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Abstract: Despite its high mortality rate of approximately 90%, the Ebola virus disease (EVD) has
not received enough attention in terms of in-depth research. This illness has been responsible for
over 40 years of epidemics throughout Central Africa. However, during 2014–2015, the Ebola-driven
epidemic in West Africa became, and remains, the deadliest to date. Thus, Ebola has been declared
one of the major public health issues. This paper aims at exploring the effects of external fluctuations
on the prevalence of the Ebola virus. We begin by proposing a sophisticated biological system that
takes into account vaccination and quarantine strategies as well as the effect of time lags. Due to
some external perturbations, we extend our model to the probabilistic formulation with white noises.
The perturbed model takes the form of a system of stochastic differential equations. Based on some
non-standard analytical techniques, we demonstrate two main approach properties: intensity and
elimination of Ebola virus. To better understand the impact of applied strategies, we deal with the
stochastic control optimization approach by using some advanced theories. All of this theoretical
arsenal has been numerically confirmed by employing some real statistical data of Ebola virus. Finally,
we mention that this work could be a rich basis for further investigations aimed at understanding the
complexity of Ebola virus propagation at pathophysiological and mathematics levels.

Keywords: Ebola virus; epidemiology; ergodicity; extinction; stochastic control

MSC: 65M06; 39A14; 35L53; 92D25

1. Introduction

In 2013, EVD was declared an epidemic. Guinea, Liberia and Sierra Leone were the
most affected regions of 2013–2016, where the virus caused huge losses and disrupted the
socioeconomic balance [1]. On 8 August 2014, WHO declared the EVD pandemic in West
Africa a Public Health Emergency of International Concern (PHEIC), which is designated
only for events with a risk of potential international spread or that require a coordinated
international response. Over the duration of the epidemic, EVD spread to seven more coun-
tries: Italy, Mali, Nigeria, Senegal, Spain, the United Kingdom and the United States [2,3].
Ebola viruses belong to the Filoviridae family like Marburg and Lloviu viruses [4,5]. Cur-
rently, five species of Ebola virus have been described: Zaire, Reston, Bundibugyo, Sudan
and Taï Forest [6–8]. They are highly pathogenic viruses, classified as level 4. They are
responsible, for the most part, for viral hemorrhagic fevers (VHF) most often fatal in human
and non-human primates, during transmission by contact with biological fluids [9,10].
This virus, known since 1976, had already caused several episodes in Africa but none of
such rapid evolution and such serious impact on public health [11]. Indeed, before the
year 2014, there were 1580 deaths with all epidemics combined. The month of December
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2013 was the starting point for the transmission of the virus: the first case was detected in
Guinea [12]. After that, the virus infected a number of countries in the world (see Figure 1).
The cases observed outside Africa have been few and linked to travel or the repatriation of
caregivers [13]. Before this epidemic, West Africa did not know the Ebola virus, which had
been isolated in Central Africa [14]. In addition to this lack of knowledge, there are social,
economic and cultural factors that have favored the spread: the mobility of populations,
funeral rites, the reluctance to follow government recommendations and in particular the
distrust of foreign caregivers [15]. Furthermore, the epidemic has worsened a previously
unfavorable economic situation in the affected African countries [16].

Figure 1. Timeline of the global Ebola virus epidemic between 2013 and 2020.

On 8 August 2014, faced with the scale of the epidemic, the Director General of
the WHO (World Health Organization) formally announced that this surge of the Ebola
virus is an emergency at the international level, which is related to public health [17].
An international mobilization was then formed. Means of prevention have been put in
place to prevent the spread of the virus from person to person [18]. Common practices such
as funeral rites have been stopped. No treatment or vaccine was known at the time [19].
Faced with the virulence of the Ebola virus and in view of the increasing number of deaths,
researchers have tried to find solutions to end the epidemic. Search procedures have
been accelerated. Experimental treatments and vaccines have gradually emerged [20].
The census of cases in Europe has reinforced the concern of Westerners about the epidemic.
European countries, and in particular France, have prepared for the possibility of a national
epidemic [21].

The foundations of epidemiology based on compartmental models were laid by physi-
cian Sir Ronald Ross who, in 1911, wrote the first compartmental model of malaria us-
ing [22]. Mathematical models can therefore help to determine the appropriate response
and the effort required to control an infectious disease. More specifically, they help the
scientific community to easily understand the transmission processes of infectious diseases
and to evaluate the effectiveness of the different control strategies implemented to con-
tain an epidemic [23]. Several mathematical models have been proposed to explain the
dynamics of infectious diseases, some of which have included control strategies such as
quarantine, isolation, contact tracing, and vaccination [24–28]. Berge et al. [29] suggested
a deterministic model for explaining the transmission mechanism of Ebola virus that in-
cluded a commonality between the epidemics and endemic phases. The model included
both the direct and indirect modes of interactions within the three distinct populations:
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animals, humans and fruit bats. Actually, the paper [29] is considered to be an extension of
the study [23], which presented a model that includes both the indirect and direct spread
of Ebola virus and a source that continuously provides the Ebola virus. Further, models
have been proposed that attempt to comprehend different intervention policies aimed at
limiting the transmission of Ebola virus [30]. Through mathematical models, refs. [31–33]
studied the impact of vaccines on the dynamics of the epidemics, and [34] looked at the
issue of quarantining. In another work, Berge et al. [35] proposed a system of equations
describing the effectiveness of the tracing of interactions as a control measure in case of
Ebola virus. Researchers have recently shown a strong interest in optimal control theory
of epidemic problems particularly in controlling the Ebola virus. Numerous strategies
and prevention programs have been used to investigate the optimal control analysis of
problems that reflects the dynamics of Ebola virus [36,37]. Particularly, Area et al. [38]
introduced an Ebola virus model to explain how vaccination of the vulnerable popula-
tion would affect the spread of diseases. Subsequently, they studied two different control
problems for understanding the transmission mechanism of Ebola virus and its control
through vaccination.

In fact, when dealing with biological systems, more realistic properties should be
included such as the time delay. This property is used to describe the evolution of certain
phenomena, which does not only depend on current states but also on the past [39–41].
Specifically, in the Ebola situation, time lag is widely employed to understand the viral
interactions. In this paper, we focus on the effect of vaccination plan, quarantine strategy
and time delay on the long-run behavior of Ebola virus. From mathematical modeling,
the Ebola dynamics can be modeled in the general form by a system of four ordinary
differential equations:

dIs =
{
A− hIsIe(t)− (u + v)Is(t) + vIs(t− ς1)e−uς1 + wIe(t− ς2)e−uς2

+zIq(t− ς3)e−uς3
}

dt,

dIe =
{

hIsIe − (u + α1 + q + w)Ie

}
dt,

dIq =
{

qIe − (u + α2 + z)Iq

}
dt,

dIr =
{

vIs + wIe + zIq − uIr − vIs(t− ς1)e−uς1 − wIe(t− ς2)e−uς2

−zIq(t− ς3)e−uς3
}

dt,

(1)

