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Abstract: Fuzzy dispersion entropy (FuzzDE) is a very recently proposed non-linear dynamical
indicator, which combines the advantages of both dispersion entropy (DE) and fuzzy entropy (FuzzEn)
to detect dynamic changes in a time series. However, FuzzDE only reflects the information of the
original signal and is not very sensitive to dynamic changes. To address these drawbacks, we
introduce fractional order calculation on the basis of FuzzDE, propose FuzzDEα, and use it as a
feature for the signal analysis and fault diagnosis of bearings. In addition, we also introduce other
fractional order entropies, including fractional order DE (DEα), fractional order permutation entropy
(PEα) and fractional order fluctuation-based DE (FDEα), and propose a mixed features extraction
diagnosis method. Both simulated as well as real-world experimental results demonstrate that the
FuzzDEα at different fractional orders is more sensitive to changes in the dynamics of the time series,
and the proposed mixed features bearing fault diagnosis method achieves 100% recognition rate at
just triple features, among which, the mixed feature combinations with the highest recognition rates
all have FuzzDEα, and FuzzDEα also appears most frequently.

Keywords: fuzzy dispersion entropy; fractional order; feature extraction; bearing fault diagnosis

1. Introduction

Entropy, as a measure of time series disorder and predictability, can evaluate the
complexity of the signal [1,2]. The greater the entropy value, the higher the complexity
of signal [3,4]. In recently years, entropy has been widely applied in mechanical fault
diagnosis and has shown excellent performance [5–7].

Dispersion entropy (DE) divides time series into integer series by introducing different
mapping criteria for the first time [8], which enables it to capture more amplitude information
than permutation entropy (PE) and sample entropy (SE) [9,10]. Some scholars have made
every attempt to study the improved version of DE to further enhance its performance as a
complexity index. Fluctuation-based DE (FDE) and reverse DE (RDE) have also been proposed
by introducing fluctuation information and distance information between time series and
white noise [11–13]. In 2021, by combining the fluctuation information of FDE and the distance
information of RDE [14], the reverse DE (FRDE) based on fluctuation is proposed, which has
better stability and discrimination ability for different types of time series.

Fuzzy dispersion entropy (FuzzDE) is a new method proposed in 2021 [15], which
combines the advantages of fuzzy entropy (FuzzEn) as well as DE by replacing the round
mapping function of DE with fuzzy membership function in FuzzEn, by which the dynamic
changes of time series can be retained to a greater extent and the problem of missing useful
information brought about by round mapping function can be alleviated. Nevertheless, the
FuzzDE still suffers from the same problem of single feature as common entropies, which
cannot characterize the time series from multiple fractional orders.

To address the problem of single fractional order, in recent years, many scholars have
conducted research on the application of fractional order calculation to entropy [16–18]. In
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2019, the fractional fuzzy entropy algorithm was proposed and used for physiological and
biomedical analysis of EEG signals [19]. In 2020, generalized refined composite multiscale
fluctuation-based fractional dispersion entropy (GRCMFDEα) combined refined composite
multiscale dispersion entropy (RCMDE) as well as fractional order calculation and was
applied for bearing signal fault diagnosis with good results [20]. In 2022, fractional order
calculation was introduced to slope entropy to effectively diagnose the location and severity
of faults in rolling bearings [21].

Inspired by these works, we introduce fractional order calculation into FuzzDE in
this paper, and fractional order FuzzDE (FuzzDEα) is proposed. Compared with FuzzDE,
FuzzDEα further considers fractional order information and measures the dynamic changes
of time series from multiple fractional orders. In addition, we combine FuzzDEα with other
fractional order entropies and propose a mixed feature bearing fault diagnosis method.
Simulated as well as real-world experiments demonstrate the sensitivity of FuzzDEα to the
dynamic changes of time series and the excellent performance on bearing fault diagnosis.

