogously, ς < ς0), we have

|v(v(ς), w(ς))−v(v(ς0), w(ς0))|Hγ,r ds

≤
∫ ς

ς0

(ς− s)γ−1|Eγ,γ
(
− (ς− s)γ A

)
F(v(s), w(s))|Hγ,r ds

+
∫ ς0

0

∣∣∣(ς− s)γ−1 − (ς0 − s)γ−1Eγ,γ
(
− (ς− s)γ A

)
F(v(s), w(s))

∣∣∣
Hγ,r

ds

+
∫ ς0−ε

0
(ς0 − s)γ−1|Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
F(v(s), w(s))|Hγ,r ds

+
∫ ς0

ς0−ε
(ς0 − s)γ−1|Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
F(v(s), w(s))|Hγ,r ds

= I11(ς) + I12(ς) + I13(ς) + I14(ς).

To consider every term individually, in view of Lemma 4 for I11(ς), we have

I11(ς) ≤ C1

∫ ς

ς0

(ς− s)γ(1−β)−1∣∣F(v(s), w(s))
∣∣
rds

≤ MC1

∫ ς

ς0

(ς− s)γ(1−β)−1[|(v(s)|Hα,r , |w(s))|Hα,r
]
ds

≤ MC1

∫ ς

ς0

(ς− s)γ(1−β)−1s−2γ(α−β)ds sup
s∈(0,ς]

{
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

}
= MC1

∫ 1

ς0/ς
(1− s)γ(1−β)−1s−2γ(α−β)ds sup

s∈(0,ς]

{
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

}
.

By applying the properties of β function, ∃ δ > 0 is very much less, such that 0 < ς− ς0 <
δ, and we have ∫ 1

ς0/ς
(1− s)γ(1−β)−1s−2γ(α−β)ds→ 0

for which it follows that as ς− ς0 → 0, I11(ς) approaches 0.
Now, for I12(ς),

I12(ς) = C1

∫ ς0

0

(
(ς0 − s)γ−1 − (ς− s)γ−1

)
(ς− s)−βγ|F(v(s), w(s))|rds

≤ MC1

∫ ς0

0

(
(ς0 − s)γ−1 − (ς− s)γ−1

)
(ς− s)−βγs−2γ(α−β)ds

sup
s∈(0,ς0]

{
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

}
.
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It is interesting to note that∫ ς0

0

∣∣(ς0 − s)γ−1 − (ς− s)γ−1∣∣(ς− s)−βγs−2γ(α−β)ds

≤
∫ ς0

0
(ς− s)γ−1(ς− s)−βγs−2γ(α−β)ds

+
∫ ς0

0
(ς0 − s)γ−1(ς− s)−βγs−2γ(α−β)ds

≤ 2
∫ ς0

0
(ς0 − s)γ(1−β)−1(ς− s)−βγs−2γ(α−β)ds

= 2B(γ(1− β)), 1− 2γ(α− β).

We can prove this using Lebesgue’s dominated convergence theorem:

∫ ς0

0

(
(ς0 − s)γ−1 − (ς− s)γ−1

)
(ς− s)−βγs−2γ(α−β)ds→ 0, as ς→ ς0,

now, we can conclude that lim
ς→ς0

I12(ς) = 0.

For I13(ς), because

I13(ς) ≤
∫ ς0−ε

0
(ς0 − s)γ−1|Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
F(v(s), w(s))|Hγ,r ds

≤
∫ ς0−ε

0
(ς0 − s)γ−1((ς− s)−βγ + (ς0 − s)−βγ

)
|F(v(s), w(s))|rds

≤ 2MC1

∫ ς0

0
(ς0 − s)γ−1s−2γ(α−β)ds sup

s∈(0,ς0]

(
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

)
.

Again applying Lebesgue’s dominated convergence theorem, the uniform continuity factor
from Lemma 1 shows that

lim
ς→ς0

I13(ς) =
∫ ς0−ε

0
(ς0 − s)γ−1|Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
×F(v(s), w(s))|Hγ,r ds

= 0.

For I14(ς), by calculation we can approximate

I14(ς) ≤
∫ ς0

ς0−ε
(ς0 − s)γ−1((ς− s)−βγ + (ς0 − s)−βγ

)
|F(v(s), w(s))|rds

≤ 2MC1

∫ ς0

0
(ς0 − s)γ−1s−2γ(α−β)ds sup

s∈(ς0−ε,ς0]

(
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

)
→ 0

as ε→ 0. Hence, we can say that

|v(v(ς), w(ς))−v(v(ς0), w(ς0))|Hγ,r ds→ 0 as ς→ ς0.

The operator’s continuity v(v, w) estimated in C((0, ∞), Hα,r) are in accordance with the
above discussion.
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Step 2
Next, we must prove that the operator v : X∞ ∗ X∞ → X∞ is the bilinear continuous
operator. Applying Lemma 4, we have

|v(v(ς), w(ς))|Hγ,r =
∣∣∣ ∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), w(s))

∣∣∣
Hγ,r

ds

≤ C1

∫ ς

0
(ς− s)γ(1−β)−1|F(v(s), w(s))|rds

≤ MC1

∫ ς

0
(ς− s)γ(1−β)−1s−2γ(α−β)ds

× sup
s∈(0,ς]

(
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

)
= MC1B

(
(γ(1− β)), 1− 2γ(α− β)

)
||v||X∞ ||w||X∞

and

|v(v(ς), w(ς))|Hα,r =
∣∣∣ ∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), w(s))

∣∣∣
Hα,r

ds

≤ C1

∫ ς

0
(ς− s)γ(1−α)−1|F(v(s), w(s))|rds

≤ MC1

∫ ς

0
(ς− s)γ(1−α)−1s−2γ(α−β)ds

× sup
s∈(0,ς]

(
s2γ(α−β)|v(s)|Hα,r |w(s)|Hα,r

)
= MC1ς−γ(α−β)B

(
(γ(1− α)), 1− 2γ(α− β)

)
||v||X∞ ||w||X∞ .