where Is(t) denotes the number of susceptible class, Ie(t) is the number of infected people,
Iq(t) stands for the number of quarantined population and Ir(t) describes the size of
recovered class. The parameter A is the constant recruitment into Is class; h is the rate
at which the Ebola virus is spreading in the population; v is the vaccination rate of the
susceptible individuals and u represents the natural death rate, which is constant for all
compartments. The parameter w denotes the recovery rate of individuals that remain
infectious for a period of 1/w; the notations α1 and α2 are the respective disease-related
death rates in the infected and quarantined populations. The rate at which the infected
population becomes quarantined is denoted by q, whereas z is the rate at which the
quarantine population is achieving recovery. For biological purposes, we shall assume that
all of the parameters used in the model are constant and positive. In system (1), the positive
quantity ς1 stands for the length of immunity period of the vaccinated, and the term e−uς1

represents the probability that the susceptible individuals are vaccinated at time t− ς1
and still alive at time t. The positive quantities ς2 and ς3 reflect, respectively, the length
of immunity period of the recovered from infected and quarantined individuals. e−uς2

and e−uς2 denote the probability that the infected and quarantined individuals have been
immunized at times t− ς2 and t− ς3, and the probability they have lost immunity but are
still alive at time t.

In the complex and real world, environmental fluctuations influence the spread of
infectious diseases and make it more complicated to foresee their behavior [42–45]. In such
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cases, deterministic systems, while able to make very informative forecasts and previsions,
are not appropriate enough [46–49]. So, there is a pressing need for a developed mathe-
matical model that can take into account the randomness effect, especially in the context
of a harmful infectious disease such as the Ebola virus. In this context, many scholars
have suggested and evolved a large number of stochastic models that describe the Ebola
virus propagation dynamics from different angles and viewpoints [50]. In this research,
we will use the proportional white noise approach to better reflect the reality of Ebola
spreading. In an uncertain and constantly changing environment, the dynamic system
can be disturbed by the white noises. As a result, the following system of SDEs (being a
counterpart of model (1)) may be presented:

dIs =
{
A− hIsIe(t)− (u + v)Is(t) + vIs(t− ς1)e−uς1 + wIe(t− ς2)e−uς2

+zIq(t− ς3)e−uς3
}

dt + vsIs(t)dPs(t),

dIe =
{

hIsIe − (u + α1 + q + w)Ie

}
dt + veIe(t)dPe(t),

dIq =
{

qIe − (u + α2 + z)Iq + Pq(t)
}

dt + vqIq(t)dPq(t),

dIr =
{

vIs + wIe + zIq − uIr − vIs(t− ς1)e−uς1 − wIe(t− ς2)e−uς2

−zIq(t− ς3)e−uς3
}

dt + vrIr(t)dPr(t),

(2)

where vs, ve, vq and vr are the positive linear intensities associated, respectively, to
the mutually independent Brownian motions Ps(t), Pe(t), Pq(t) and Pr(t). These latter,
and all the random variables that will be met in this paper, are defined on a filtered
probability space (Ω, E , {Et}t≥0,PΩ) endowed with a filtration {Et}t≥0 that verifies the
usual hypotheses [51]. By employing the identical techniques presented in (ref. [46],
Theorem 2), we can facilely demonstrate that for every positive started value, there is a
single positive solution to the probabilistic system (2). This indicates that the model (2) is
well-constructed scientifically.

Analogous to the non-probabilistic framework, the primary goal of examining the
dynamics of the probabilistic epidemic systems is to establish the conditions that ensure
disappearance and continuation of illness [43,52–55]. In this research, we try to cope with
the disappearance of the Ebola virus and the existence of a single stationary distribution
of system (2). Of course, ergodic steady distribution implies the permanence of the Ebola
infection. Technically, one of the usual methods to ensure ergodicity is the Lyapunov
candidate function, which gives just sufficient conditions in the majority of cases [56–58].
Therefore, the first problematic of this research can be formulated as follows: is it feasible
to supply the acute threshold (sufficient and necessary condition) for the stationarity of
the system Ebola and the disappearance of the Ebola virus? Specifically, the present study
suggests a novel method for dealing with biological systems perturbed by white noises. We
offer the sufficient and almost required criterion for the ergodic property of our model and
the disappearance of Ebola virus. Using a probabilistic auxiliary equation, we found the
acute threshold S?◦ . In other words, if S?◦ > 1, then model (2) has a single steady ergodic
distribution, and if S?◦ < 1, then the density of infected class will quickly converge to zero.

On the other hand, optimization theory of dynamical systems, especially as it relates
to epidemic illnesses, has received a lot of interest from researchers in recent years. Several
control methods have been suggested and successfully implemented to various epidemic
diseases. The primary goal of the theory of optimal control, particularly in epidemiological
problems, is to present a preventive measure that restricts the spread of the disease and
to portray the transmission mechanism of the infections [59–61]. This theory has filled
many loopholes in different fields, notably those that depends on dynamic system(s),
such as physics and business [62,63]. Interested readers are advised to consult [64] and
the bibliography therein for the details of step-by-step optimality criteria. In general,
when dealing with controlling of contagious diseases, the ideal approaches are to mitigate
infectious disease to a minimum standard while spending the least amount of money on
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the overall control program. Regarding real life scenarios, a much lower number of articles
are available in the literature, and usually the investigated data are retrieved from the
laboratories and clinics. One must cite many works and make many attempts in various
mathematical formulas to develop a model that suits the data points well. After developing
a very basic system, it is possible to modify it by incorporating various features of the
disease that may fit the clinical data as well as experimentally. Liu and Meng [65] worked
on the dynamics of an optimal stochastic harvesting problem with delay and derived a few
insightful results, including the maximum limit of sustainability. As Ebola virus contains
both stochasticity and delay, we intend to study this disease while considering these facts
in modeling, which has not been done yet to the best of our knowledge.

The remaining parts of the work are as follows. In Section 2, we treat the dynamical
bifurcation of the stochastic system (2) by proving that S?◦ is the sharp threshold between
stationarity and extinction of the Ebola virus. In Section 3, we deal with the Ebola system (2)
under stochastic control by using the well-known methods of delayed stochastic control
theory. In Section 4, we present the parameter estimation approach for Ebola virus with
real statistical data of Western Guinea. In Section 5, we support our findings with some
computer simulations, and we derive the main conclusions of the article in Section 6.

2. Stochastic Long-Run Dynamics of Ebola Model

This section exhibits a new approach to belay the dynamical bifurcation of our per-
turbed system. Since the dynamic of the recovered compartment has no influence on the
infection transmission behavior, we can neglect the last equation of (2). We consider the
following reduced model:

dIs =
{
A− hIsIe(t)− (u + v)Is(t) + vIs(t− ς1)e−uς1 + wIe(t− ς2)e−uς2

+zIq(t− ς3)e−uς3
}

dt + vsIs(t)dPs(t),

dIe =
{

hIsIe − (u + α1 + q + w)Ie

}
dt + veIe(t)dPe(t),

dIq =
{

qIe − (u + α2 + z)Iq + Pq(t)
}

dt + vqIq(t)dPq(t),

(3)

with initial historical data
(
Is(t), Ie(t), Iq(t)

)
∈ L1([−ς, 0];R3

+

)
, where ς = max{ς1, ς2, ς3}.