The rest of this paper is organized as follows: Section 2 presents the theoretical steps of
FuzzDEα and discusses the parameter settings; Section 3 experiments on the effectiveness of
fractional order on FuzzDE through simulated signals; Section 4 validates the bearing fault
diagnosis capability of FuzzDEα through real-world bearing signals; Section 5 concludes
the whole paper.

2. Fractional Order Fuzzy Dispersion Entropy
2.1. FuzzDEα

FuzzDEα is the introduction of the concept of fractional order calculation on the basis
of FuzzDE, for a given time series X = {x1, x2, · · · , xN} of length N, the specific steps for
FuzzDEα can be expressed as follows:

Step 1: By applying the normal cumulative distribution function (NCDF) to the original
time series X, Y = {y1, y2, · · · , yN} can be derived with the interval [−1, 1], where the
NCDF can be expressed as follows:

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t−γ)2

2σ2 dt (i = 1, 2, · · · , N)

where σ and γ represent the standard deviation and mean of X, respectively.
Step 2: Normalize the sequence Y by converting each element in Y to the interval [0, 1]:

si =
yi

Max−Min
(i = 1, 2, · · · , N)

in which S = {s1, s2, · · · , sN} is the normalized sequence, Max and Min are the maximum
and minimum values of the sequence Y, respectively.

Step 3: Introduce the class number c to convert the sequence S into a new sequence
Zc [15]:

zc
i = cyi + 0.5 (i = 1, 2, · · · , N)

where each element zc
i (i = 1, 2, · · · , N) in Zc is in the interval [0.5, c + 0.5].

Step 4: Introduce the embedding dimension m and time delay τ, reconstruct the
sequence Zc of Step 3 into N − (m + 1)τ subsequences Zm,c

j :

Zm,c
j =

{
zc

j , zc
j+(1)τ , · · · , zc

j+(m−1)τ

}
(j = 1, 2, · · · , N − (m + 1)τ) (1)

where m determines the number of elements contained in each subsequence Zm,c
j , and τ

determines the interval between two adjacent elements in the sequence Zc.
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Step 5: Introduce the fuzzy membership function on the sequence Zc as follows:

µM1(z
c
i ) =


0 zc

i > 2
2− zc

i 1 ≤ zc
i ≤ 2

1 zc
i < 1

µMk

(
zc

i
)
=


0 zc

i > k + 1
k + 1− zc

i k ≤ zc
i ≤ k + 1

zc
i − k + 1 k− 1 ≤ zc

i ≤ k
0 zc

i < k− 1

(k = 2, 3, · · · , c− 1 )

µMc(z
c
i ) =


1 zc

i > c
zc

i − c + 1 c− 1 ≤ zc
i ≤ c

0 zc
i < c− 1

where k stands for the kth class, and Mk is the fuzzy membership function, µMk

(
zc

i
)

represents the degree of membership of zc
i for the kth class. By the fuzzy membership

function, each zc
i will have 1 or 2 different degrees, and the value range is an integer

between [1, c], which is the same as the rounding function in the DE [8], but reduces the
information loss in the rounding function. Figure 1 shows the fuzzy membership function.
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Step 6: After the processing of the sequence Zc in Step 5, each subsequence Zm,c
j can

be mapped into a number of new sequences consisting of integers, and these sequences can
be represented by the dispersion patterns πv0v1···vm−1 , where v0, v1, vm−1 correspond to the
integer values of zc

j , zc
j+(1)τ, and zc

j+(m−1)τ in Equation (1) after fuzzy processing, respectively.

