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Abstract: A fractional-order coronavirus disease of 2019 (COVID-19) model is constructed of five
compartments in the Caputo-Fabrizio sense. The main aim of the paper is to study the effects
of successive optimal control policies in different susceptible classes; a susceptible unaware class
where awareness control is observed, a susceptible aware class where vaccine control is observed,
and a susceptible vaccinated class where optimal vaccination control is observed. These control
policies are considered awareness and actions toward vaccination and non-pharmaceuticals to control
infection. Equilibrium points are calculated, which subsequently leads to the computation of the
basic reproduction ratio. The existence and uniqueness properties of the model are established.
The optimal control problem is constructed and subsequently analyzed. Numerical simulations are
carried out and the significance of the fractional-order from the biological point of view is established.
The results showed that applying various control functions will lead to a decrease in the infected
population, and it is evident that introducing the three control measures together causes a drastic
decrease in the infected population.

Keywords: mathematical model; fractional-order; Caputo-Fabrizio; optimal control; existence and
uniqueness; basic reproduction ratio

1. Introduction

Toward the end of December 2019, a deadly disease called COVID-19 resurfaced
around the world. It destabilized many sectors, including transport, economies, education
systems, sports, entertainment and many others. Many people die from the pandemic
while many have been infected and battling with their lives. The behavior spread patterns
and much other biological information about the COVID-19 outbreak is still not completely
known. Many research works have been dedicated to finding new and adequate vaccines
for the disease. Many items, such as ventilators, have been used to help infected individ-
uals in many countries. The main target is to reduce the number of infected individuals
and subsequently deaths due to the pandemic, which is why many countries adopt non-
pharmaceutical measures, such as lockdowns, airport closures, use of sanitizers, and social
distancing. Many studies from theoretical to practical points of view about the pandemic
have been carried out [1–12].

While 75% of infected individuals recover without falling seriously sick, most of the
infected individuals recover naturally [13]. Throat infection, chest pain, runny nose or
nasal congestion, loss of smell and taste, vomiting, diarrhea and nausea are some of the
symptoms of COVID-19. In most cases, these symptoms appear slowly. Older age suffers
major complications compared to younger age. In general, an infected person takes two
days to two weeks to show symptoms of the disease [14]. Mostly mild cases take two weeks
to recover, whereas critical cases take three to six weeks to recover [15].

Now that the COVID-19 vaccine is available and the non-pharmaceutical interventions
to prevent the spread of the disease such as quarantine, social distancing, self-isolation,

Fractal Fract. 2022, 6, 533. https://doi.org/10.3390/fractalfract6100533 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6100533
https://doi.org/10.3390/fractalfract6100533
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4263-8662
https://orcid.org/0000-0003-1615-6766
https://doi.org/10.3390/fractalfract6100533
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6100533?type=check_update&version=2


Fractal Fract. 2022, 6, 533 2 of 17

and use of personal protective equipment (such as face mask, hand globes, overall gown,
etc.) regular hand washing using sanitizer, avoid having contact with the person showing
the symptoms, reporting any suspected case, and compliance with orientation exercises are
also available, there is need for the increase of awareness level among people. This will
help in total compliance and the subsequent eradication of the disease.

Since the inception of the pandemic in 2019, it has caused millions of infections and
thousands of deaths. It also caused a predicament in the socio-economic growth of the entire
world. Hence, there is an urgent need to clearly understand the transmission dynamics of
the disease. This leads to the need to develop mathematical models that study the dynamics
of the disease and the impact of control measures on curtailing the spread of the disease.

Because of the hereditary properties and provision of a good description of the mem-
ory, fractional order derivatives and fractional integrals play an important role in the study
of mathematical modeling. This is why many researchers about real-life phenomena use
fractional order differential equations [16–19]. The Caputo-Fabrizio (CF) fractional deriva-
tive fractional-order derivative was developed in 2015. This fractional-order derivative is
based on an exponential kernel and the details of the operator can be found in [20]. Many
problems used the Caputo-Fabrizio derivative to model problems in various fields [21–23],
also used in modeling the COVID-19 pandemic in [24–27]. However, the Caputo-Fabrizio
fractional derivative gives less noise than the Riemann–Liouville derivative [28]. Hence, in
this research, the Caputo-Fabrizio fractional derivative was chosen.

Epidemiology, aeronautic engineering, economics and finance, robotics and many
other fields use optimal control as an effective mathematical tool to optimize the control
problems that arise in the fields [29].

