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Abstract: Based on the generalized Routh–Hurwitz criterion, we propose a sufficient and necessary
criterion for testing the stability of fractional-order linear systems with order α ∈ (1, 2), called the
fractional-order Routh–Hurwitz criterion. Compared with the existing criterion, ours involves fewer
and simpler expressions, which is significant for analyzing the robust stability of high-dimensional
uncertain systems. All these expressions are explicit ones about the coefficients of the characteristic
polynomial of the system matrix, so the stable parameter region of fractional-order systems can be
described directly. Some examples show the effectiveness of our method.

Keywords: fractional-order systems; generalized Routh–Hurwitz criterion; robust stability; high-
dimensional systems

1. Introduction

Routh–Hurwitz criterion is a sufficient and necessary condition for testing whether
all roots of a real polynomial have negative real parts. This criterion can analyze the
asymptotic stability of linear time–invariant systems by the coefficients of the characteristic
polynomial of the system matrix. For integer–order systems, this criterion is equivalent
to a stability criterion, called the Routh–Hurwitz stability criterion. Based on the classical
Routh–Hurwitz, some stability conditions were given for low-dimensional fractional-order
systems with order α ∈ (0, 1] in 2006 [1]. Recently, these results were extended to the case
of order α ∈ (0, 2) [2]. All these stability conditions that are suitable for fractional-order
systems are only sufficient and necessary for dimensions n = 2, 3, but just sufficient or
necessary for dimensions n ≥ 4. The classical Routh–Hurwitz criterion is unsuitable for
directly analyzing general n-dimensional fractional-order systems.

Some researchers proposed an idea that transforms an n-dimensional fractional-order
system into a 2n-dimensional integer-order system, then the stability of the fractional-
order system with order α ∈ (1, 2) [3] can be tested by analyzing the corresponding
higher-dimensional integer-order system. The classical Routh–Hurwitz criterion and
related results are valid for analyzing the corresponding higher-dimensional integer-order
system. This equivalent transformation has a beautiful form and is the theoretical basis
for some stability methods of fractional-order uncertain systems. For example, based on
this equivalent transformation, the classical µ-analysis method can be used to discuss the
robust stability of fractional-order systems with order α ∈ (1, 2) [4]. All robust stability
results can be obtained with these methods, but the higher-dimensional transformation has
a high computational complexity, especially for multi-parameter systems.

For reducing complicated calculations, some parameter space algorithms were es-
tablished for determining the stable parameter region of fractional-order systems with
multi-parameter by transforming characteristic polynomials to the corresponding parame-
ter polynomials. Based on the cylindrical algebraic decomposition technique, the robust
stability of high-dimensional cases can be discussed through a visual representation of the
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parameter space [5,6]. However, if the number of uncertain parameters is more than three,
these parameter space algorithms may fail.

Due to the advantage of fractional calculus for describing the memory and genetic
characteristics more suitable, fractional-order systems have been modeled and discussed in
various research fields. Among these discussions, we see that the case of α ∈ (1, 2) appears
in several dynamical problems used in physical and engineering applications [7–10]. For
that complex situation, its stability analysis as the basis of the dynamical problems is still
an open topic. This paper considers the problems of stability and robust stability on n-
dimensional fractional-order linear systems with order α ∈ (1, 2). Based on the generalized
Routh–Hurwitz criterion, a sufficient and necessary criterion for testing the stability of
fractional-order linear systems with order α ∈ (1, 2), called the fractional-order Routh–
Hurwitz criterion, is proposed. Our criterion involves fewer explicit expressions than the
exiting method [3] and describes stability analysis results of fractional-order systems with
uncertain parameters more easily than existing methods [4–6,11,12].

2. Preliminaries

Since the Laplace transform of a Liouville–Caputo fractional-order derivative involves
the initial values of integer-order derivatives with clear physical interpretations [13–15],
the Liouville–Caputo (LC) definition of a fractional-order derivative is used in this paper,

LCDα f (t) =
1

Γ(α−m)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ, (1)

where m is an integer satisfying m− 1 < α ≤ m and Γ(·) is the gamma function.
In this paper, Dα is short for LCDα.
Consider the following n-dimensional fractional-order linear time-invariant system:

Dαx = Ax, (2)

where α ∈ (1, 2) is the fractional order, A ∈ Rn×n, x = (x1, x2, · · · , xn)T is a state vector.
The initial conditions for system (2) are xi(0) = xi0, x′i(0) = x′i0.