Step 7: Calculate the degree of membership of each Zm,c
j with respect to the dispersion

patterns πv0v1···vm−1 and denote as µπv0v1 ···vm−1
:

µπv0v1 ···vm−1
(zm,c

j ) =
m−1

∏
i=0

µMvi
(zc

j+(i)τ)

in this manner, each subsequence Zm,c
j will correspond to multiple dispersion patterns

accompanied by different membership degrees. For an example, given a subsequence
Z2,3

1 = [1.149, 2.306], all the member ship degrees can be organized as follows:
µM1

(
z3

1
)
= 0.851

µM2

(
z3

1
)
= 0.149

µM2

(
z3

2
)
= 0.694

µM3

(
z3

2
)
= 0.306

→


µπ12(Z2,3

1 ) = µM1(z
3
1)× µM2(z

3
2) = 0.5906

µπ13(Z2,3
1 ) = µM1(z

3
1)× µM3(z

3
2) = 0.2604

µπ22(Z2,3
1 ) = µM2(z

3
1)× µM2(z

3
2) = 0.1034

µπ23(Z2,3
1 ) = µM2(z

3
1)× µM3(z

3
2) = 0.0456
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Step 8: The frequency of each dispersion pattern p
(
πv0,v1,...,vm−1

)
can be calculated:

p
(
πv0,v1,...,vm−1

)
=

∑
N−(m−1)d
j=1 µπv0v1 ···vm−1

(zm,c
j )

N − (m− 1)τ

Step 9: For writing convenience, we define p
(
πv0,v1,...,vm−1

)
as Pj.Then the fractional

order calculation is applied, and the FuzzDEα can be expressed as [20]:

FuzzDEα(X, m, c, τ) = ∑
j

Pj

{
−

P−α
j

Γ(α + 1)
[
ln Pj + ψ(1)− ψ(1− α)

]}

where α is the order of fractional derivative. Γ(·) and ψ(·) denote the gamma function and
digamma function respectively.

Step 10: The normalized form NFuzzDEα of FuzzDEα can be computed as:

NFuzzDEα(X, m, c, τ) =
FuzzDEα(X, m, c, τ)

ln(cm)

2.2. Parameter Selection

In this subsection, we mainly focus on the discussion of the parameter selection for
FuzzDEα. For the parameter comparison experiments, 50 separate groups of pink noises,
white noises and blue noises are selected [20], each with 2048 sample points. Where white
noise consists of a homogeneous mixture of signals of different frequencies, with a variety
of frequencies in a haphazard manner. Pink noise enhances the sound intensity of low
frequency signals and weakens the intensity of high frequency signals compared to white
noise, while blue noise, in contrast, enhances the sound intensity of the high frequency
signal on top of the white noise. Using the control variables method, the effects of three
FuzzDEα parameters, namely the number of classes c, the embedding dimension m and
the mapping method, on the mean as well as the standard deviation of the selected noise
signals are explored as shown in Figures 2–4, respectively.

To begin with, we conduct comparative experiments on the effects of c, and the interval
is set to an integer between 2 and 5 (m = 3, mapping as NCDF), Figure 2 shows the means
and standard deviations of different class number c at different fractional orders.

Comparing the four images, it can be seen that for the average of the entropy values of
the three noises, the trend when m equals 3 and c equals 2 is different from the other three
in that it has a slope from large to small, while the others are from small to large. However,
the general trend is that it increases with the increase of α. For the standard deviation of the
entropy values of the three noise entropy values, the standard deviation of the pink noise is
larger, and the others are smaller, and as α increases, the value of the standard deviation also
increases, which is especially evident in the pink noise. In summary, changes in c have an
impact on the magnitude of entropy value, but the overall trend in entropy value and the
ability to discriminate between different noises does not change as the fractional order changes.

We next discuss the effect of m, with the interval set to an integer between 3 and 6 (c = 3,
mapping as NCDF), Figure 3 is means and standard deviations of different embedding
dimensions m at different fractional orders.