Observe that

sup
ς∈[0,∞)

ςγ(α−β)
∣∣v(v(ς), w(ς))

∣∣α,r
H ≤ MC1B(γ(1− α)), 1− 2γ(α− β)||v||X∞ ||w||X∞ .

More specifically,
lim
ς→0

ςγ(α−β)|v(v(ς), w(ς))|Hα,r = 0.

Hence, v(v, w) ∈ X∞ and ||v(v(ς), w(ς))||X∞ ≤ L||v||X∞ ||w||X∞ .

Step 3
Let 0 < ς0 < ς. Because

|ϕ(ς)− ϕ(ς0)|Hγ,r ≤
∫ ς

ς0

(ς− s)γ−1
∣∣∣∣Eγ,γ

(
− (ς− s)γ A

)
(−PσB0

2 v(s)
ρ

)

∣∣∣∣
Hγ,r

ds

+
∫ ς0

0

(
(ς0 − s)γ−1 − (ς− s)γ−1

)∣∣∣∣Eγ,γ

(
− (ς− s)γ A

)
(−PσB0

2 v(s)
ρ

)

∣∣∣∣
Hγ,r

ds

+
∫ ς0−ε

0
(ς0 − s)γ−1∣∣Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
(−PσB0

2 v(s)
ρ

)
∣∣

Hγ,r ds

+
∫ ς0

ς0−ε
(ς0 − s)γ−1∣∣Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
(−PσB0

2 v(s)
ρ

)
∣∣

Hγ,r ds
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≤ C1

∫ ς

ς0

(ς− s)γ(1−β)−1
∣∣∣∣(−PσB0

2 v(s)
ρ

(s))
∣∣∣∣
r
ds

+ C1

∫ ς0

0

(
(ς0 − s)γ−1 − (ς− s)γ−1)(ς− s)−βγ

∣∣(−PσB0
2 v(s)

ρ
)
∣∣
rds

+ C1

∫ ς0−ε

0
(ς0 − s)γ−1∣∣Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
×(−PσB0

2 v(s)
ρ

(s))
∣∣

Hγ,r ds + 2C1

∫ ς0

ς0−ε
(ς0 − s)γ(1−β)−1∣∣

×(−PσB0
2 v(s)

ρ
(s))

∣∣
rds

≤ C1M(ς)
∫ ς

ς0

(ς− s)γ(1−β)−1s−γ(1−β)ds

+ C1M(ς)
∫ ς0

0

(
(ς− s)γ−1 − (ς0 − s)γ−1

)
(ς− s)−βγs−γ(1−β)ds

+ C1M(ς)
∫ ς0−ε

0
(ς0 − s)γ−1|Eγ,γ

(
− (ς− s)γ A

)
−

×Eγ,γ
(
− (ς0 − s)γ A

)
|Hγ,r ds

+ 2C1M(ς)
∫ ς0

ς0−ε
(ς0 − s)γ(1−β)−1s−γ(1−β)ds.

These tend to 0 as ς→ ς0 combined with ε→ 0 when the β function properties are applied
to the first two terms and the last term. Using Lemma 1, the third term similarly approaches
0 when ς→ ς0. This suggests that∣∣ϕ(ς)− ϕ(ς0)

∣∣
Hγ,r → 0 when ς→ ς0

in order to calculate that the continuity of ϕ(ς) in Hα,r obeys the same pattern as in Hγ,r.
On the contrary,

|ϕ(ς)|Hγ,r =
∣∣∣ ∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
(−PσB0

2 v(s)
ρ

)
∣∣∣

Hγ,r
ds

≤ C1

∫ ς

0
(ς− s)γ(1−β)−1

∣∣∣(−PσB0
2 v(s)

ρ
)
∣∣∣
r
ds

≤ C1M(ς)
∫ ς

0
(ς− s)γ(1−β)−1s−γ(1−β)ds

= C1M(ς)B
(
(γ(1− β)), (1− γ(1− β))

)
(10)

|ϕ(ς)|Hα,r =
∣∣∣ ∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)α A

)
(−σPB0

2 v(s)
ρ

)
∣∣∣

Hα,r
ds

≤ C1

∫ ς

0
(ς− s)γ(1−α)−1∣∣(−σPB0

2 v(s)
ρ

)
∣∣
rds

≤ C1M(ς)
∫ ς

0
(ς− s)γ(1−α)−1s−γ(1−β)ds

= ς−γ(α−β)C1M(ς)B
(
(γ(1− α)), (1− γ(1− β))

)
.

More accurately,

ςγ(α−β)|ϕ(ς)|Hα,r ≤ C1M(ς)B
(
(γ(1− α)), (1− γ(1− β))

)
→ 0, when ς→ ς0.
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As we know that M(ς) → 0 when ς → 0 owing to supposition 9, we can make sure that
ϕ(ς) ∈ X∞ and ||ϕ(ς)||∞ ≤ B1M∞.
For a ∈ Hγ,r, per Lemma 1 we can conclude that

Eγ(−ςγ A)a ∈ C
(
[0, ∞), Hγ,r) and Eγ(−ςγ A)a ∈ C

(
[0, ∞), Hα,r).

Combined with Lemma 4, this signifies that for every ς ∈ (0,=],

Eγ(−ςγ A)a ∈ X∞

ςγ(α−β)Eγ(−ςγ A)a ∈ C
(
[0, ∞), Hα,r)

||Eγ(−ςγ A)a||X∞ ≤ C1|a|Hγ,r .

The inequality defined by Theorem 5,

||Eγ(−ςγ A)a + ϕ(ς)||X∞ ≤ ||Eγ(−ςγ A)a||+ ||ϕ(ς)||X∞ ≤
1

4L

continues to hold, implying that F has a unique fixed point.