Lemma 1 ([16–18]). System (2) is asymptotically stable if and only if
∣∣arg(λj)

∣∣ > απ
2 , where

λj(j = 1, 2, · · · , n) are the eigenvalues of matrix A and arg(·) denotes the argument of a com-
plex number.

Let
SR :=

{
γ ∈ C||arg(γ)| > απ

2
}

,
UR :=

{
γ ∈ C||arg(γ)| < απ

2
}

,
CL :=

{
γ ∈ C||arg(γ)| = απ

2
}

,
(3)

be called the stable region, the unstable region and the critical line of system (2), respectively
(as shown in Figure 1).

Suppose the characteristic polynomial of the system matrix A is

P(λ) = λn + a1λn−1 + · · ·+ an. (4)

From Lemma 1, we know that system (2) is asymptotically stable if and only if all
roots of P(λ) are in the stable region SR.

Remark 1. Since the stable region SR of system (2) is a classical study region in integer-order
systems [19], researchers have analyzed the stability of system (2) by finding an integer-order linear
time-invariant system with integer-order that has equivalently the same stability property as of the
fractional-order system [3]. This idea is valid, but the corresponding integer-order system has a
higher-dimensional system matrix. We need to analyze a higher-dimensional polynomial if we test
the stability of the corresponding integer-order system by the classical Routh–Hurwitz criterion.
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For example, consider the general two-dimensional fractional-order system as follows:

Dαx = Ax, (5)

where A =

[
a11 a12
a21 a22

]
, x = (x1, x2)

T . The initial conditions are xi(0) = xi0, x′i(0) = x′i0,

i = 1, 2.
System (5) is asymptotically stable if and only if the following four-dimensional integer-order

system is asymptotically stable [3],

˙̃x =

[
Asin

(
απ
2
)

Acos
(

απ
2
)

−Acos
(

απ
2
)

Asin
(

απ
2
)]x̃. (6)

The characteristic polynomial of system (6) is

P(λ) = λ4 + a1λ3 + a2λ2 + a3λ + a4, (7)

where

a1 = −2(a11 + a22)sin
(απ

2

)
,

a2 = (a2
11 + 4a11a22 − 2a12a21 + a2

22)sin2
(απ

2

)
+ (a2

11 + 2a12a21 + a2
22)cos2

(απ

2

)
,

a3 = −2(a11 + a22)(a11a22 − a12a21)sin
(απ

2

)
,

a4 = (a11a12 − a12a21)
2.

(8)

The integer-order Hurwitz matrix Hr of P(λ) in Equation (7) is as follows:

Hr =


a1 a3 0 0
1 a2 a4 0
0 a1 a3 0
0 1 a2 a4

. (9)

Based on the classical Routh–Hurwitz criterion, we need to check ∆ i > 0(i = 1, 2, 3, 4) to
determine the stability of two-dimensional fractional-order system (5), where ∆ i(i = 1, 2, 3, 4) is
the ith order leading principal minor of Hr and

∆1 = a1,

∆2 = a1a2 − a3,

∆3 = −a2
1a4 + a1a2a3 − a2

3,

∆4 = −a4(a2
1a4 − a1a2a3 + a2

3).

(10)

The above classical Routh–Hurwitz criterion needs to calculate four leading principal minors
that are complex, although fractional-order system (5) is just a two-dimensional system.

Let f (z) be a complex coefficient polynomial satisfying:

f (iz) = b0zn + b1zn−1 + · · ·+ bn + i
(

a0zn + a1zn−1 + · · ·+ an

)
, a0 6= 0, (11)

where aj(j = 0, 1, · · · , n) and bj(j = 0, 1, · · · , n) are real numbers.
The 2n× 2n generalized Hurwitz matrix H f is constructed from f (z) as follows:
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H f =



a0 a1 · · · an 0 · · · 0
b0 b1 · · · bn 0 · · · 0
0 a0 · · · an−1 an · · · 0
0 b0 · · · bn−1 bn · · · 0
...

...
...

...
...

...
...

0 · · · 0 a0 · · · an−1 an
0 · · · 0 b0 · · · bn−1 bn


. (12)

Figure 1. The stable region SR, the unstable region UR and the critical line CL of system (2).