To probe the long-run dynamics of our proposed Ebola model (3), we will use an
additional perturbed equation associated with the differential equation of the total class
T (t) = Is(t) + Ie(t) + Iq(t) + Ir(t). This new equation illustrates the biological situation
when Ebola does not exist Ie(t) = 0. Let J (t) be a Markov process that verifies the
following probabilistic formulation:dJ (t) =

(
A− (u + v)J (t) + vJ (t− ς1)e−uς1

)
dt + dΣs(t),

J (0) = T (0),
(4)

where the probabilistic part is given by

dΣs(t) = vsIs(t)dPs(t) + veIe(t)dPe(t) + vqIq(t)dPq(t) + vrIr(t)dPr(t),

and T (0) = Is(0)+Ie(0)+Iq(0)+Ir(0). From Lemma 2.11 of [66], we infer that Equation
(4) is scientifically well-posed and the time average of its unique solution is estimated as
follows:

lim
t→∞

t−1
∫ t

0
J (s)ds =

A
u + v

(
1− e−uς1)

a.s. (5)

In line with the probabilistic comparison result [67], we show that T (t) ≤ J (t) a.s. So,
asymptotically, we can use inequality (5) to obtain information about the mean long-time
behavior of T (t). Concerning the latter, we also present the following result.
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Lemma 1. Let
(
Is, Ie, Iq, Ir

)
be the unique positive solution of (2). Then, for any ϕ ∈

[
0.5, 0.5+

u
m

]
, where m = max{v2

s , v2
e , v2

q , v2
r }, we have the following estimate:

lim sup
t→∞

1
t

∫ t

0
E{Ω,P}

{
T 2ϕ(s)

}
ds ≤ 2χ

Ξ
,

where χ = sup
T >0

{
AT 2ϕ−1 − 0.5ΞT 2ϕ

}
and Ξ = u− 0.5(2ϕ− 1)m.

For a detailed demonstration of the above lemma, we refer the reader to the proof of
Lemma 2.2 in [66].

Before stating the main theorem of this section, we present in Table 1 some notations
used later and define the following quantity:

S?◦ =
1

(u + α1 + q + w)

{
hA

u + v
(
1− e−uς1)

− 0.5v2
e

}
.

Table 1. Definition of some subsets used in the demonstration of Theorem 1, where x? > Υ > 0 are
two constants to be selected later.

Subset Definition

Wa
{
(t, ω) ∈ [−ς, ∞[×Ω| Is(t, ω) ≥ Υ, and, Ie(t, ω) ≥ Υ

}
Wb

{
(t, ω) ∈ [−ς, ∞[×Ω| Is(t, ω) ≤ Υ

}
Wc

{
(t, ω) ∈ [−ς, ∞[×Ω| Ie(t, ω) ≤ Υ

}
Wd {(t, ω) ∈ [−ς, ∞[×Ω| Is(t, ω) ≥ x?, or, Ie(t, ω) ≥ x?}
Wg {(t, ω) ∈ [−ς, ∞[×Ω| Υ ≤ Is(t, ω) ≤ x?, and, Υ ≤ Ie(t, ω) ≤ x?}

To exhibit possible future scenarios for the spread of Ebola, we offer the next principal result.

Theorem 1. The Ebola propagation process described by system (3) has two possible scenarios:

1. The stationary case (S?◦ > 1)—that is, ecosystem (3)—admits a single ergodic limiting
distribution πE

? (·). In other words, Ebola epidemic persists.
2. The eradication case (S?◦ < 1)—that is, the Ebola epidemic—will disappear with full probability.

Proof. First case: when S?◦ > 1. We apply Itô’s rule to the function ln Ie(t), then

d ln Ie(t) =
(

hIs(t)− (u + α1 + q + w)− 0.5v2
e

)
dt + vedPe(t). (6)

Once again, Itô’s rule leads to

d
{
J (t)− Is(t) + ve−uς1

∫ t

t−ς1

J (s)ds− ve−uς1

∫ t

t−ς1

Is(s)ds
}

=
{
A−

(
u + v

(
1− e−uς1

))
J (t)−A+ hIs(t)Ie(t) +

(
u + v

(
1− e−uς1

))
Is(t)

− wIe(t− ς2)e−uς2 − zIq(t− ς3)e−uς3
}

dt + veIe(t)dPe(t)

+ vqIq(t)dPq(t) + vrIr(t)dPr(t).

Now, we merge the above two equations as follows:
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d

{
ln Ie(t)−

h
u + v

(
1− e−uς1

){J (t)− Is(t) + ve−uς1

∫ t

t−ς1

J (s)ds− ve−uς1

∫ t

t−ς1

Is(s)ds
}}

=

{
hIs(t)− (u + α1 + q + w)− 0.5v2

e + hJ (t)− h2

u + v
(
1− e−uς1

)Is(t)Ie(t)− hIs(t)

+
hw

u + v
(
1− e−uς1

)Ie(t− ς2)e−uς2 +
hz

u + v
(
1− e−uς1

)Iq(t− ς3)e−uς3

}
dt + vedPe(t)

− hve

u + v
(
1− e−uς1

) Ie(t)dPe(t)−
hvq

u + v
(
1− e−uς1

)Iq(t)dPq(t)

− hvr

u + v
(
1− e−uς1

)Ir(t)dPr(t).

In line with the positivity of the solution, we obtain

d

{
ln Ie(t)−

h
u + v

(
1− e−uς1

){J (t)− Is(t) + ve−uς1

∫ t

t−ς1

J (s)ds− ve−uς1

∫ t

t−ς1

Is(s)ds
}}

≥
{

hJ (t)− (u + α1 + q + w)− 0.5v2
e −

h2

u + v
(
1− e−uς1

)Is(t)Ie(t)

}
dt + vedPe(t)

− hve

u + v
(
1− e−uς1

) Ie(t)dPe(t)−
hvq

u + v
(
1− e−uς1

)Iq(t)dPq(t) (7)

− hvr

u + v
(
1− e−uς1

)Ir(t)dPr(t). (8)

For simplicity of notation, we set

O?(t) = ln Ie(t)−
h

u + v
(
1− e−uς1

){J (t)− Is(t)

+ ve−uς1

∫ t

t−ς1

J (s)ds− ve−uς1

∫ t

t−ς1

Is(s)ds
}

.