Step 4:
To demonstrate that v(ς)→ a in Hγ,r when ς→ 0, we must first check that

lim
ς→0

∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
−PσB0

2 v
ρ
(s)ds = 0

lim
ς→0

∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), w(s))ds = 0

in Hγ,r. In fact, lim
ς→0

ϕ(ς) = 0
(

lim
ς→0

M(ς) = 0
)

due to Equation (10). Thus,

∫ ς

0
(ς− s)γ−1∣∣Eγ,γ

(
− (ς− s)γ A

)
F(v(s), v(s))

∣∣
Hγ,r ds

≤ C1

∫ ς

0
(ς− s)γ(1−β)−1

∣∣∣∣F(v(s), v(s))
∣∣∣∣
r
ds

≤ MC1

∫ ς

0
(ς− s)γ(1−β)−1∣∣v(s)∣∣2Hα,r ds

≤ MC1

∫ ς

0
(ς− s)γ(1−β)−1s−2γ(α−β)ds sup

s∈(0,ς]

(
s2γ(α−β)|v(s)|2Hα,r

)
= MC1B

(
(γ(1− β)), 1− 2γ(α− β)

)
sup

s∈(0,ς]

(
s2γ(α−β)|v(s)|2Hα,r

)
→ 0 as ς→ ς0.

4. Local Existence in Jr

This section examines the local mild solution [30] to problem (5) in Jr using the iteration

methodology. Suppose that α =
1 + β

2
.

Theorem 6. Let 1 < r < ∞ , 0 < γ < 1 and assume that (9) holds. Let a ∈ Hγ,r with
n
2r
− 1

2
< γ. Then, problem (5) has a unique mild solution v in Jr for a ∈ Hγ,r. In addition, v is

continuous on [0,=], Aαv shows continuity in (0,=], and ςγ(α− β)Aαv(ς) shows boundedness
when ς→ 0.

Proof. Step 1. Now, let
κ(ς) = sup

s∈(0,ς]
sγ(α−β)|Aαv(s)|r
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together with

ζ(ς) = v(v, v)(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
F(v(s), v(s))ds.

As a consequences of (Step 2) in Theorem 5, ζ(ς) is continuous in [0,=], Aαζ(ς) exists and
is similarly continuous in (0,=], and

|Aαζ(ς)|r ≤ MC1B(γ(1− α), 1− 2γ(α− β))κ2ς−γ(α−β), (11)

considering the integral ϕ(ς). Thus,

∣∣(−PσB0
2 v(s)

ρ
)
∣∣
r ≤ M(ς)sγ(1−β)

is satisfied by the continued function M(ς). As Aα ϕ(ς) is continuous in (0,=], we find that

|Aα ϕ(ς)|r ≤ C1M(ς)B(γ(1− α), 1− γ(1− β))ς−γ(α−β). (12)

Because
∣∣∣∣(−PσB0

2 v(s)
ρ

(ς))

∣∣∣∣
r
= 0(ς−γ(α−β)) when ς → 0, we have M(ς) = 0. Here,

|Aαζ(ς)|r = 0(ς−γ(α−β)), as ς→ 0 by means of Equation (12). We show that ϕ is continued
in Jr. Actually by taking 0 ≤ ς0 < ς < =, we obtain

|ϕ(ς)− ϕ(ς0)|r ≤ C3

∫ ς

ς0

(ς− s)γ(1−β)−1
∣∣∣∣(−PσB0

2 v(s)
ρ

)

∣∣∣∣
r
ds

+C3

∫ ς0

0

(
(ς0 − s)γ−1 − (ς− s)γ−1)(ς− s)−βγ

∣∣∣∣(−PσB0
2 v(s)

ρ
)

∣∣∣∣
r
ds

+C3

∫ ς0−ε

0
(ς0 − s)γ−1∣∣Eγ,γ

(
− (ς− s)γ A

)
− Eγ,γ

(
− (ς0 − s)γ A

)
×(−PσB0

2 v(s)
ρ

)
∣∣
Hγ,r ds + 2C3

∫ ς0

ς0−ε
(ς0 − s)γ(1−β)−1

∣∣∣∣(−PσB0
2 v(s)

ρ
)

∣∣∣∣
r
ds

≤ C3 M(ς)
∫ ς

ς0

(ς− s)γ(1−β)−1s−γ(1−β)ds

+C3 M(ς)
∫ ς0

0

(
(ς− s)γ−1 − (ς0 − s)γ−1)(ς− s)−βγs−γ(1−β)ds

+C3 M(ς)
∫ ς0−ε

0
(ς0 − s)γ−1|Eγ,γ

(
− (ς− s)γ A

)
−Eγ,γ

(
− (ς0 − s)γ A

)
|rs−γ(1−β)ds + 2C3 M(ς)

×
∫ ς0

ς0−ε
(ς0 − s)γ(1−β)−1s−γ(1−β)ds.

Step 2
Now, we find a solution using the successive approximation approach:

v0(ς) = Eγ(−ςγ A)a + ϕ(ς)

vn+1(ς) = v0(ς) + ζ(vn, vn)(ς), n = 0, 1, 2 . . . . (13)

We know that, κn(ς) = sup
s∈(0,ς]

sγ(α−β)|Aαvn(s)|r are continuous functions as well as increas-

ing functions on [0,=] with κn(0) = 0. Additionally, by means of (11) and (13), κn(ς)
satisfies the next inequality:

κn+1(ς) ≤ κ0(ς) + MC1B
(
(γ(1− α)), 1− 2γ(α− β)

)
κn

2(ς). (14)
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For κ0(ς) = 0, set = > 0 such that

4MC1B
(
(γ(1− α)), 1− 2γ(α− β)

)
κ0(ς) < 1. (15)

In order to be sure that the sequence κn(=) is bounded, a basic deliberation of (14) is needed,
which we accomplish by applying a quadratic formula on (14), i.e.,

κn(ς) ≤ ρ(=), where n = 0, 1, 2, . . . ,

as

ρ(ς) =
1−

√
1− 4MC1B

(
(γ(1− α)), 1− 2γ(α− β)

)
κ0(ς)

2MC1B
(
(γ(1− α)), 1− 2γ(α− β)

) .