Lemma 2 ([20] The Generalized Routh–Hurwitz Criterion). All roots of f (z) have negative
real parts if and only if σk > 0(k = 1, 2, · · · , n), where σk(k = 1, 2, · · · , n) is the 2kth order
leading principal minor of H f .

The 2kth order leading principal minors σk(k = 1, 2, · · · , n) of H f are given by

σ1 =

∣∣∣∣a0 a1
b0 b1

∣∣∣∣, σ2 =

∣∣∣∣∣∣∣∣
a0 a1 a2 a3
b0 b1 b2 b3
0 a0 a1 a2
0 b0 b1 b2

∣∣∣∣∣∣∣∣, · · · , σn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an 0 · · · 0
b0 b1 · · · bn 0 · · · 0
0 a0 · · · an−1 an · · · 0
0 b0 · · · bn−1 bn · · · 0
...

...
...

...
...

...
...

0 · · · 0 a0 · · · an−1 an
0 · · · 0 b0 · · · bn−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (13)

From the generalized Routh–Hurwitz criterion, we can test whether all roots of an
n-dimensional complex coefficient polynomial have negative real parts by n leading princi-
pal minors.

In this paper, based on the generalized Routh–Hurwitz criterion, we propose a suf-
ficient and necessary criterion, called the fractional-order Routh–Hurwitz criterion. This
criterion can directly analyze the stability and robust stability of n-dimensional fractional-
order systems with order α ∈ (1, 2) by these corresponding complex coefficient polyno-
mials, which can reduce the complicated calculations caused by the higher-dimensional
transformation.
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3. Main Results
From the characteristic polynomial P(λ) of fractional-order system (2), we have the

corresponding complex coefficient polynomial:

f
(

r · ei απ
2

)
=

n

∑
j=0

aj · cos
(
(n− j) · απ

2

)
· rn−j + i ·

 n

∑
j=0

aj · sin
(
(n− j) · απ

2

)
· rn−j

, (14)

where a0 = 1.
From Equations (11) and (12), the fractional-order Hurwitz matrix is defined, which is

constructed from the complex coefficient polynomial in Equation (14).

Definition 1 (The Fractional-Order Hurwitz Matrix). For system (2), the 2n× 2n fractional-
order Hurwitz matrix Hα of P(λ) is defined as follows:

Hα =



sin
( n·απ

2
)

a1sin
(
(n−1)·απ

2

)
· · · 0 · · · · · · 0

cos
( n·απ

2
)

a1cos
(
(n−1)·απ

2

)
· · · an · · · · · · 0

0 sin
( n·απ

2
)

· · · an−1sin
(

απ
2
)
· · · · · · 0

0 cos
( n·απ

2
)

· · · an−1cos
(

απ
2
)

an · · · 0
...

...
...

...
...

...
...

0 · · · · · · sin
( n·απ

2
)

· · · an−1sin
(

απ
2
)

0
0 · · · · · · cos

( n·απ
2
)

· · · an−1cos
(

απ
2
)

an


. (15)

Theorem 1 (The Fractional-Order Routh–Hurwitz Criterion). System (2) is asymptotically
stable if and only if Σp > 0(p = 1, 2, · · · , n), where Σp(p = 1, 2, · · · , n) is the 2pth order leading
principal minor of Hα.

Proof. The coordinate system xy counterclockwise turns through angle θ = (α−1)π
2 as the

coordinate system x′y′ (as shown in Figure 2).
For system (2), in the new coordinate system x′y′, P(λ) can be expressed as

g(r) = f
(

r · ei α−1
2 π
)

, (16)

thus
g(ir) = f

(
r · ei απ

2

)
. (17)

Since P(λ) is a real polynomial whose roots are symmetrical about the real axis in
the coordinate system xy, its roots are in the stable region SR if and only if they are in the
left half plane of the coordinate system x′y′. Based on the above analysis, according to
Lemma 2 and Lemma 1, we have Theorem 1.



Fractal Fract. 2022, 6, 557 6 of 13

Figure 2. Rotate the coordinate system.

The linearization of a fractional-order nonlinear system Dαx = f (x) around an equilib-
rium point can be given as Dαx = Jx, where J is the Jacobian matrix of Dαx = f (x) around
the equilibrium point. The linearized system Dαx = Jx is locally asymptotically stable if for
each eigenvalue λ of J, |arg(λ)| > απ

2 [21]. The fractional-order Routh–Hurwitz criterion of
system (2) can be used to analyze the local stability of fractional-order nonlinear systems.