Observing the four subplots, for the average of the FuzzDEα values of the three noises,
all four cases of taking values show a similar upward trend. For the standard deviation of
the entropy values of the three noises, there is only a difference between the exact values
and the overall trend is almost the same. Thus, it is clear that the effect of m has a greater
impact on the magnitude of the entropy value compared to c, but the overall trend and the
ability to distinguish between different noises does not change.
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Finally, we discuss the effect of the mapping method, which is also an important
influencing factor, so we choose different mapping methods for comparison. Figure 4
shows the means and standard deviations of different mapping approaches at different
fractional orders, among which the mapping methods include linear mapping (LM), normal
cumulative distribution function (NCDF), tangent sigmoid (TANSIG), logarithm sigmoid
(LOGSIG), and sorting method (SORT) respectively (c = 3, m = 3) [8–11].

According to Figure 4, the overall trends of the five mapping methods are very similar,
but when using the LM mapping method, the standard deviation of the various noise
entropy values is significantly larger, accompanied by the condition that the various noise
entropy values overlap each other, which indicates that when the selected mapping method
is LM, the stability of FuzzDEα after mapping is relatively weak, and it is difficult to
distinguish the three types of noise. While the standard deviation of other mapping
methods is relatively small. Therefore, it is concluded that NCDF, LOGISG, TANSIG or
SORT are the recommended mapping approaches.
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In conclusion, m and c have little effect on the experiment, but a large m is more likely
to lead to an increase in FuzzDEα values compared to c. Among all mapping methods, only
LM is not stable. Therefore, we recommend that m be set to 3–6, c to 2–5 and the mapping
method be NCDF, LOGISG, TANSIG or SORT. In the later simulations and the real-world
signal experiments, we choose m = 3, c = 4 and the mapping method to be NCDF.

3. Experiments on Simulated Signals

In this section, we focus on demonstrating the usefulness of fractional order calcula-
tions on FuzzDE by simulated signals, mainly including noise signals, chirp signal and
MIX signal.

3.1. Noise Signals Experiment

In order to verify the effectiveness of fractional order calculation on FuzzDE, pink noise,
white noise and blue noise are selected for comparative experiments, and the fractional
orders change from −0.5 to 0.5 with interval 0.1. 100 independent pink noises, white noises
and blue noises are created to prove the discrimination ability of fractional order. The
means and standard deviations of these 100 FuzzDEα. values are calculated respectively as
displayed in Figure 5.
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As shown in Figure 5, the FuzzDEα value of the three kinds of noise signals has a
similar upward trend with the increase of fractional order; when the fractional order is less
than −0.1, the mean characteristics of the three noise signals are mixed together; when the
fractional order is greater than−0.1, the difference of mean characteristics of the three noise
signals gradually increases, and the FuzzDEα value of white noise is the largest, with the
smallest standard deviation and the most stable FuzzDEα value. Experiments show that as
the fractional order increases (when the fractional order is greater than −0.1), FuzzDEα has
a better distinguishing effect on pink noise, white noise and blue noise.

3.2. Chirp Signal Experiment

Chirp signal is a typical unstable signal, and frequency of chirp signal will change over
time [22,23]. In order to better show the feature extraction effect of FuzzDEα at different
fractional orders, chirp signal is used for simulated experiments. Chirp signal can be
expressed as:

x(t) = e(j2π( f0t+ 1
2 kt2))

where f0 is the initiation frequency and is taken as 20 Hz, k is the modulation frequency
and is taken as 3, we can understand that the frequency increases from 20 Hz to 80 Hz. The
chirp signal lasts 20 s with a sampling frequency of 1000 Hz (20,000 sampling points).
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We take the length of the sliding window as 1000 sampling points, and slide backward
from the first sampling point with 90% overlap to obtain 190 samples. FuzzDEα for chirp
signal of each sample are calculated. Chirp signal (top) and the corresponding different
entropy curves (bottom) are shown in Figure 6.
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It can be observed from Figure 6 that the waveform of the chirp signal gradually
becomes denser as the number of sampling points increases, and the higher the fractional
order, the larger the FuzzDEα value as well as the rate of increase of the curve. In a word,
the experimental results show that the higher the fractional order of FuzzDEα, the better
performance of FuzzDEα in chirp signal feature extraction.