Likewise, κn(ς) ≤ ρ(ς) holds for any ς ∈ (0,=]. Similarly, ρ(ς) ≤ 2κ0(ς). Assume that the
following equality exists:

gn+1(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
[F(vn+1(s), vn+1(s))− F(vn(s), vn(s))]ds,

whereas gn = vn+1 − vn f or ς ∈ (0,=] and n = 0, 1, 2, . . . ,

Gn(ς) = sup
s∈(0,ς]

sγ(α−β)|Aαgn(s)|r.

According to Theorem 5,∣∣∣F(vn+1(s), vn+1(s)
)
− F

(
vn(s), vn(s)

)∣∣∣
r
≤ M

(
κn+1(s) + κn(ς)

)
Gn(s)s−2γ(α−β)

which proceeds from (Step 2):

ςγ(α− β)|Aαgn+1(ς)|r ≤ 2MC1B
(
(γ(1− α)), 1− γ(1− β)

)
ρ(ς)Gn(ς).

This provides

Gn+1(=) ≤ 2MC1B
(
(γ(1− α)), 1− γ(1− β)

)
ρ(=)Gn(=)

≤ 4MC1B
(
(γ(1− α)), 1− 2γ(1− β)

)
κ0(=)Gn(=). (16)

Per (15) and (16), we have

lim
n→0

Gn+1(=)
Gn(=)

≤ 4MC1B
(
(γ(1− α)), 1− 2γ(1− β)

)
κ0(ς) ≤ 1.

As a result, the series ∑∞
n=0 Gn(=) converges. This verifies that the series ∑∞

n=0 ςγ(α−β)Aαgn(ς)
uniformly converges for ς ∈ (0,=], therefore, in (0,=] the sequence {ςγ(α−β)Aαvn(ς)}
uniformly converges as well. This results in lim

n→∞
vn(ς) = v(ς) ∈ D(Aα) and

lim
n→∞

Aαvn(ς) = ςγ(α−β)Aγv(ς).

As we know that Aα is closed and A−α is bounded, correspondingly, κ(ς) = sup
s∈(0,ς]

sγ(α−β)|Aαvn(s)|r is verified:

κ(ς) ≤ ρ(ς) ≤ 2κ0(ς), as ς ∈ (0, ς] (17)



Fractal Fract. 2022, 6, 580 16 of 25

along with

$n = sup
s∈(0,=]

s2γ(α−β)
∣∣∣F(vn(s), vn(s)

)
− F

(
v(s), v(s)

)∣∣∣
r

≤ M(κn(=) + κ(=))sγ(α−β)
∣∣Aα(vn(s)− v(s))

∣∣
r → 0, as n→ ∞.

Now, it is necessary to confirm that v has a mild solution of problem (5) in (0,=]. Because

∣∣v(vn, vn)(ς)−v(v, v)(ς)|r ≤
∫ ς

0
(ς− s)γ−1$ns−2γ(α−β)ds = ςβγ $n → 0, as n → ∞,

we have g(vn, vn)(ς) → g(v, v)(ς). If we take the limits of integration on both sides of
Equation (12), we obtain

v(ς) = v0(ς) + v(v, v)(ς). (18)

We observe that (18) holds for ς ∈ (0,=] when considering v(0) = a, and similarly for
v ∈ C((0,=], Jr). The continuity of Aαv(ς) on (0,=] is attained by the uniform convergence
of ςγ(α−β)Aαvn(ς) to ςγ(α−β)Aαv(ς). From κ0(0) = 0 and Equation (17), it is clear that
|Aαv(ς)|r = 0ς−γ(α−β).

Step 3.
Now, we demonstrate that the mild solution is unique. First, we assume that v and w are
the mild solutions to problem 5. Letting g = v− w, we once again examine the equality

g(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
[F(v(s), v(s))− F(w(s), w(s))]ds.

Now, we can describe the functions:

κ̄ = max sup
s∈(0,ς]

sγ(α−β)|Aαv(s)|r, sup
s∈(0,ς]

sγ(α−β)|Aαw(s)|r.

Per Theorem 5 and Lemma 4, we have

|Aαg(ς)|r ≤ MC1κ̄(ς)
∫ ς

0
(ς− s)γ(1−α)−1s−γ(α−β)|Aαg(s)|rds.

It is simple to understand that for ς ∈ (0,=], the Gronwall inequality Aακ(ς) = 0.
This shows that for ς ∈ (0,=], κ(ς) = v(ς) − w(ς) ≡ 0. As a result, the mild solution
is unique.

5. Regularity Outcomes for MHD Flow

In this final section, we assume the regularity [31] of a solution v which satisfies the
problem from Equation (5). Throughout this part, we consider that

−PσB0
2 v

ρ
(ς) is Hölder continuous [32] along with power θ ∈ (0, γ(1− α)), especially

∣∣∣∣(− PσB0
2 v(ς)

ρ

)
−
(
− PσB0

2 v(s)
ρ

)∣∣∣∣
r
≤ L|ς− s|θ , ∀ 0 < ς, s ≤ =. (19)

Definition 6. A function v : [0,=] → Jr is said to be a classical solution of problem (5) if
v ∈ C([0,=], Jr) with cDς

ς ∈ C([0,=], Jr), which values are taken in D(A) and satisfy (5)
∀ ς ∈ (0,=].

Lemma 7. Let (19) be satisfied. If

ϕ1(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− ς− s)γ A

)(
(−PσB0

2 v(s)
ρ

), (−PσB0
2 v(ς)

ρ
)
)
ds, f or ς ∈ (0,=],
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therefore, ϕ1(ς) ∈ D(A) and Aϕ1(ς) ∈ Cθ([0,=], Jr).