Remark 2. Consider the same two-dimensional fractional-order system (5) as in Remark 1, the
characteristic polynomial of matrix A is

P(λ) = λ2 − (a11 + a22)x + a11a22 − a12a21. (18)

The corresponding fractional-order Hurwitz matrix Hα is as follows:

Hα =


sin(απ) −(a11 + a22)sin

(
απ
2
)

0 0
cos(απ) −(a11 + a22)cos

(
απ
2
)

a11a22 − a12a21 0
0 sin(απ) −(a11 + a22)sin

(
απ
2
)

0
0 cos(απ) −(a11 + a22)cos

(
απ
2
)

a11a22 − a12a21

. (19)

Based on the fractional-order Routh–Hurwitz criterion in Theorem 1, we only need to check
two even-order leading principal minors Σp > 0(p = 1, 2) of Hα to determine the stability of
system (5), where

Σ1 = −(a11 + a22)sin
(απ

2

)
,

Σ2 = (a22a11 − a21a12)sin2
(απ

2

)(
(a11 + a22)

2 − 4(a22a11 − a21a12)cos2
(απ

2

))
.

(20)

In this paper, we consider the case of α ∈ (1, 2), so Σ1 > 0, Σ2 > 0 is equivalent to

Σ̃1 = −(a11 + a22) > 0,

Σ̃2 = (a22a11 − a21a12)
(
(a11 + a22)

2 − 4(a22a11 − a21a12)cos2
(απ

2

))
> 0.

(21)
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Compared with the existing method, the fractional-order Routh–Hurwitz criterion involves
smaller numbers of leading principal minors. Each Σp in Equation (20) is simpler than ∆ i in
Equation (10), i = 2p. Our method has less computational complexity than the existing method [3].
Especially for high-dimensional fractional-order systems, the advantage of a low computational
complexity is significant.

The fractional-order Routh–Hurwitz criterion can be used to analyze the robust stabil-
ity of fractional-order uncertain systems.

Consider a fractional-order uncertain system as follows:

Dαx = A(β)x, (22)

where (α, β) = (α, β1, β2, · · · , βi) are uncertain parameters, x = (x1, x2, · · · , xn)T is the
state vector. The initial conditions for system (22) are xi(0) = xi0, x′i(0) = x′i0.

The characteristic polynomial of matrix A(β) is

f (λ; α, β) = λn + a1(α, β)λn−1 + · · ·+ an(α, β). (23)

Since all expressions in our method are explicit ones about the coefficients of the
characteristic polynomial of the system matrix, Theorem 1 is also effective for analyzing
the robust stability of system (22).

System (22) is of certain parameters for given parameter (α, β). We call the parameter
(α, β) a stable parameter if the corresponding system is asymptotically stable. The set of all
stable parameters is called the stable parameter region, denoted by SR(α, β). According to
Theorem 1, the stable parameter region SR(α, β) of system (22) is the set of the solutions of{

Σp > 0, p = 1, 2, · · · , n
}

. The stable parameter region SR(α, β) can be described directly
by the explicit expressions.

4. Illustrative Examples

Example 1. Consider the following fractional-order uncertain system with dimension n = 4:

D1.5x(t) = (β1 A1 + β2 A2)x(t), x(0) = x0, x′(0) = x′0, (24)

where β1 + β2 = 1, β1, β2 ≥ 0, A1 = Γ− εb ∗ c, A2 = Γ + εb ∗ c,

Γ =


−1 1 0 0
0 −2 1 0
0 0 −3 1
−10 −10 −20 −6

, b =


0
0
0
1

, c′ =


3
3
0
0

.

Let β2 = 1− β1, the characteristic polynomial of system matrix is:

f (λ) = λ4 + 12λ3 + 67λ2 + (6β1ε− 3ε + 142)λ + 12β1ε− 6ε + 96, (25)

based on Corollary A3, the solutions of the set of inequalities are shown in Figure 3, where different
color line mean the corresponding inequality. The stable parameter region SR(α, β) of system (24)
is marked. For system (24), since β1 satisfies β1 ∈ [0, 1), which means the set of inequalities has
solutions for all β1 ∈ [0, 1), the maximum value of ε is 7.274.
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Figure 3. The solutions of the set of inequalities.