3.3. MIX Signal Experiment

In order to study the influence for fractional order of FuzzDEα on the effect of fea-
ture extraction, we select MIX signal for simulated experiments. MIX signal describes a
stochastic sequence that progressively turns into a periodic time series [24,25], which can
be expressed as: {

MIX(t) = (1− Z)× X(t) + Z×Y(t)
X(t) =

√
2sin 2πt

12

where X(t) is a periodic signal, the value of Y(t) is uniformly distributed from −
√

3 to
√

3,
and Z is a random number taking 1 or 0 with probabilities P and 1 − P, respectively, and
decreasing linearly from 0.99 at the beginning to 0.01 at the end. The sampling frequency
of mix signal is 1000 Hz, with a total of 20 s. We take the length of sliding window as
1000 sampling points, and slide backward from the first sampling point with 90% overlap
to obtain 190 samples. MIX signal (top) and the corresponding different entropy curves
(bottom) are shown in Figure 7.

As can be seen from Figure 7, the MIX signal changes from dense to sparse as the
number of sampling points increases; the value of FuzzDEα decreases as the number of
sampling points increases; the higher the fractional order, the larger the FuzzDEα value and
the rate of decline of the curve also increases. Therefore, we can conclude that an increase
in fractional order can better reflect the complexity of the MIX signal.
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4. Experiments on Bearing Fault Diagnosis

In this section, we focus on the bearing fault diagnosis, and achieve early prevention
in order to avoid economic losses and even personal safety due to different bearing faults.
Since entropy can be used to detect changes in the dynamics of weak time series, the higher
the entropy value, the more unstable the time series and vice versa. At the same fault
size, different faults have similar amplitude-frequency features, but their bearing fault
complexity and dynamics changes are different, and these changes can be reflected in
successive subsequences, for which entropy features can be extracted for fault diagnosis of
the bearing signals. The experiments in this section are mainly to verify the effectiveness
of FuzzDEα for bearing fault diagnosis, and the proposed mixed features bearing fault
diagnosis method experimental flow chart is shown in Figure 8, with the following steps:

Step 1: Input the real-world bearing signals of ten different classes.
Step 2: Segment the input signals into M samples, each with N sample points, by

which way, we receive a total of M samples for each class of signal.
Step 3: For each sample, calculate their FuzzDEα values at different fractional orders.

For the purpose of contrast, we also introduce fractional order DE (DEα), fractional order
PE (PEα) and fractional order FDE (FDEα) for comparison, with fractional orders of −0.2,
−0.1, 0, 0.1, and 0.2 respectively.

Step 4: Mix the 20 features obtained in Step 3 and set the number of selected features
to K (initialized to 2), by which way we can acquire a total of CK

20 combinations.
Step 5: Calculate the recognition rate of all CK

20 combinations and select the combination
with the highest recognition rate.

Step 6: Determine the direction of the process by the number of features selected, and
if K < 5, skip to Step 7; otherwise, output the combination of 5 features with the highest
recognition rate and the corresponding recognition rate, as a way to avoid the increased
computational consumption when the recognition rate has reached the threshold.

Step 7: Determine the direction of the process by the highest recognition rate among
K feature combinations. If the recognition rate reaches 100%, then output these feature
combinations; otherwise, let K = K + 1 and back to Step 5.
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4.1. Analysis of Experiment Data

This section employs the bearing signal obtained from Case Western Reserve Univer-
sity (CWRU) [26] to verify the effectiveness of the proposed FuzzDEα. The bearing under
test is a deep groove ball bearing type SKF6205 (CWRU, Cleveland, America) with a motor
speed set to 1730 r/min and a load of 3 hp. The original bearing signal is acquired by
collecting the acceleration sensor installed at the driving end, and the sampling frequency
is 12 kHz. Depending on the states of the bearing and the diameters of the failure, there
are 10 different types of bearing signals marked NORM, IR1, BE1, OR1, IR2, BE2, OR2, IR3,
BE3 and OR3, all damage is caused by electro discharge machining as a single point of
damage. The details of the selected bearing signals are shown in Table 1. For each class of
bearing signal, the length of sample points is 120,000, and Figure 9 shows the time domain
distribution of ten classes of bearing signals.