An integration from 0 to t on both sides of (8) gives

O?(t)−O?(0) ≥
∫ t

0
hJ (s)ds− (u + α1 + q + w)t− 0.5v2

e t

− h2

u + v
(
1− e−uς1

) ∫ t

0
Is(s)Ie(s)ds

− hve

u + v
(
1− e−uς1

) ∫ t

0
Ie(s)dPe(s)−

hvq

u + v
(
1− e−uς1

) ∫ t

0
Iq(s)dPq(s)

− hvr

u + v
(
1− e−uς1

) ∫ t

0
Ir(s)dPr(s) + vePe(t).
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Thus, we obtain

∫ t

0
hIs(s)Ie(s)ds ≥

u + v
(
1− e−uς1

)
h

∫ t

0
hJ (s)ds

−
u + v

(
1− e−uς1

)
h

(
(u + α1 + q + w) + 0.5v2

e

)
t

−ve

∫ t

0
Ie(s)dPe(s)−vq

∫ t

0
Iq(s)dPq(s)−vr

∫ t

0
Ir(s)dPr(s)

− hO?(t)
u + v

(
1− e−uς1

) + hO?(0)
u + v

(
1− e−uς1

) + vePe(t).

By employing the strong law of large numbers for martingale [51] and (5), we have

lim inf
t→∞

1
t

∫ t

0
hIs(s)Ie(s)ds ≥

{
u + v

(
1− e−uς1

)}
h

{
lim inf

t→∞

1
t

∫ t

0
hJ (s)ds (9)

−
(
(u + α1 + q + w) + 0.5v2

e

)}
=

1
h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
. (10)

By using the definitions of the subsets Wa, Wb and Wc appearing in Table 1, we
easily obtain

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wa

}
ds ≥ −lim sup

t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wb

}
ds

− lim sup
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wc

}
ds

+ lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)

}
ds,

where E{Ω,P} denotes the mathematical expectation. In accordance with (10), we have

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wa

}
ds ≥ −hΥlim sup

t→∞

1
t

∫ t

0
E{Ω,P}

{
Is(s)

}
ds

− hΥlim sup
t→∞

1
t

∫ t

0
E{Ω,P}

{
Ie(s)

}
ds

+
1
h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
.

Consequently,

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wa

}
ds ≥ −2hΥA

u
+

1
h

{
u + v

(
1− e−uς1

)}
× (u + α1 + q + w)

(
S?◦ − 1

)
. (11)

We choose

Υ ≤ 0.25u
h2A

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
,

then, (11) becomes

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wa

}
ds ≥ 0.5

h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
.
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Let ϕ ∈
[
0.5, 0.5 + u

m

]
and ψ is given by ψ−1 + ϕ−1 = 1. By the use of Young inequality,

we obtain

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
hIs(s)Ie(s)1Wa

}
ds

≤ lim inf
t→∞

t−1
∫ t

0
E{Ω,P}

{
(ϕ−1(κhIs(s)Ie(s)

)ϕ
+ ψ−1κ−ψ1W1

}
ds

≤ p−1($b)plim sup
t→∞

t−1
∫ t

0
E{Ω,P}

{
T 2ϕ(s)

}
ds

+ lim inf
t→∞

t−1
∫ t

0
E{Ω,P}

{
ψ−1κ−ψ1W1

}
ds,

where κ is a positive constant such that

κϕ ≤ 0.125Ξh−(ϕ+1)

χ

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
.

According to Lemma 1, we infer that

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
1Wa

}
ds

≥ ψκψ

(
0.5
h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
− 2χκϕhϕ

Ξ

)
≥ 0.25ψκψ

h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
. (12)

From Table 1 and Markov’s inequality, we can conclude that∫
W
1W4(t, ω)dPΩ(ω) ≤ PΩ(Is(t) ≥ x?) + PΩ(Ie(t) ≥ x?) ≤ x−1

? E{Ω,P}

{
Is(t) + Ie(t)

}
.

To go further, we suppose that x? verifies that

x−1
? ≤

0.125ψκψu
hA

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
.

Then, we obtain

lim sup
t→∞

t−1
∫ t

0
E{Ω,P}

{
1Wd

}
ds ≤ 0.125ψκψ

h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
.

From (12), we show that

lim inf
t→∞

1
t

∫ t

0
E{Ω,P}

{
1Wg

}
ds ≥ −lim sup

t→∞

1
t

∫ t

0
E{Ω,P}

{
1Sd

}
ds + lim inf

t→∞

1
t

∫ t

0
E{Ω,P}

[
1Sa

]
ds

≥ 0.125ψκψ

h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
.

Consequently,

lim inf
t→∞

1
t

∫ t

0
PΩ
(
I0; s,Wg

)
ds ≥ 0.125ψκψ

h

{
u + v

(
1− e−uς1

)}
(u + α1 + q + w)

(
S?◦ − 1

)
> 0. (13)

Identical to the demonstration of (Lemma 3.2, ref. [68]) and the mutually limited
possibilities of lemma [69], we establish the existence, uniqueness and ergodicity of a single
invariant distribution for the perturbed model (3).
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Second case: when S?◦ < 1. From (6), we obtain

lim sup
t→∞

t−1 ln
Ie(t)
Ie(0)

= hlim sup
t→∞

t−1
∫ t

0
Is(s)ds− (u + α1 + q + w)− 0.5v2

e

≤ h lim
t→∞

t−1
∫ t

0
J (s)ds− (u + α1 + q + w)− 0.5v2

e

≤ (u + α1 + q + w)
(
S?◦ − 1

)
< 0 a.s.

So, lim
t→∞
Ie(t) = 0 a.s. Alternatively, we can say that infection, whose dynamics is

governed by model (3), could be eradicated with a rate of deterioration (u + α1 + q +

w)
(
S?◦ − 1

)
(this is the minimum benchmark value). This ends the demonstration.

3. Stochastic Optimal Control Strategies

In this section, we intend to obtain the optimal strategies for the proposed stochastic
system based on comparing different preventive measures. To accomplish this, first of all
in the following, we will identify the time-dependent control variables:

A1 : The isolation of the vulnerable population as well as of infectives is represented
by the control measure u1. This control strategy aims to minimize the value of the
transmission coefficient β.

A2 : The rate of quarantine of the infected population is controlled via the function u2.
This strategy aims to reduce the number of infectives by shifting them into the
quarantine class.

Taking into account the abovementioned two control variables (i.e., u1 and u2) in the
stochastic system (2), the desired control problem can be written in the form of

dIs(t) =
{
A− hIs(t)Ie(t)(1− u1(t))− (u + v)Is(t) + vIs(t− ς1)e−uς1

+wIe(t− ς2)e−uς2 + zIq(t− ς3)e−uς3
}

dt + vsIs(t)dPs(t),

dIe(t) =
{

hIs(t)Ie(t)(1− u1(t))− (u + α1 + q + w + u2(t))Ie(t)
}

dt + veIe(t)dPe(t),

dIq(t) =
{

qIe(t)− (u + α2 + z + u2(t))Iq(t)
}

dt + vqIq(t)dPq(t),

dIr(t) =
{

vIs(t) + (w + u2(t))Ie(t) + (z + u2(t))Iq(t)− uIr(t)− vIs(t− ς1)e−uς1

−wIe(t− ς2)e−uς2 − zIq(t− ς3)e−uς3
}

dt + vrIr(t)dPr(t),

(14)

along with the subsidiary conditions

Is(0) > 0, Ie(0) > 0, Iq(0) > 0, Ir(0) > 0, t ∈ [−ς, 0]. (15)