Most mathematical models of COVID-19 that studied control in the literature did not
consider time-dependent control strategies, which are the most realistic approaches [30–38].
However, very little research in this direction does exist, such as in [39–44] and this type
of strategy can be used to suggest or design epidemic control programs [16–23,28,45,46].
Many studies consider different parameters such as geolocation in different countries, as
in [26] for India, [47] Japan and [48] for Saudi Arabia. The global and local dynamics of
COVID-19 may be completely characterized by mathematical models operating under
fractional order derivatives. In addition, models of this type that make use of fractional
calculus are superior in terms of their ability to precisely and accurately represent observed
occurrences [49–57]. The researchers utilize models to track the evolution epidemic over a
period of time, such as SEIR [58], which considers four compartments: Susceptible Exposed,
Infected and Recovered.

In [59–61], researchers developed models and applied optimal controls for vaccination
or restriction methods. In [62], we conclude that, regardless of control measures and
vaccination process, COVID-19 is affected by environmental and seasonal factors.

The main contribution of this paper is to study the effect of successive optimal con-
trol policies in different susceptible classes; susceptible unaware class where awareness
control is observed, susceptible aware class where vaccine control is observed and sus-
ceptible vaccinated class where optimal vaccination control is observed. Briefly, using
awareness with vaccination in modeling and optimally controlling the COVID-19 epidemic
has been investigated.

The paper is organized as follows: Introduction is given in chapter one, formulation
of the model is given in chapter two, analysis of the model is given in chapter three,
construction and analysis of optimal control problem is given in chapter four, numerical
simulation is given in chapter five and finally, the conclusion is given in chapter six.

2. Formulation of the Model

The model consists of a system of fractional order differential equations in the Caputo-
Fabrizio sense with five compartments. The compartments are: U_s(t), A_s(t), V_s(t), I(t)
and R(t) stands for susceptible unaware compartment, susceptible aware compartment,
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susceptible vaccinated compartment, infected compartment, and recovered compartment,
respectively. The model is given below:

CF
0 Dα

t Us(t) = πα − βα
1Us(t)I(t)− µαUs(t),

CF
0 Dα

t As(t) = −βα
2 As(t)I(t)− µα As(t)

CF
0 Dα

t Vs(t) = −βα
3Vs(t)I(t)− µαVs(t)

CF
0 Dα

t I(t) = βα
1Us(t)I(t) + βα

2 As(t)I(t) + βα
3Vs(t)I(t)− (µα + γα + δα)I(t)

CF
0 Dα

t R(t) = δα I(t)− µαR(t)

with the following initial conditions:

Us(0) = a1, As(0) = a2, Vs(0) = a3, I(0) = a4 and R(0) = a5

The meaning of the parameters involved in the model is given in Table 1.

Table 1. Meaning of Parameters.

Parameter Meaning

π Recruitment rate
β1 The transmission rate of COVID-19 in a susceptible unaware compartment

β2 < β1 The transmission rate of COVID-19 in a susceptible aware compartment

β3 < β2 < β1
The transmission rate of COVID-19 in a susceptible

vaccinated compartment
µ Natural death rate
γ Recovery rate
δ Disease induced death rate

0 < α < 1 Fraction order

3. Analysis of the Model

Here, equilibrium, basic reproduction number, existence and uniqueness analysis of
the solution of the model are carried out.

Equilibria and basic reproduction number
The equilibrium solutions are obtained by equating the equations in the model to zero

and solving the system simultaneously. We obtain five equilibrium solutions:

i. Disease-free equilibrium (E0)

E0 =
{

U0
s , A0

s , V0
s , I0, R0

}
=

{
πα

µα
, 0, 0, 0, 0

}
.

ii. Endemic with respect to Us only (E1)

E1 =
{

U1
s , I1, R1}

=

{
µα+γα+δα

βα
1

, πα βα
1−µα(µα+γα+δα)
βα

1(µ
α+γα+δα)

,
δα[πα βα

1−µα(µα+γα+δα)]
µα βα

1(µ
α+γα+δα)

}
iii. Endemic with respect to As only (E2)

This equilibrium point does not exist, as we have:

I2 =
−µα

βα
1

which is not biologically meaningful, as we do not have a negative population.

iv. Endemic with respect to Vs only (E3)
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This equilibrium point does not exist, as we have:

I3 =
−µα

βα
2

which is not biologically meaningful, as we do not have a negative population.

v. Endemic with respect to Us, As and Vs(E4)

This equilibrium point does not exist, as we have:

I4 =
−µα

βα
1

orI3 =
−µα

βα
2

which is not biologically meaningful, as we do not have a negative population.
Hence, the only feasible endemic equilibrium solution is E1.
Now E1 only exists if