Table 1. Details of the selected bearing signals.

Class Label Fault Size (mm) Selected Data

Normal NORM 0 100_normal_3
Inner race fault IR1 0.1778 108_IR007_3

Balling element fault BE1 0.1778 121_B007_3
Outer race fault OR1 0.1778 133_OR007@6_3
Inner race fault IR2 0.3556 172_IR014_3

Balling element fault BE2 0.3556 188_B014_3
Outer race fault OR2 0.3556 200_OR014@6_3
Inner race fault IR3 0.5334 212_IR021_3

Balling element fault BE3 0.5334 225_B021_3
Outer race fault OR3 0.5334 237_OR021@6_3



Fractal Fract. 2022, 6, 544 11 of 17Fractal Fract. 2022, 6, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 9. Time domain distribution of ten classes of bearing signals. 

4.2. Single Feature Extraction and Classification 

The ten classes of bearing signals are used as the object of the experiment for single 

feature extraction. There are 50 samples for each type of bearing signal, and each sample 

contains 2048 sample points. While calculating the FuzzDEα of the bearing signal, the 

DEα, PEα, and FDEα are calculated respectively as comparative analysis. The parameter 

settings are as follows: embedding dimension m is 3, class number c is 4, and the range of 

fractal order α is from −0.2 to 0.2 with interval 0.1. For other fractional entropies, the pa-

rameter settings are the same as FuzzDEα. The Distribution of fractional entropy features 

of different classes of bearing signals are exhibited in Figure 10. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Time domain distribution of ten classes of bearing signals.

4.2. Single Feature Extraction and Classification

The ten classes of bearing signals are used as the object of the experiment for single
feature extraction. There are 50 samples for each type of bearing signal, and each sample
contains 2048 sample points. While calculating the FuzzDEα of the bearing signal, the
DEα, PEα, and FDEα are calculated respectively as comparative analysis. The parameter
settings are as follows: embedding dimension m is 3, class number c is 4, and the range
of fractal order α is from −0.2 to 0.2 with interval 0.1. For other fractional entropies, the
parameter settings are the same as FuzzDEα. The Distribution of fractional entropy features
of different classes of bearing signals are exhibited in Figure 10.

From Figure 10, for the four types of fractional entropies, it is difficult to completely
distinguish all ten types of bearing signals under different fractional order; for FuzzDEα,
DEα,, and FDEα, there is always some standard deviation of fractional entropy values close
to each other for bearing signals; in addition, the standard deviation of fractional entropy
values are significantly higher than that of PEα under different fractional order, for PEα, the
standard deviations of fractional entropy values for ten classes of bearing signals are all very
close, which is difficult to distinguish. Furthermore, we employ KNN to classify the ten
classes of bearing signals, in which there are 50 samples for each type of bearing signal, the
first 25 samples are training samples, and the rest samples are test samples. Table 2 illustrates
the classification recognition rate of different entropies at various fractional orders.

Table 2. Classification recognition rate of different entropies at various fractional orders.

Entropy
Recognition Rates (%)

α=−0.2 α=−0.1 α=0 α=0.1 α=0.2

FuzzDEα 82.8 81.6 74 68.4 67.6
DEα 76.4 79.6 76.4 71.2 66.0
PEα 59.6 56.8 58.4 56.8 54.0

FDEα 79.2 82.8 78.4 77.6 80.4
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It can be seen from Table 2, for four classes of fractional entropies, the recognition
rates of bearing signals are all lower than 85% under different fractional orders, and the
recognition effect is poor. Therefore, it is difficult to distinguish ten classes of signals with
one feature.