Let us proceed by introducing the vectors listed below

Θ(t) =
[
Is(t), Ie(t), Iq(t), Ir(t)

]′
,

u(t) =
[
u1(t), u2(t)

]′
,

P(t) =
[
Ps(t),Pe(t),Pq(t),Pr(t)

]′
,

and
dΘ(t) = ψ

(
Θ(t), u(t)

)
dt + φ

(
Θ(t)

)
dP(t). (16)

The vectors, which consist of the data at t = 0, are as follows:

Θ0 =
[
Is(0), Ie(0), Iq(0), Ir(0)

]′
. (17)
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Here, ψ and φ are vectors that comprise the following components:

ψ1(Θ(t), u(t)) = A− hIs(t)Ie(t)(1− u1(t))− (u + v)Is(t) + vIs(t− ς1)e−uς1

+ wIe(t− ς2)e−uς2 + zIq(t− ς3)e−uς3 ,

ψ2(Θ(t), u(t)) = hIs(t)Ie(t)(1− u1(t))− (u + α1 + q + w + u2(t))Ie(t),

ψ3(Θ(t), u(t)) = qIe(t)− (u + α2 + z + u2(t))Iq(t),

ψ4(Θ(t), u(t)) = vIs(t) + (w + u2(t))Ie(t) + (z + u2(t))Iq(t)− uIr(t)− vIs(t− ς1)e−uς1

− wIe(t− ς2)e−uς2 − zIq(t− ς3)e−uς3 ,

and
φ1 = vsIs(t), φ2 = veIe(t), φ3 = vqIq(t), φ4 = vrIr(t). (18)

The desired strategy, given the control problem (14), is to minimize the cost (objective)
function defined by

G?(u) = 0.5E{Ω,P}

{ ∫ T?

0

(
A1Is(s) +A2Ie(s) +A3Iq(s) +

B1

2
u2

1(s) +
B2

2
u2

2(s)
)

ds

+
K1

2
I2

s (t) +
K2

2
I2

e (t) +
K3

2
I2

q(t) +
K4

2
I2

r (t)

}
, (19)

here, Al ,Bm,Kn are positive constants for l = 1, 2, 3; m = 1, 2; and n = 1, · · · , 4.
Physically, the foremost three integrand’ terms stand for the decreasing size of vul-

nerable, latent and infectious individuals; whereas, the related constants A1, A2 and A3 are
used to balance the size of the underlying populations Is(t), Ie(t) and Iq(t), respectively.
As usual, we assumed the quadratic terms 0.5Biu

2
` , ` = 1, 2 in the cost functional for

the preventive measures. To balance the control parameters, we utilized the B` in the
cost functional.

To conclude the above-stated discussion, our aim in the current research is to find the
minimum value of the objective functional (19) by employing the strategies of reducing the
number of vulnerable, latent and Ebola-infected people; maximizing the size of quaran-
tine compartment; and doing all this while utilizing the least resources. In other words,
the control vector (u1(t), u2(t)) ∈ U aims to decrease the interactions of the vulnerable and
infected people and quarantining a portion of the latent and EVD-infected people in a unit
time. Thus, we are searching for control variables, which has the property

J (u?) ≤ J (u), ∀u ∈ U , (20)

where U is the feasible set of controls, which is defined by

U =
{
ui(t) : ui(t) ∈

[
0, u?,max

`

]
, ∀u` ∈ L2[0, T?] t ∈ (0, T?], ` = 1, 2

}
, (21)

here, the notions u?,max
` for ` = 1, 2 are constant and positive. To use the well-known

stochastic version of maximum principle, first of all, it is necessary to express the Hamilto-
nianHm(x, u, y, z) as

H(Θ, u, y, z) = 〈ψ
(
Θ, u

)
, y〉 − L

(
Θ, u

)
+ 〈φ(Θ), z〉, (22)

where 〈·, ·〉 represent the usual Euclidean inner-product while y = [y1, y2, y3, y4]
′ and

z = [z1, z2, z3, z4]
′ vectors’ components denote the associated adjoint variables. We may

reproduce the stochastic minimum/maximum principle in the following form

dΘ?(t) =
∂H(Θ?, u?, y, z)(t + τ)

∂y
dt + g(Θ?(t))dP(t), (23)



Fractal Fract. 2022, 6, 578 12 of 23

dy?(t) = −∂H(Θ?, u?, y, z)(t + τ)

∂Θ
dt + z(t)dP(t), (24)

Hm(Θ?, u?, y, z) = max
u∈U
Hm(Θ?, u?, y, z), (25)

where θ?(t) describes the optimal trajectory of the state variable. The terminal and initial
condition related to Equations (23) and (24) are

Θ?(0) = x0, (26)

y(T?) = −
∂h(Θ?(T?))(t + τ)

∂Θ
, (27)

respectively. Since Equation (25) indicates that control u?(t) (optimal) is a function of
y(t), z(t) and x?(t), we can write

u?(t) = Φ(Θ?, y, z), (28)

where Φ can be obtained from Equation (25). Hence, Equations (23) and (24) may be written
in another way as

dΘ?(t) =
∂H(θ?, u?, y, z)(t + τ)

∂y
dt + φ(Θ?(t))dP(t), (29)

dy(t) = −∂H(Θ?, u?, y, z)(t + τ)

∂Θ
dt + z(t)dP(t). (30)

As a result, the corresponding Hamiltonian is of the form

H =

(
A1Is(t) +A2Ie(t) +A3Iq(t) +

B1

2
u2

1(t) +
B2

2
u2

2(t)

+
K1

2
I2

s (t) +
K2

2
I2

e (t) +
K3

2
I2

q(t) +
K4

2
I2

r (t)
)

+ y1

{
A− hIs(t)Ie(t)(1− u1(t))− (u + v)Is(t) + vIs(t− ς1)e−uς1

+ wIe(t− ς2)e−uς2 + zIq(t− ς3)e−uς3
}

+ y2

{
hIs(t)Ie(t)(1− u1(t))− (u + α1 + q + w + u2(t))Ie(t)

}
+ y3

{
qIe(t)− (u + α2 + z + u2(t))Iq(t)

}
+ y4

{
vIs(t) + (w + u2(t))Ie(t) + (z + u2(t))Iq(t)− uIr(t)− vIs(t− ς1)e−uς1

− wIe(t− ς2)e−uς2 − zIq(t− ς3)e−uς3
}

+ vsIs(t)z1 + veIe(t)z2 + vqIq(t)z3 + vrIr(t)z4.