Proof. For the fixed ς ∈ (0,=] from Lemma 4 and (19), we have

(ς− s)γ−1
∣∣∣AEγ,γ

(
− (ς− s)γ A

)(
(−PσB0

2 v(s)
ρ

), (−PσB0
2 v(s)

ρ
(ς))

)∣∣∣
r

≤ C1(ς− s)−1∣∣(−PσB0
2 v(s)

ρ
)− (−PσB0

2 v(ς)
ρ

)
∣∣
r

≤ C1L(ς− s)θ−1 ∈ L1([0,=], Jr). (20)

Afterwards,

|Aϕ1(ς)|r ≤
∫ ς

0
(ς− s)γ−1

∣∣∣AEγ,γ
(
− (ς− s)γ A

)
((−PσB0

2 v(s)
ρ

), (−PσB0
2 v(ς)

ρ
))
∣∣∣
r
ds

≤ C1L
∫ ς

0
(ς− s)θ−1ds

≤ C1L
θ

ςθ

< ∞.

From closeness properties A, we obtain ϕ1(ς) ∈ D(A). We must ensure that Aϕ1(ς) is
Hölder continuous. Because

d
dς

(ςγ−1Eγ,γ(−µςγ)) = (ςγ−2Eγ,γ−1(−µςγ)),

then,

d
dς

(ςγ−1 AEγ,γ(−ςγ A))

=
1

2πı

∫
Γθ

(ςγ−2Eα,α−1(−µςα))A(µI + A)−1dµ

=
1

2πı

∫
Γθ

(ςγ−2Eγ,γ−1(−µςγ))dµ− 1
2πı

∫
Γθ

(ςγ−2Eγ,γ−1(−µςγ))A(µI + A)−1dµ

=
1

2πı

∫
Γθ

(−ςγ−2Eγ,γ−1(ξ))
1
ςγ

dξ − 1
2πı

∫
Γθ

(ςγ−2Eγ,γ−1(ξ))
ξ

ςγ
A(− ξ

ςγ
I + A)−1 1

ςγ
dξ.

Because of ∣∣|(µI + A)−1∣∣| ≤ C
|µ| ,

we obtain
|| d

dς
(ςγ−1 AEγ,γ(−ςγ A))|| ≤ Cγς−2, 0 < ς ≤ =.

Applying the mean value theorem, for every 0 < s < ς ≤ =,

||(ςγ−1 AEγ,γ(−ςγ A))− (sγ−1 AEγ,γ(−sγ A))|| = ||
∫ ς

s

d
dτ

(τγ−1 AEγ,γ(−τγ A))dτ||

≤
∫ ς

s
|| d

dτ
(τγ−1 AEγ,γ(−τγ A))||dτ

≤
∫ ς

s
τ−2dτ (21)

= Cγ(s−1 − ς−1).
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For 0 < ς < ς + h ≤ =, let h > 0; then,

Aϕ1(ς + h)− Aϕ1(ς)

=
∫ ς

0
(ς + h− s)γ−1 AEγ,γ(−(ς + h− s)γ A)

(
(−PσB0

2 v(s)
ρ

)− (−PσB0
2 v(ς)

ρ
)
)

ds

− (ς− s)γ−1 AEγ,γ(−(ς− s)γ A)
(
(−PσB0

2 v(s)
ρ

)− (−PσB0
2 v(ς)

ρ
)
)

ds

+
∫ ς

0
(ς + h− s)γ−1 AEγ,γ(−(ς + h− s)γ A)

(
(−PσB0

2 v(ς)
ρ

)− (−PσB0
2 v(ς + h)

ρ
)
)

ds

+
∫ ς+h

ς
(ς + h− s)γ−1 AEγ,γ(−(ς + h− s)γ A)

(
(−PσB0

2 v(s)
ρ

)− (−σPB0
2 v(ς + h)

ρ
)
)

ds

:= h1(ς) + h2(ς) + h3(ς). (22)

For convenience, we solve each term individually by applying (19) and Equation (22).
For h1(ς), we find that

|h1(ς)|r ≤
∫ ς

0

∣∣|(ς + h− s)γ−1 AEγ,γ(−(ς + h− s)γ A)

− (ς− s)γ−1 AEγ,γ(−(ς− s)γ A)
∣∣|r((−PσB0

2 v
ρ
(s))− (−PσB0

2 v
ρ
(ς)))ds

≤ CγLh
∫ ς

0
(ς + h− s)−1(ς− s)θ−1ds

≤ CγLh
∫ ς

0
(s + h)−1(ς− s)θ−1ds

≤ CγL
∫ h

0

h
h + s

sθ−1ds + CγLh
∫ ∞

h

s
h + s

sθ−1ds

≤ CγLhθ . (23)

For h2(ς), per (19) and Lemma 4, we have

|h2(ς)|r ≤
∫ ς

0
(ς + h− s)γ−1

∣∣∣AEγ,γ
(
− (ς + h− s)γ A

)(
(−PσB0

2 v
ρ
(ς))

+(PσB0
2 v

ρ
(ς + h))

)∣∣∣
r
ds

≤ C1

∫ ς

0
(ς + h− s)−1

∣∣∣(− PσB0
2 v

ρ
(ς)
)
−
(
− PσB0

2 v
ρ
(ς + h)

)∣∣∣
r
ds

≤ C1hθ
∫ ς

0
(ς + h− s)−1ds

= C1L[lnh− ln(ς + h)]hθ . (24)

Now, for h3(ς), we have

|h3(ς)|r ≤
∫ ς+h

ς

(
ς + h− s

)γ−1
∣∣∣AEγ,γ

(
− (ς + h− s)γ A

)(
(−PσB0

2 v
ρ
(s))

+(PσB0
2 v

ρ
(ς + h))

)∣∣∣
r
ds

≤ C1

∫ ς+h

ς
(ς + h− s)−1

∣∣∣(− PσB0
2 v

ρ
(s)
)
−
(
− PσB0

2 v
ρ
(ς + h)

)∣∣∣
r
ds

≤ C1L
∫ ς+h

ς
(ς + h− s)θ−1ds

= C1L
hθ

θ
. (25)

In order to merge all the above results, we can say that Aϕ1(ς) has the Hölder continuity
property. Hence, Aϕ1(ς) is Hölder continuous.
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Theorem 7. Supposition that Theorem 6 is satisfied. For each a ∈ D(A), if (19) holds, then there
is a mild solution to Equation (5) which is a classical one.