4.3. Double Features Extraction and Classification

In order to improve recognition performance and demonstrate the effectiveness of the
mixed feature extraction method proposed in this paper, we choose different entropy-based
feature extraction methods, extract any two fractional orders with the same entropy and
choose the best combinations of fractional orders. Since fractional order α has 5 values, a
total of C2

5 combinations can be obtained by each entropy-based feature extraction method.
In addition, we use the mixed feature extraction method proposed in this paper to calculate
the highest recognition rate, with a total of C2

20 combinations. Table 3 demonstrate the
highest classification recognition rates for each feature extraction method when double
features are selected.



Fractal Fract. 2022, 6, 544 13 of 17

Table 3. Highest classification recognition rates for each feature extraction method (double features).

Feature Extraction Methods Combinations Recognition Rate (%)

FuzzDEα-based FuzzDEα=0 & FuzzDEα=0.2 91.6
DEα-based DEα=0 & DEα=0.2 88.4
PEα-based PEα=−0.2 & PEα=0.1 58.4

FDEα-based FDEα=−0.1 & FDEα=0 90.0

Proposed method FuzzDEα=0.1 & FDEα=0.1
(1 of 3) 99.6

In Table 3, FuzzDEα=0 & FuzzDEα=0.2 represents FuzzDEα when fractional order
α is 0 and 0.2 respectively, other combinations of entropy are the same for FuzzDEα=0 &
FuzzDEα=0.2. As can be observed in Table 3, FuzzDEα-based feature extraction method has
the best classification effect among the four entropy-based feature extraction methods, but
the highest recognition rate is only 91.6%, which cannot fully recognize the bearing signals.
Nevertheless, the mixed feature extraction method proposed in this paper can reach a
maximum classification rate of 99.6%, significantly higher than the 91.6% of FuzzDEα-based
feature extraction method, and there are three combinations in total, namely FuzzDEα=0.1 &
FDEα=0.1, FuzzDEα=−0.1 & FDEα=0.1 and FuzzDEα=0.1 & FDEα=−0.1. It is noteworthy that
when reaching the highest recognition rate, the three combinations all contain FuzzDEα,
which further proves the importance of FuzzDEα in bearing fault diagnosis recognition.
Figure 11 shows the distribution of the highest classification recognition rate of mixed
double features.
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As can be seen from Figure 11, under the mixed double features, the distribution of
each type of bearing signal is relatively concentrated, and the overlapping part is very
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small. However, there are few samples that are not completely distinguishable, for example,
a small percentage of IR1 and IR2 samples are mixed. In summary, compared with the
entropy-based feature extraction methods, the mixed feature extraction method proposed in
this paper further improves the recognition rate and can better distinguish the ten classes of
bearing signals. To sum up, mixed double features extraction method can well distinguish
the ten classes of bearing signals.

4.4. Triple Features Extraction and Classification

In order to further improve the recognition rate of bearing fault diagnosis, we set the
number of selected features H to 3. The rest of the steps are the same as Section 4.3, and
Table 4 shows the highest classification recognition rates for each feature extraction method
when triple features are selected.

Table 4. Highest classification recognition rates for each feature extraction method (triple features).

Feature Extraction
Methods Combinations Recognition Rate

(%)

FuzzDEα-based FuzzDEα=−0.1 & FuzzDEα=0 & FuzzDEα=0.2 92
DEα-based DEα=−0.1 & DEα=0 & DEα=0.2 92
PEα-based PEα=−0.2 & PEα=0 & PEα=0.1 58

FDEα-based FDEα=−0.2 & FDEα=−0.1 & FDEα=0 91.6

Proposed method FuzzDEα=−0.1 & PEα=−0.2 & FuzzDEα=0.1
(1 of 15) 100

From Table 4, it can be seen that as the number of features increases, the recognition
rates of the feature extraction methods based on FuzzDEα, DEα and FDEα all improved,
but the fault diagnosis performance is still much less than that of the mixed double features
in Table 3, which indicates that different fractional order features with the same entropy
still have certain limitations. Furthermore, we can also observe from Table 4 that the
mixed feature extraction method proposed in this paper achieves a recognition rate of
100% for 15 combinations when triple features are selected, further demonstrating the
excellent performance of the mixed feature extraction method for bearing fault diagnosis.
To visualize the specific details of these 15 combinations, Table 5 shows the number of
occurrences of each feature in the combinations with 100% recognition rate.