(31)

According to the stochastic maximum principle,

dy?(t) = −∂H(Θ?, u?, y, z)(t + ς)

∂Θ
dt + z(t)dP(t). (32)



Fractal Fract. 2022, 6, 578 13 of 23

By taking the respective derivative of H with respect to Is, Ie, Iq and Ir, we will
obtain y′1, y′2, y′3, and y′4 in the form of

dy1(t)
dt

= −A1 + (y1 − y2)hI?e (t)(1− u?1(t)) + y1u + (y1 − y4)v

− χ[0,T?−ς1]
(y1(t + ς1)− y4(t + ς1))ve−uς1 + vsz1,

dy2(t)
dt

= −A2 + (y1 − y2)hI?s (t)(1− u?1(t)) + y2(u + α1 + q + w + u?
2(t))

− χ[0,T?−ς2](y1(t + ς2)− y4(t + ς2))we−uς2

− y4(w + u?
2(t)) + vez2,

dy3(t)
dt

= −A3 + y3(u + α2 + z + u?
2(t))

− χ[0,T?−ς3](y1(t + τ3)− y4(t + ς3))ze−uς3 − y4(u?
2(t) + z) + vqz3,

dy4(t)
dt

= y4u + vrz4,

(33)

where the notation χ[0,T?−ς` ]
(` = {1, 2, 3}) denotes the characteristic function over [0, T? − ςi].

Due to the free terminal states (i.e.,
(
Is(T?), Ie(T?), Iq(T?), Ir(T?)

)
∈ R4

+), the transver-
sality conditions in association with the auxiliary conditions, we have

I?s (0) = Îs, I?e (0) = Îe, I?q(0) = Îq, I?r (0) = Îe, y(T?) = −
∂h
(

Θ?(T?(t + ς))
)

∂Θ
, (34)

and
h
(
Is, Ie, Iq, Ir

)
=

K1

2
I2

s +
K2

2
I2

e +
K3

2
I2

q +
K4

2
I2

r , (35)

where y1(T?) = −K1Is, y2(T?) = −K2Ie, y3(T?) = −K3Iq, y4(T?) = −K4Ir.
The next step is to consider the derivative of the function H with respect to u1,u2,

yielding the following expressions that denote the characterization of the control measures
(optimal) u?1 and u?2 as

u?1 = max
{

0, min
{

1,
1
B1

(y2 − y1)h
(
I∗s (t) + I?e (t)

))}}
,

u?2 = max
{

0, min
{

1,
1
B2

(y4 − y2)I?e + (y4 − y3)I?q
}}

.
(36)

To obtain the required control schemes, we developed an optimum objective functional,
which contains both the control variables as well as the underlying states of the system.
The goal of this study is to minimize the value of cost functional subject to the proposed
stochastic differential equation system (2) and the included time-delay. It is observed
that the whole control problem relies on the objective functional; thus, care should be
taken in its selection. Weights should be assigned to the factors that are more important
when balancing the coefficient, especially in the case of two or more factors in the cost
functional. Before applying the well-known Pontryagin’ principle [70], it is required to
check the theory of existence for such control measures. To demonstrate such existence,
one must demonstrate that within the feasible region, the control measures are bounded,
by considering a sequence of control measures and their possible dependence on the
states to demonstrate its convergence. By following [70], we may define the Hamiltonian
associated to the problem in the following form

H = integrand in the objective functional

+ adjoint variables× RHS of the differential equations.
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To obtain the optimality criterion, we will differentiate the function H with respect
to the control variables at the optimum values of the controls u∗. Further, by considering
the derivative of the function H with respect to the states, one can easily obtain the adjoin
equations and similarly the transversality conditions as given by relation (34).

4. Parameters Estimation and Curve Fitting

Parameter estimation is perhaps the most important step in any research related to
epidemics. It is considered an inverse process—that is, given a set of state variables and a
model, we identify the values of parameters that produce a good fit of the data with our
model. This step in any research is difficult as there is no single numerical or analytical
method that can be used. If a method gives a unique solution of the problem, still we need
a good approximation of the initial data for computing a better estimates of the parameters.
This is due to solving the minimization problem by matching the actual data with the
model’s solution and for a good approximation, optimization solvers need initial data very
close to the real data. There is a limited knowledge of the system, obtaining good parameter
values for the type of biological system studied in this research can be difficult. Keeping in
view the proximity and feasibility of the proposed problem, we will utilize the MATLAB
routine lsqcurvefit and will perform the estimation of parameters as shown in Table 2. This
technique is proffered over other available methods as this tool can handled very easily
both small and large scale problems and a detailed explanations, the readers are advised
to see [71]. To do so, in this research work, we considered the real Ebola cases reported in
Western Guinea from the first forty weeks of the 2015 Ebola epidemic [18].

Table 2. The estimated and fitted values of the parameters obtained from fitting the model against the
real Ebola cases reported in Western Guinea from the first forty weeks of the 2015 Ebola epidemic [18].

Parameter Epidemiological Meaning Value Source

A Recruitment rate into susceptible class 10 Estimated
h The Ebola transmission rate 0.0004 Fitted
u The normal death rate of each class 1.2531× 10−3 Fitted
v The vaccination rate of the susceptible individuals 0.00027 Estimated
z The recovery rate of quarantine class 0.13531 Fitted
q The quarantine rate of infected class 0.802529 Fitted
w The recovery rate of infectious individuals 0.0209 Fitted
α1 The disease-related death rate of infected class 1.0135× 10−6 Fitted
α2 The disease-related death rate of isolated class 3.1969× 10−2 Fitted
ς1 Time delay associated with Is 21 Fitted
ς2 Time delay associated with Ie 21 Estimated
ς3 Time delay associated with Iq 21 Estimated

Let us express the proposed model (1) in the following functional differential equation:

dY
dt

= (F(t,Y , θ),Y(t0)) = Y0. (37)

Here, F denotes the functional relationship between the independent variable, state
variables and parameter θ. The strategy will be to find the value of θ such that it minimizes
the difference between the reported data and the data predicted by the model. For n
number of data points, actually, we want to minimize the following function

θ̄ =
n

∑
i=1

(yti − ȳti )
2. (38)

Thus, the complete optimization problem is given by{
min θ̄,

subject to Equation (37).
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By assuming the estimated values of the parameters, we simulated both the stochastic
and deterministic models against the reported Ebola virus data from the first forty weeks of
2015 in Figure 2. By an inspection, one can see that the stochastic system explains the data

with good agreement. The expression 1
12 ∑12

k=1

∣∣∣∣ xreal
k −xapproximate

k
xreal

k

∣∣∣∣ ≈ 1.5685e− 01 was used to

measure the average relative error of fitness, which actually describes the goodness of fit
value. To further strengthen our findings, we calculated the relative error in small scale by
using (1.5685e− 01), which suggests that this fitness is very accurate compared with any
other fitting tools.

Figure 2. Fitting of the deterministic model with the Ebola virus statistical data by using the values
of parameter from Table 2.