παβα
1 − µα(µα + γα + δα)

βα
1(µ

α + γα + δα)
> 0

This implies:
παβα

1
µα(µα + γα + δα)

> 1

Let,
παβα

1
µα(µα + γα + δα)

= R0

where R0 is the basic reproduction ratio.
Existence and uniqueness of a solution to the model
In this section, a fixed-point result is applied to check the existence and uniqueness of

the solution of the model. Let the system be rewritten as:

CF
0 Dα

t Us(t) = F1(t, Us)

CF
0 Dα

t As(t) = F2(t, As)

CF
0 Dα

t Vs(t) = F3(t, Us)

CF
0 Dα

t I(t) = F4(t, I)
CF
0 Dα

t R(t) = F5(t, R)

Applying the Caputo-Fabrizio operator, the system becomes:

Us(t)−Us(0) =
2(1−α)

(2−α)M(α)
F1(t, Us) +

2α
(2−α)M(α)

t∫
0

F1(η, Us)dη

As(t)− As(0) =
2(1−α)

(2−α)M(α)
F2(t, As) +

2α
(2−α)M(α)

t∫
0

F2(η, As)dη

Vs(t)−Vs(0) =
2(1−α)

(2−α)M(α)
F3(t, Vs) +

2α
(2−α)M(α)

t∫
0

F3(η, Vs)dη

I(t)− I(0) = 2(1−α)
(2−α)M(α)

F4(t, I) + 2α
(2−α)M(α)

t∫
0

F4(η, I)dη

R(t)− R(0) = 2(1−α)
(2−α)M(α)

F5(t, R) + 2α
(2−α)M(α)

t∫
0

F5(η, R)dη
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Now, we need to prove F1, . . . , F5 satisfy Lipschitz continuity and contraction. See the
theorem below:

Theorem 1: F1 is Lipschitz and if

0 ≤ βα
1h1 + µα < 1

it is a contraction.

Proof of Theorem 1:

‖ F1(t, Us)− F1(t, Us1) ‖
=‖ πα − βα

1Us(t)I(t)− µαUs(t)− πα − βα
1Us1(t)I(t)

−µαUs1(t) ‖

=‖ −βα
1 I(t)(Us(t)−Us1(t))− µα(Us(t)−Us1(t)) ‖

≤ βα
1 ‖ I(t) ‖ ‖ Us(t)−Us1(t) ‖+ µα ‖ Us(t)−Us1(t) ‖

≤ (βα
1h1 + µα) ‖ Us(t)−Us1(t) ‖

≤ L1 ‖ Us(t)−Us1(t) ‖

where
L1 = βα

1h1 + µαandh1 ≥‖ I(t) ‖

In the same way, we show the Lipschitz continuity and contraction for F2, . . . , F5,
where we obtain L2, . . . , L5 respectively as their Lipschitz constants. �

In recursive form, let

q1n(t) = Usn(t)−Usn−1(t)

= 2(1−α)
(2−α)M(α)

(
F1
(
t, Usn−1

)
− F1

(
t, Usn−2

))
+ 2α

(2−α)M(α)

t∫
0

(
F1
(
η, Usn−1

)
− F1

(
η, Usn−2

))
dη

q2n(t) = Asn(t)−Asn−1(t)

= 2(1−α)
(2−α)M(α)

(
F2
(
t, Asn−1

)
− F2

(
t, Asn−2

))
+ 2α

(2−α)M(α)

t∫
0

(
F2
(
η, Asn−1

)
− F2

(
η, Asn−2

))
dη

q4n(t) = In(t)−In−1(t)

= 2(1−α)
(2−α)M(α) (F4(t, In−1)− F4(t, In−2))

+ 2α
(2−α)M(α)

t∫
0
(F4(η, In−1)− F4(η, In−2))dη

q5n(t) = Rn(t)−Rn−1(t)

= 2(1−α)
(2−α)M(α) (F5(t, Rn−1)− F5(t, Rn−2))

+ 2α
(2−α)M(α)

t∫
0
(F5(η, Rn−1)− F5(η, Rn−2))dη

with initial conditions:

Us
0(t) = Us(0), As

0(t) = As(0), Vs
0(t) = Vs(0), I0(0) = I(0) and R0(0) = R(0)
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Taking the norm of q1n, we have:

‖ q1n(t) ‖ =‖ Usn(t)−Usn−1(t) ‖

=‖ 2(1−α)
(2−α)M(α)