Table 5. Number of occurrences of each feature in the combination of the mixed triple features with
100% recognition rate.

Feature Appear Times

FuzzDEα=−0.1 11
FuzzDEα=−0.2 4

PEα=−0.2 2
PEα=−0.1 3

PEα=0 3
PEα=0.1 4
PEα=0.2 3

FDEα=−0.1 6
FDEα=0 5

FDEα=0.1 4

It is clear from Table 5 that FuzzDEα=−0.1 has the highest number of occurrences at
11, far more than any other features, which proves the efficiency of FuzzDEα in bearing
fault diagnosis. In addition, among the feature combinations with 100% recognition rate,
only DEα is absent, which is due to the fact that FuzzDE is an improvement on DE, further
validating the conclusion that FuzzDE is more differentiable than DE. We can also find that
although the PEα has a low recognition rate on bearing fault diagnosis, it can accurately
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classify some samples that cannot be correctly classified by other entropies. Hence, we
can also conclude that different entropies can distinguish different signal classes, and
following the mixed feature extraction method proposed in this paper, while selecting
mixed fractional order entropies simultaneously can effectively improve the performance
of bearing fault diagnosis.

Figure 12 depicts the distribution of the triple features at 100% recognition rate with
the combination of FuzzDEα=−0.1, PEα=−0.2 and FDEα=0.1. Compared to Figure 11, we can
intuitively find that Figure 12 can perfectly distinguish between IR1 as well as IR2, which
are two different sizes of the same fault class, and it is obvious that the mixed double
features distribution cannot achieve such results.
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5. Conclusions

In this paper, a new non-linear dynamic parameter is proposed, and a mixed features
extraction method is put forward based on this new parameter. The main conclusions are
as follows.

1. Fractional order calculation is introduced on the basis of fuzzy dispersion entropy
(FuzzDE), and a new entropy called fractional order FDE (FuzzDEα) is proposed. Sim-
ulated experiments have shown that compared with FuzzDE, FuzzDEα can provide
more features of greater sensitivity to changes in the dynamics of the time series.

2. FuzzDEα is combined with DEα, PEα as well as FDEα to present a mixed features
extraction method. For ten classes of bearing signals, the proposed mixed features
fault diagnosis method achieves 100% recognition rate at only triple features.

3. Regardless of how many features are selected, the FuzzDEα proposed in this paper
is the most effective in fault diagnosis compared to the other three fractional order
entropies, where FuzzDEα=−0.1 appears a total of 11 times in the combination of the
triple features with the recognition rate of 100%
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Nomenclature

FuzzDE Fuzzy Dispersion Entropy
FuzzDEα Fractional order fuzzy dispersion entropy
PE Permutation entropy
PEα Fractional order permutation entropy
DE Dispersion entropy
DEα Fractional order dispersion entropy
FDE Fluctuation-based dispersion entropy
FDEα Fractional order fluctuation-based dispersion entropy
NCDF Normal cumulative distribution function
SE Sample entropy
FRDE Fluctuation-based reverse dispersion entropy
RDE Reverse dispersion entropy
FuzzEn Fuzzy entropy
RCMDE Refined composite multiscale dispersion entropy
GRCMFDEα Generalized refined composite multiscale fluctuation-

based fractional dispersion entropy
LM Linear mapping
TANSIG Tangent sigmoid
LOGSIG Logarithm sigmoid
SORT Sorting method
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