5. Numerical Verification
5.1. Stochastic Long-Run Behavior of Ebola Virus Model

This subsection is devoted to the numerical confirmation of the theoretical results of
this article. We seek to verify that S?◦ is the acute threshold of the model (3). Additionally,
we probe the complex impact of independent white noises on the long-term behavior of
Ebola virus. We mention that the parameters of the deterministic model are based on the
real data provided in Table 2. For stochastic intensities, we select it theoretically in order
to precisely audit the results obtained in the cases of stationarity and extinction of Ebola
virus and to show that a dynamic bifurcation occurs at certain noise values. The solution
of our model (3) is simulated in our case with the initial data: Is(0) = 700, Ie(0) = 100,
Iq(0) = 300 and Ir(0) = 20. Henceforth, the units adopted for time and number of
individuals are, respectively, one day and one thousand population.

Firstly, we choose the parameter values presented in Table 2, and also select vs = 0.05,
ve = 0.09, vq = 0.04 and vr = 0.03. By performing simple calculations, we obtain
S?◦ = 3.8451 > 1. From Theorem 1, we infer the existence of a steady distribution. By way
of explanation, stationarity indicates the continuation of Ebola virus in the population over
time, and the ergodic property established by Theorem 1 implies the persistence in the
mean of the virus provided by the Ebola infection—that is, the time average of all classes of
model (3) reach a strictly positive value, which can be seen in the Figure 3.

Now, we increase the noise amplitude as follows: vs = 0.8, ve = 2.19, vq = 0.44
and vr = 0.3. In this case, we obtain S?◦ = 0.9422 < 1. From Theorem 1, we deduce
that Ebola infection will not be present in the population. Numerically, this is shown in
Figure 4. Biologically, we can establish that a large amount of outside noise leads to the
eradication of Ebola infection. This means that a long-term bifurcation occurs at the same
critical noise values.
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Figure 3. Solutions’ paths and the associated histograms of the Ebola virus model (3) when the
numerical values are taken as shown in Table 2 and the random intensities as follows: vs = 0.8,
ve = 2.19, vq = 0.44 and vr = 0.3.
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Figure 4. Stochastic paths and the associated histograms of the Ebola virus model (3) when the
numerical values are taken as shown in Table 2 and the random intensities as follows: vs = 0.05,
ve = 0.09, vq = 0.04 and vr = 0.03.

Now, we shall explore the effect of triple delays on the long-term behavior of Ebola.
From Figures 5–7, we show that increasing the length of the time delay leads to a significant
decrease in the number of affected classes. Biologically speaking, a long delay has the great-
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est effect on reducing transmission. Control and tracking strategies, maximizing tracking
delays—for example, using media-based technology—and increasing the effectiveness of
contact tracing, have the potential to prevent contact transmissions. All this makes the
control of Ebola virus possible among the population.
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Figure 5. The first row represents the paths of the affected category for the following different time
lags: ς1 = 30, ς1 = 100 and ς1 = 200. The second row shows the associated histograms and the
probability density functions for Is.
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Figure 6. The first row represents the paths of the affected category for the following different time
lags: ς2 = 30, ς2 = 100 and ς2 = 200. The second row shows the associated histograms and the
probability density functions for Is.
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Figure 7. The first row represents the paths of the affected category for the following different time
lags ς1 = 50, ς1 = 150 and ς1 = 400. The second row shows the associated histograms and the
probability density functions for Is.

5.2. Stochastic Optimal Control Strategies

We will demonstrate the numerical (approximate) solution to the assumed stochastic
control problem; we will show how the assumed control measures work by presenting the
numerical example. A stochastic numerical method will be used to simulate the control
system. Parallel to that, we will solve numerically the adjoint equations by using the same
technique and utilizing the conditions at final time. We will code the proposed model (1)
in Step 1 without using control variables; then, we will find the numerical solution of the
control system. For obtaining the approximate solution of the control system, we need to
simulate the adjoint system (14) with the help of a backward procedure and by considering
the conditions at final time T. Since the adjoint and state variables depend upon the control
parameters, the convex relationships and characterization of the control measures will
be utilized in the simulation. Whereas, during the entire simulation, we assumed the
parameter values from Table 2. Based on these procedures and values of the parameters,
we illustrate graphical results in Figure 8, which show the usefulness of the controls in
reducing the spread of Ebola.

Figure 8 graphically shows the curves after and before the execution of the control
strategies by employing the deterministic model (1) of the system. As the current strategy
focuses on the minimization of the individuals in infected and quarantined classes, the
plot shows the outcomes of the present study. Besides, we emphasized the increase in
size of the recovered compartment, which is well-supported in the same figure. Further,
we show that without control, the population of the quarantined class declines and will
reach zero within a finite time; however, the same population tends to increase at a faster
rate as we implement the control policy. Finally, Figure 9 explains the dynamics of the
control variable during the entire control program both in the presence and absence of the
environmental noises.
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Figure 8. The long-run behavior of the Ebola without and with control strategies: (first column)
curves achieved from the solution of the deterministic system and (second column) trajectories of the
random system.
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Figure 9. The curves exhibit the time-evolution of the control measures obtained from simulating the
models: deterministic and stochastic.

6. Conclusions

The Ebola virus has received much attention from worldwide scholars. It is caused
by the Ebola virus, which takes the specific lymphocytes in the bodily immune system as
the prime base and destroys its mechanism. This epidemic has a short incubation period
with a high fatality rate for patients, and its treatment increases the predicted time for
its transmission. This treatment strategy guarantees a more reasonable probability of
affecting others.

The current paper analyzed a generalized stochastic Ebola epidemic model that
includes Brownian motions as well as stochastic time-varying delays. More explicitly,
the treated system represents a four compartmental system that takes the form of an Itô
stochastic differential equations system. After having presented the deterministic system,
a mathematical analysis is carried out to offer an insight into Ebola propagation—notably,
its long-run behavior. The main mathematical and biological results of this paper are
arranged as follows:

1. We have given the global threshold of the Ebola model (2) based on some dynamical
properties of a one-block boundary system (4) perturbed by white noises.

2. In Theorem 1, we have proved the main result related to the stationarity and ex-
tinction of the Ebola virus. It is worthy to mention that the analysis of these long-
time properties is very significant for the underlying perturbed systems. Especially,
in the case of epidemiological models, the ergodicity offers a general idea of the
infection permanence.

3. For controlling the rapid spread of the disease, we assumed two control parameters,
and these were incorporated into the stochastic model. The stochastic model was
analyzed with the help of Pontryagin principle, and the required optimality conditions
were derived therein. To check the validity of the theoretical results and effectiveness
of the control parameters, we plotted the models by simulating the same in MATLAB.
Through simulations, the obtained results for persistence/extinction of the Ebola
infection are verified. It was concluded that by using both the control variables, one
can easily eliminate the Ebola from the community with minimum cost.

To control emerging tropical infectious diseases, we need to strengthen our inter-
vention strategies. The overall public health goal is to reduce the burden of disease by
reducing transmission or mitigating its severity. There are at least two basic public health
guidelines for managing the spread of infectious diseases, such as Ebola, for which there
are no vaccines or effective treatment. These is (i) effective isolation of symptomatic persons
and (ii) asymptomatic contact tracing of groups of exposed persons and their quarantine
for monitoring. In this regard, our paper highlights these control strategies in the context
of stochasticity. In general, we pointed out that this study enhances many previous works
regarding white noise perturbation. Furthermore, it offers new insights into understand-
ing Ebola spread with complex real-world assumptions. In other words, the approach
described in this article opens up many possibilities for future research.
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52. Özköse, F.; Şenel, M.T.; Habbireeh, R. Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune system

interaction with chemotherapy. Math. Model. Numer. Simul. Appl. 2021, 1, 67–83. [CrossRef]
53. Din, A.; Abidin, M.Z. Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels. Math.