Proof. Consider a ∈ D(A). We have Eγ(−ςγ A)a, which is said to be a classical solution of
the following problem: { cDγ

ς v(ς) = −Av, ς > 0,
v(0) = a.

We can verify that

ϕ(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
(−PσB0

2 v
ρ
(s))ds

is a classical solution for the problem cDγ
ς v(ς) = −Av + (−PσB0

2 v
ρ
(ς)), ς > 0,

v(0) = 0.

Per Theorem 6, we have ϕ ∈ C([0,=], Jr). Thus, we can write ϕ(ς) = ϕ1(ς) + ϕ2(ς), while

ϕ1(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)(
(−PσB0

2 v
ρ
(s)), (−PσB0

2 v
ρ
(ς))

)
ds

ϕ2(ς) =
∫ ς

0
(ς− s)γ−1Eγ,γ

(
− (ς− s)γ A

)
(−PσB0

2 v
ρ
(ς))ds.

We know that according to Lemma 7, ϕ1(ς) ∈ D(A). In order to justify the identical results
considering Lemma 2(iii) we conclude that for ϕ2(ς),

Aϕ2(ς) = (−PσB0
2 v

ρ
(ς))− Eγ(−ςγ A)(−PσB0

2 v
ρ
(ς))

It then follows from (19) that∣∣Aϕ2(ς)
∣∣ ≤ (1 + C1)

∣∣(− PσB0
2 v

ρ
(ς)
)∣∣

r.

Now, we can say that ϕ2(ς) ∈ D(A) and ϕ2(ς) ∈ Cv((0,=], Jr) for ς ∈ (0,=].
Furthermore, we have to prove that cDγ

ς (ϕ) ∈ C((0,=], Jr).
On account of ϕ(0) = 0 and Lemma 2(iv), we now have

cDγ
ς ϕ(ς) =

d
dς

(I1−γ
ς ϕ(ς)) =

d
dς

(Eγ(−ςγ A) ∗ (−PσB0
2 v

ρ
(ς))).

Now, we prove that Eγ(−ςγ A) ∗ (−PσB0
2 v

ρ
(ς)) is continuous differentiable in Jr. Consid-

ering 0 < h ≤ =− ς, we can derive the following conclusion:

1
h
[
(
Eγ(−(ς + h)γ A) ∗ (−PσB0

2 v
ρ
(ς))

)
−
(
Eγ(−ςγ A) ∗ (−PσB0

2 v
ρ
(ς))

)
]

=
∫ ς

0

1
h
[(Eγ(−(ς + h− s)γ A)(−PσB0

2 v
ρ
(s)))− (Eγ(−(ς− s)γ A)(−PσB0

2 v
ρ
(s)))]ds

+
1
h

∫ ς+h

ς
(Eγ(−(ς + h− s)γ A)(−PσB0

2 v
ρ
(s)))ds.
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Keeping in mind that∫ ς

0

1
h

∣∣∣(Eγ(−(ς + h− s)γ A)(−PσB0
2 v

ρ
(s))

)
−
(
Eγ(−(ς− s)γ A)(−PσB0

2 v
ρ
(s))

)∣∣∣
r
ds

≤ 1
h

∫ ς

0

∣∣∣(Eγ(−(ς + h− s)γ A)(−PσB0
2 v

ρ
(s))

)∣∣∣
r
ds

+
1
h

∫ ς

0

∣∣∣(Eγ(−ς− s)γ A)(−PσB0
2 v

ρ
(s))

)∣∣∣
r
ds.

In view of Lemma 4,

≤ C1M(ς)
1
h

∫ ς

0
(ς + h− s)−γs−γ(1−β)ds + C1M(ς)

1
h

∫ ς

0
(ς− s)−γs−γ(1−β)ds

≤ C1M(ς)
1
h
(ς + h)1−γ + ς1−γB

(
1− γ, 1− γ(1− β)

)
l.

The dominated convergence (DC) theorem is then used to obtain∫ ς

0

1
h
[(

Eγ(−(ς + h− s)γ A)(−PσB0
2 v

ρ
(s))

)
−
(
Eγ(−(ς− s)γ A)(−PσB0

2 v
ρ
(s))

)]
ds

= −
∫ ς

0
(ς− s)γ−1 AEγ,γ(−(ς− s)γ A)(−PσB0

2 v
ρ
(s))ds

= Aϕ(ς).

Conversely,
1
h

∫ ς+h

ς
Eγ

(
− (ς + h− s)γ A

)(
− PσB0

2 v
ρ
(s)
)
ds.

Let s∗ = ς + h − s; thus, ds∗ = −ds and after setting limits [s = ς implies s∗ = h] and
[s = ς + h implies s∗ = 0], we have

1
h

∫ 0

h
Eγ(−(s∗)γ A)(−σB0

2 v
ρ
(ς + h− s∗))(−ds∗).

By replacing s∗ → s, we have

1
h

∫ h

0
Eγ(−sγ A)(−PσB0

2 v
ρ
(ς + h− s))ds

=
1
h

∫ h

0
Eγ(−sγ A)

[
(−PσB0

2 v
ρ
(ς + h− s))− (−PσB0

2 v
ρ
(ς− s))

+ (−PσB0
2 v

ρ
(ς− s))− (−PσB0

2 v
ρ
(ς)) + (−PσB0

2 v
ρ
(ς))

]
ds

=
1
h

∫ h

0
Eγ(−sγ A)

(
(−PσB0

2 v
ρ
(ς + h− s))− (−PσB0

2 v
ρ
(ς− s))

)
ds

+
1
h

∫ h

0
Eγ(−sγ A)

(
(−PσB0

2 v
ρ
(ς− s))− (−PσB0

2 v
ρ
(ς))

)
ds

+
1
h

∫ h

0
Eγ(−sγ A)(−PσB0

2 v
ρ
(ς))ds.