Remark 3. The above example showed the effectiveness of our method for analyzing fractional-order
systems with n = 4. For a general n, based on the existing methods [3,22], we need to use the idea
of testing ∆ i > 0, i = 1, 2, · · · , 2n to determine the stability of system (22). Furthermore, as a
comparison in this case, using our method, we only need to test whether Σp > 0, p = 1, 2, · · · , n
to analyze the stability. The number of leading principal minors of our method is smaller than that
of existing methods.

Example 2. Consider the following fractional-order hyperchaotic system with n = 4:
Dαx1 = a(x2 − x1)
Dαx2 = cx1 − x1x3 − x2 + ex4
Dαx3 = x4

1 + x2
2 − bx3

Dαx4 = −dx2

, (26)

where a, b, c, d, e are uncertain parameters, α ∈ (1, 2) is an uncertain fractional order and the initial
conditions are xi(0) = xi0, xi

′(0) = xi0
′.

System (26) has only one equilibrium point (0, 0, 0, 0) and the Jacobian matrix J at the
equilibrium point (0, 0, 0, 0) is

J =


−a a 0 0
c −1 0 e
0 0 −b 0
0 −d 0 0

.

The characteristic polynomial of the Jacobian matrix is:

f (λ) = λ4 + (a + b + 1)λ3 + (ab− ac + de + a + b)λ2 + (ab− abc + ade + bde)λ + abde, (27)

based on Corollary A3, the stable parameter region SR(α, β) of system (26) is the set of the solutions
of the four inequalities, where
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a1 = a + b + 1,

a2 = ab− ac + de + a + b,

a3 = ab− abc + ade + bde,

a4 = abde.

(28)

Remark 4. We have proposed a parameter space algorithm for analyzing the robust stability of
fractional-order uncertain systems with α ∈ (0, 2) [5,6], with which the stable parameter region
can be obtained through a visual representation of the parameter space if the systems have fewer
parameters. If the number of uncertain parameters is more than three [23], it is difficult to show
the stable parameter region with a figure. The explicit expressions of the stable parameter region
SR(α, β) by the fractional-order Routh–Hurwitz criterion in Theorem 1 are still valid for the
multi-parameter situation.

5. Conclusions

In this paper, we give a fractional-order Routh-Hurwitz criterion for analyzing the
stability and robust stability of fractional-order linear systems with α ∈ (1, 2). This cri-
terion directly tests complex coefficient polynomials corresponding to fractional-order
systems without the higher-dimensional transformation, so the stable parameter region of
fractional-order uncertain systems can be described with fewer explicit expressions about
the coefficients of the characteristic polynomial. Our method is suitable for some complex
cases such as systems with uncertain order and uncertain other parameters. Due to the
advantage of explicit expressions, one of our future works is finding a way to directly give
multi-parameter results of other complex dynamic problems based on our stability results.
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Appendix A

For system (2), suppose the characteristic polynomial of A is f (λ) = λn + a1λn−1 +
· · ·+ an. Since systems with dimensions n = 2, 3, 4 are often used, based on Theorem 1, we
have the following corollaries. In the following, always set cos2( απ

2
)
= s.

Corollary A1. In the case of n = 2, system (2) is asymptotically stable if and only if

a1 > 0, a2

(
a2

1 − 4a2s
)
> 0 (A1)

Example A1. Consider the following fractional-order uncertain system:

D1.5x(t) = (A0 + β1 A1 + β2 A2)x(t), x(0) = x0, x′(0) = x′0, (A2)

where
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A0 =

[
−1 3
0 −1

]
, A1 =

[
−1 0
1 −1

]
, A2 =

[
−1 1
0 0

]
.

Figure A1. The solutions of the set of inequalities (A4).

The characteristic polynomial of A0 + β1 A1 + β2 A2 is

f (λ) = λ2 + (2β1 + 2 + β2)λ + β2
1 + β2 − β1 + 1, (A3)

Based on Corollary A1, we know that system (A2) is asymptotically stable if and only if

2β1 + 2 + β2 > 0,

(β2
1 + β2 − β1 + 1)

(
(2β1 + 2 + β2)

2 − 2(β2
1 + β2 − β1 + 1)

)
> 0.

(A4)

Parameters that satisfy the set of inequalities (A4) are stable parameters of system (A2). The
solutions of the set of inequalities (A4) are shown in Figure A1, where different color line mean the
corresponding inequality, in which the stable parameter region is marked.