Model. Numer. Simul. Appl. 2022, 2, 59–72. [CrossRef]
54. Sinan, M.; Leng, J.; Anjum, M.; Fiaz, M. Asymptotic behavior and semi-analytic solution of a novel compartmental biological

model. Math. Model. Numer. Simul. Appl. 2022, 2, 88–107. [CrossRef]

http://dx.doi.org/10.1155/2022/6502598
http://www.ncbi.nlm.nih.gov/pubmed/36158132
http://dx.doi.org/10.1080/02286203.2021.1983745
http://dx.doi.org/10.1186/s13662-021-03272-5
http://dx.doi.org/10.1016/j.idm.2019.01.003
http://dx.doi.org/10.1016/j.chaos.2020.110036
http://www.ncbi.nlm.nih.gov/pubmed/32834596
http://dx.doi.org/10.1140/epjs/s11734-022-00453-5
http://dx.doi.org/10.1016/j.chaos.2021.110839
http://dx.doi.org/10.3934/mbe.2021159
http://www.ncbi.nlm.nih.gov/pubmed/34198381
http://dx.doi.org/10.1142/S1793524518500936
http://dx.doi.org/10.1016/j.apjtb.2016.01.012
http://dx.doi.org/10.1007/s11786-016-0268-y
http://dx.doi.org/10.3934/jimo.2017054
http://dx.doi.org/10.3934/mbe.2020092
http://www.ncbi.nlm.nih.gov/pubmed/32233606
http://dx.doi.org/10.1016/j.aml.2011.02.007
http://dx.doi.org/10.14232/ejqtde.2013.1.3
http://dx.doi.org/10.1140/epjp/s13360-022-02748-x
http://dx.doi.org/10.1007/s40435-022-00981-x
http://dx.doi.org/10.1002/mma.8654
http://dx.doi.org/10.1016/j.chaos.2022.112110
http://www.ncbi.nlm.nih.gov/pubmed/35502416
http://dx.doi.org/10.1155/2018/7570296
http://dx.doi.org/10.3390/math10132262
http://dx.doi.org/10.3934/mbe.2022633
http://dx.doi.org/10.1016/j.physa.2013.06.009
http://dx.doi.org/10.53391/mmnsa.2021.01.007
http://dx.doi.org/10.53391/mmnsa.2022.006
http://dx.doi.org/10.53391/mmnsa.2022.008


Fractal Fract. 2022, 6, 578 23 of 23

55. Allegretti, S.; Bulai, I.M.; Marino, R.; Menandro, M.A.; Parisi, K. Vaccination effect conjoint to fraction of avoided contacts for a
Sars-Cov-2 mathematical model. Math. Model. Numer. Simul. Appl. 2021, 1, 56–66. [CrossRef]

56. Liu, Q.; Jiang, D. Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation. Appl. Math. Lett.
2017, 73, 8–15. [CrossRef]

57. Liu, Q.; Jiang, D.; Hayat, T.; Alsaedi, A. Stationary distribution of a regime-switching predator–prey model with anti-predator
behaviour and higher-order perturbations. Phys. A Stat. Mech. Its Appl. 2019, 515, 199–210. [CrossRef]

58. Zhou, B.; Han, B.; Jiang, D. Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear
incidence and general stochastic perturbations. Chaos Solitons Fractals 2021, 152, 111338. [CrossRef]

59. Lesniewski, A. Epidemic control via stochastic optimal control. arXiv 2020, arXiv:2004.06680.
60. Din, A. The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence

function. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 123101. [CrossRef] [PubMed]
61. Li, Y.; Wei, Z. Dynamics and optimal control of a stochastic coronavirus (COVID-19) epidemic model with diffusion. Nonlinear

Dyn. 2022, 109, 91–120. [CrossRef]
62. Chen, Y.; Georgiou, T.T.; Pavon, M.Optimal transport in systems and control. Annu. Rev. Control Robot. Auton. Syst. 2021,

4, 89–113. [CrossRef]
63. Germain, M.; Pham, H.; Warin, X. Neural networks-based algorithms for stochastic control and PDEs in finance. arXiv 2021,

arXiv:2101.08068.
64. Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2021; Volume 1.
65. Liu, L.; Meng, X. Optimal harvesting control and dynamics of two-species stochastic model with delays. Adv. Differ. Equations

2017, 2017, 1–17. [CrossRef]
66. Kiouach, D.; Sabbar, Y.; El Azami El-idrissi, S. New results on the asymptotic behavior of an SIS epidemiological model with

quarantine strategy, stochastic transmission, and Lévy disturbance. Math. Methods Appl. Sci. 2021, 44, 13468–13492. [CrossRef]
67. Peng, S.; Zhu, X. Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations.

Stoch. Process. Their Appl. 2006, 116, 370–380. [CrossRef]
68. Tong, J.; Zhang, Z.; Bao, J. The stationary distribution of the facultative population model with a degenerate noise. Stat. Probab.

Lett. 2013, 83, 655–664. [CrossRef]
69. Zhao, D.; Yuan, S. Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat. Appl. Math.

Comput. 2018, 339, 199–205. [CrossRef]
70. Touzi, N.; Tourin, A. Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE; Springer: New York, NY, USA, 2013;

Volume 29.
71. Nakanishi, M.; Cooper, L.G. Parameter estimation for a multiplicative competitive interaction model-least squares approach. J.

Mark. Res. 1974, 11, 303–311.

http://dx.doi.org/10.53391/mmnsa.2021.01.006
http://dx.doi.org/10.1016/j.aml.2017.04.021
http://dx.doi.org/10.1016/j.physa.2018.09.168
http://dx.doi.org/10.1016/j.chaos.2021.111338
http://dx.doi.org/10.1063/5.0063050
http://www.ncbi.nlm.nih.gov/pubmed/34972335
http://dx.doi.org/10.1007/s11071-021-06998-9
http://dx.doi.org/10.1146/annurev-control-070220-100858
http://dx.doi.org/10.1186/s13662-017-1077-6
http://dx.doi.org/10.1002/mma.7638
http://dx.doi.org/10.1016/j.spa.2005.08.004
http://dx.doi.org/10.1016/j.spl.2012.11.003
http://dx.doi.org/10.1016/j.amc.2018.07.020

	Introduction
	Stochastic Long-Run Dynamics of Ebola Model
	Stochastic Optimal Control Strategies
	Parameters Estimation and Curve Fitting
	Numerical Verification
	Stochastic Long-Run Behavior of Ebola Virus Model
	Stochastic Optimal Control Strategies

	Conclusions
	References