From Lemmas 1, 4, and (19), we have∣∣∣1
h

∫ h

0
Eγ(−sγ A)

(
(−PσB0

2 v
ρ
(ς + h− s))− (−PσB0

2 v
ρ
(ς− s))

)∣∣∣
r
ds ≤ C1Lhθ

∣∣∣1
h

∫ h

0
Eγ(−sγ A)

(
(−PσB0

2 v
ρ
(ς− s)))− (−PσB0

2 v
ρ
(ς))

)∣∣∣
r
ds ≤ C1L

hθ

θ + 1
.
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From Lemma 1(i),

lim
h→0

1
h

∫ h

0
Eγ(−sγ A)(−PσB0

2 v
ρ
(ς))ds =

(
− PσB0

2 v
ρ
(ς)
)

lim
h→0

1
h

∫ ς+h

ς
Eγ

(
(ς + h− s)γ A

)(
− PσB0

2 v
ρ
(ς)
)
ds =

(
− PσB0

2 v
ρ
(ς)
)
,

we can deduce that Eγ(ςγ A) ∗ (−PσB0
2 v

ρ
(ς)) is differentiable at ς+ and

d
dς

(Eγ(ς
γ A) ∗ (−PσB0

2 v
ρ
(ς)))+ = Aϕ(ς) + (−PσB0

2 v
ρ
(ς)).

Similarly, Eγ(ςγ A) ∗ (−PσB0
2 v

ρ
(ς)) is differentiable at ς− and

d
dς

(Eγ(ς
γ A) ∗ (−PσB0

2 v
ρ
(ς)))− = Aϕ(ς) + (−PσB0

2 v
ρ
(ς)).

This verifies that Aϕ = Aϕ1 + Aϕ2 ∈ C((0,=], Jr). It can be easily seen that ϕ2(ς) =

(−PσB0
2 v

ρ
(ς))− Eγ(ςγ A)(−PσB0

2 v
ρ
(ς)) because of Lemma 1(iii) and that this lemma is

continuous in terms of Lemma 1. Furthermore, Aϕ1(ς) is continuous in view of Lemma 7,
resulting in cDγ

ς ϕ ∈ C((0,=], Jr).

Step 2:
Consider v the mild solution of Equation (5). In order to demonstrate that F(v, v) ∈
Cθ((0,=], Jr), on account of Theorem 5, we must prove that Aαv possesses the Hölder
continuity property in Jr. For 0 < ς < ς + h, we consider h > 0. We denote Φ(ς) :=
Eγ(−ςγ A)a; then, by Lemma 2(iv) and 4,

∣∣AαΦ(ς + h)− AγΦ(ς)
∣∣
r =

∣∣∣ ∫ ς+h

ς
−sγ−1 AαEγ,γ(−sγ A)ads

∣∣∣
r

≤
∫ ς+h

ς
sγ−1

∣∣∣Aα − βEγ,γ(−sγ A)Aβa
∣∣∣
r
ds

≤ C1

∫ ς+h

ς
sγ(1+β−α)−1ds

∣∣Aβa
∣∣
r

= C1
|a|Hγ,r

γ(1 + β− α)
((ς + h)γ(1+β−α) − ςγ(1+β−α))

= C1
|a|Hγ,r

γ(1 + β− α)
hγ(1 + β− α).

Thus, AαΦ ∈ Cθ((0,=], Jr).
Taking h such that ε ≤ ς < ς + h ≤ =, every small ε > 0, because∣∣AαΦ(ς + h)− AγΦ(ς)

∣∣
r

≤
∣∣∣ ∫ ς+h

ς
(ς + h− s)γ−1 AαEγ,γ(−(ς + h− s)γ A)(−PσB0

2 v
ρ
(s))ds

∣∣∣
r

+
∣∣∣ ∫ ς

0
Aα
(
(ς + h− s)γ−1Eγ,γ(−(ς + h− s)γ A)− (ς− s)γ−1Eγ,γ(−(ς− s)γ A)

)
×
(
− PσB0

2 v
ρ
(s)
)
ds
∣∣∣
r

= Φ1(ς) + Φ2(ς).
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Using Lemmas 4 and (9), we have

Φ1(ς) ≤ C1

∫ ς+h

ς

(
ς + h− s

)γ(1−α)−1∣∣(−PσB0
2 v

ρ
(s))

∣∣
rds

≤ C1M(ς)
∫ ς+h

ς

(
ς + h− s

)γ(1−α)−1s−γ(1−α)−1ds

≤ M(ς)
C1

γ(1− α)
hγ(1−α)ς−γ(1−α)−1

≤ M(ς)
C1

γ(1− α)
hγ(1−α)ε−γ(1−α)−1.

To estimate ϕ2, we have the following inequality:

d
dς

(ςγ−1 AαEγ,γ(−ςγ A)) =
1

2πı

∫
Γ

µα(ςγ−2Eγ,γ−1(−µςγ))A(µI + A)−1dµ

=
1

2πı

∫
Γ′
−
(−ξ

ςγ

)α
(ςγ−2Eγ,γ−1(ξ))(−

ξ

ςγ
I + A)−1 1

ςγ
dξ

which yields
d
dς

(ςγ−1 AαEγ,γ(−ςγ A)) ≤ Cγςγ(1−α)−2.