Remark A1. System (A2) has been considered [4,5]. Using existing methods, the robustness bound
of a single parameter can be obtained, or the stable parameter region can be determined by taking
points to test the stability of some corresponding systems. All expressions in our results are explicit
ones about the coefficients of the characteristic polynomial of the system matrix, the relationship
among multiple parameters can be described and the stable parameter region can be solved directly.

Corollary A2. In the case of n = 3, system (2) is asymptotically stable if and only if

a1 > 0,
(

4a1a3 − 4a2
2

)
s + a2

1a2 − a1a3 > 0,

a3 · (64a2
3s3 −

(
16a1a2a3 + 48a2

3

)
s2 + (4a3

1a3 − 4a1a2a3 + 4a3
2 + 12a2

3)s

− a2
1a2

2 + 2a1a2a3 − a2
3) > 0.

(A5)
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Example A2. Consider a fractional-order system with n = 3, where α ∈ (1, 2) and β ∈ (0, 10)
are uncertain parameters. Suppose the characteristic equation of the system matrix is:

λ3 + (β− α)λ2 + 2βλ + 4 = 0. (A6)

Figure A2. The solutions of the set of inequalities (A7).

Based on Corollary A2, we know that the system is asymptotically stable if and only if

β− α > 0,(
16(β− α)− 16β2

)
s + 2(β− α)2β− 4β + 4α > 0,

− 4(1024s3 − (128(β− α)β + 768)s2 + (16(β− α)3 − 32(β− α)β

+ 32β3 + 192)s− 4(β− α)2β2 + 16(β− α)β− 16) > 0.

(A7)

The solutions of the set of inequalities (A7) are shown in Figure A2, where different color line
mean the corresponding inequality, in which the stable parameter region is marked.

Remark A2. For fractional-order systems with uncertain order, the existing methods cannot
describe the relationship between the order parameter and stability directly [6,11,12]. Using our
method, systems with uncertain order and uncertain other parameters can be analyzed easily, and all
results are explicit expressions of the coefficients of the characteristic polynomial of the system matrix.
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Corollary A3. In the case of n = 4, system (2) is asymptotically stable if and only if

a1 > 0,
(

4a1a3 − 4a2
2

)
s + a2

1a2 − a1a3 > 0,(
64a1a2

4 − 128a2a3a4 + 64a3
3

)
s3 − (16a2

1a3a4 + 16a1a2
2a4 + 16a1a2a2

3 − 64a1a2
4

+ 96a2a3a4 − 48a3
3)s

2 + (4a3
1a2a4 − 4a3

1a2
3 + 8a2

1a3a4 + 4a1a2
2a4 + 4a1a2a2

3 − 4a3
2a3

− 16a1a2
4 + 16a2a3a4 − 12a3

3)s− a3
1a2a4 + a2

1a2
2a3 + a2

1a3a42a1a2a2
3 + a3

3 > 0,

a4 · (4096a3
4s6 + (−1024a1a3a2

4 − 8192a3
4)s

5 + (256a2
1a2a2

4 + 1536a1a3a2
4 − 512a2

2a2
4

+ 256a2a2
3a4 + 6144a3

4)s
4 + (−64a4

1a2
4 − 64a2

1a2a2
4 − 64a1a2

2a3a4 − 1024a1a3a2
4

+ 512a2
2a2

4 − 64a2a2
3a4 − 64a4

3 − 2048a3
4)s

3 + (48a4
1a2

4 + 16a3
1a2a3a4 − 64a2

1a2a2
4

− 16a2
1a2

3a4 − 32a1a2
2a3a4 + 16a1a2a3

3 + 16a4
2a4 + 384a1a3a2

4 − 128a2
2a2

4 − 64a2a2
3a4

+ 48a4
3 + 256a3

4)s
2 + (−12a4

1a2
4 + 4a3

1a2a3a4 − 4a3
1a3

3 − 4a2
1a3

2a4 + 16a2
1a2a2

4 + 8a2
1a2

3a4

+ 16a1a2
2a3a4 + 4a1a2a3

3 − 4a3
2a2

3 − 64a1a3a2
4 + 16a2a2

3a4 − 12a4
3)s + a4

1a2
4 − 2a3

1a2a3a4

+ a2
1a2

2a2
3 + 2a2

1a2
3a4 − 2a1a2a3

3 + a4
3) > 0.

(A8)
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