Now, applying the mean value theorem,

||(ςγ−1 AαEγ,γ(−ςγ A))− (sγ−1 AαEγ,γ(−sγ A))|| = ||
∫ ς

s

d
dτ

(τγ−1 AαEγ,γ(−τγ A))dτ||

≤
∫ ς

s
|| d

dτ
(τγ−1 AαEγ,γ(−τγ A))||dτ

≤
∫ ς

s
τγ(1−α)−2dτ

= Cγ(sγ(1−α)−1 − ςγ(1−α)−1).

Thus,

Φ2(ς) ≤
∣∣∣ ∫ ς

0
Aα
(
(ς + h− s)γ−1Eγ,γ(−(ς + h− s)γ A)− (ς− s)γ−1Eγ,γ(−(ς− s)γ A)

)
(−PσB0

2 v
ρ
(s))ds

∣∣∣
r

≤
∫ ς

0

(
(ς− s)γ(1−α)−1 − (ς + h− s)γ(1−α)−1)∣∣(−PσB0

2 v
ρ
(s))

∣∣
rds

≤ M(ς)Cγ

( ∫ ς

0
(ς− s)γ(1−α)−1s−γ(1−β)ds−

∫ ς+h

0
(ς + h− s)γ(1−α)−1s−γ(1−β)ds

)
+ M(ς)Cγ

∫ ς+h

ς
(ς + h− s)γ(1−α)−1s−γ(1−β)ds

≤ M(ς)Cγ

(
ςγ(β−α) − (ς + h)β−α

)
B
(
γ(1− α), 1− γ(1− β)

)
+ M(ς)Cγ

hγ(1−α)ς−γ(1−β)

≤ M(ς)Cγhγ(α−β)
[
ε(ε + h)

]γ(β−α)
+ M(ς)Cγhγ(1−α)ε−γ(1−β).

This shows that AαΦ ∈ Cθ([ε,=], Jr). Therefore, Aα ϕ ∈ Cθ((0,=], Jr) due to arbitrary ε.
Recollect that ζ(ς) =

∫ ς
0 (ς− s)γ−1Eγ,γ(−(ς− s)γ A)F(v(s), v(s))ds, as we know that∣∣F(v(s), v(s)

∣∣
r ≤ Mκ2(ς)s−2γ(α−β), whereas κ(ς) = sup

s∈(0,ς]
sγ(α−β)|Aαv(s)|r is both continu-

ous and bounded in (0,=]. Analogously, the same logic allows Aζ ∈ Cθ((0,=], Jr) to be
Hölder continuous. For this reason, we have Aαv(ς) = Aα ϕ(ς) + AαΦ(ς) + Aαζ(ς) ∈
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Cθ((0,=], Jr). As F(v, v) ∈ Cθ((0,=], Jr) has been proven, in the manner of (Step 2),
this results in cDγ

ς ζ ∈ Cθ((0,=], Jr), Aζ ∈ Cθ((0,=], Jr) and cDγ
ς ζ = −Aζ + F(v, v).

Thus, we have cDγ
ς ζ ∈ Cθ((0,=], Jr), Av ∈ Cθ((0,=], Jr) and cDγ

ς v = −Av + F(v, v) +

(−PσB0
2 v

ρ
(ς)). Therefore, we can say that v is a classical solution.

6. Application

Assume that X ∈ L2(0, 2π) and en(x) = 3
√

3/2πcosx, n = 1, 2, . . . . Then, (en, n =
1, 2, . . .) is an orthonormal base of X. We define an infinite dimensional space U = X and
consider the following system governed by the semilinear heat equation:

cD4/5
ς Y(ς, x) =c D2/3

ς Y(ς, x) + f (ς, Y(ς, x)) + Bu(ς, x), 0 < ς < b, 0 < x < 2π,
Y(0, x) = Y0(x), 0 ≤ x ≤ 2π,
Y(ς, 0) = Y(ς, 2π), 0 ≤ ς ≤ b,

(26)

where the nonlinear function f is considered as an operator satisfying hypothesis H1 and
for each u ∈ L2(0, b; U) of the form ∑∞

n=1 ûno(ς)en; here, we define

Bu(ς) =
∞

∑
n=1

ûno(ς)en,

where

ûn(ς) =

{
0, 0 ≤ ς < b(1− 1

n ),
un(ς), b(1− 1

n ) ≤ ς ≤ b.
(27)

Because
‖Bu‖L2(0,b,X) ≤ ‖u‖L2(0,b,X),

the operator B is bounded from U into L2(J, X). In fact, it is not difficult to check that
BU 6= L2(J, X). Next, let ϕ be an arbitrary element in L2(o, b, X) and h ∈ X be defined by

h = Eγ(−b− s)γY(0)x +
∫ b

0
(b− s)γ−1= 4

5
(b− s)φ(s)ds.

Assume that

ϕ(ς) =
∞

∑
n=1

fn(ς)en,

and

h =
∞

∑
n=1

hn(ς)en.

Then, we claim that for every given ϕ ∈ L2(0, b, X), there exists u ∈ U such that

Eγ(−b− s)γY(0)x +
∫ ς

0
(b− s)γ−1= 4

5
(b− s)Bu(s)ds

= Eγ(−b− s)γY(0)x +
∫ ς

0
(b− s)γ−1= 4

5
(b− s)ϕ(s)ds,

which means that condition H2 is satisfied, as assumptions H1 and H2 are satisfied.

7. Conclusions

This study uses Helmholtz–Leray projection to demonstrate the existence and unique-
ness of fractional order Navier–Stokes equations of the solution to the Cauchy problem.
Meanwhile, we offer a local viable solution in S℘. The Navier–Stokes equations (NSEs) with
time-fractional derivatives of order γ ∈ (0, 1) are used to simulate anomaly diffusion in
fractal media. We demonstrate the existence of regular classical solutions to these equations
in S℘. The concept put forth in this article may be expanded upon in future work through
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the inclusion of observability and the generalization of other activities. Much research
is being done in this fascinating area, which may result in a wide range of applications
and theories.
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