(
F1
(
t, Usn−1

)
− F1

(
t, Usn−2

))
+ 2α

(2−α)M(α)

t∫
0

(
F1
(
η, Usn−1

)
− F1

(
η, Usn−2

))
dη ‖

Applying triangular inequality, we have:

‖ q1n(t) ‖=‖ Usn(t)−Usn−1(t) ‖

= 2(1−α)
(2−α)M(α)

‖ F1
(
t, Usn−1

)
− F1

(
t, Usn−2

)
‖

+ 2α
(2−α)M(α)

‖
t∫

0

(
F1
(
η, Usn−1

)
− F1

(
η, Usn−2

))
dη‖

≤ 2(1− α)

(2− α)M(α)
L1 ‖ Usn−1 −Usn−2 ‖ +

2α

(2− α)M(α)
L1

t∫
0

‖ Usn−1 −Usn−2 ‖ dη

This implies:

‖ q1n(t) ‖≤
2(1− α)

(2− α)M(α)
L1 ‖ q1n−1(t) ‖ +

2α

(2− α)M(α)
L1

t∫
0

‖ q1n−1(t) ‖ dη

Similarly,

‖ q2n(t) ‖≤ 2(1−α)
(2−α)M(α)

L2 ‖ q2n−1(t) ‖ + 2α
(2−α)M(α)

L2

t∫
0
‖ q2n−1(t) ‖ dη

‖ q3n(t) ‖≤ 2(1−α)
(2−α)M(α)

L3 ‖ q3n−1(t) ‖ + 2α
(2−α)M(α)

L3

t∫
0
‖ q3n−1(t) ‖ dη

‖ q4n(t) ‖≤ 2(1−α)
(2−α)M(α)

L4 ‖ q4n−1(t) ‖ + 2α
(2−α)M(α)

L4

t∫
0
‖ q4n−1(t) ‖ dη

‖ q5n(t) ‖≤ 2(1−α)
(2−α)M(α)

L5 ‖ q5n−1(t) ‖ + 2α
(2−α)M(α)

L5

t∫
0
‖ q5n−1(t) ‖ dη

Subsequently, we have:

Usn(t) =
n
∑

i=1
q1i(t), Asn(t) =

n
∑

i=1
q2i(t), Vsn(t) =

n
∑

i=1
q3i(t), In(t)

=
n
∑

i=1
q4i(t), Rn(t) =

n
∑

i=1
q5i(t)

To show the existence of the solution, we prove the following theorem:

Theorem 2: The solution exists if exist t1 exists such that the following inequality is true:

2(1− α)

(2− α)M(α)
Li +

2αt1

(2− α)M(α)
Li < 1, i = 1, . . . , 5

Proof of Theorem 2: Recursively, we have
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‖ q1n(t) ‖≤‖ Usn(0) ‖
[

2(1−α)
(2−α)M(α)

L1 +
2α

(2−α)M(α)
L1

]n

‖ q2n(t) ‖≤‖ Asn(0) ‖
[

2(1−α)
(2−α)M(α)

L2 +
2α

(2−α)M(α)
L2

]n

‖ q3n(t) ‖≤‖ Vsn(0) ‖
[

2(1−α)
(2−α)M(α)

L3 +
2α

(2−α)M(α)
L3

]n

‖ q4n(t) ‖≤‖ In(0) ‖
[

2(1−α)
(2−α)M(α)

L4 +
2α

(2−α)M(α)
L4

]n

‖ q5n(t) ‖≤‖ Rn(0) ‖
[

2(1−α)
(2−α)M(α)

L5 +
2α

(2−α)M(α)
L5

]n

Hence, solutions exist and are continuous. To show that the functions above construct
the solutions, consider:

Us(t)−Us(0) = Usn(t)− K1n(t)

As(t)− As(0) = Asn(t)− K2n(t)

Vs(t)−Vs(0) = Vsn(t)− K3n(t)

I(t)− I(0) = In(t)− K4n(t)

R(t)− R(0) = Rn(t)− K5n(t)

Hence,

‖ K1n(t) ‖=‖
2(1−α)

(2−α)M(α)

(
F1
(
t, Usn−1

)
− F1

(
t, Usn−2

))
+ 2α

(2−α)M(α)

t∫
0

(
F1
(
η, Usn−1

)
− F1

(
η, Usn−2

))
dη ‖

≤ 2(1−α)
(2−α)M(α)

‖ F1
(
t, Usn−1

)
− F1

(
t, Usn−2

)
‖

+ 2α
(2−α)M(α)

‖
t∫

0

(
F1
(
η, Usn−1

)
− F1

(
η, Usn−2

))
dη‖

≤ 2(1− α)

(2− α)M(α)
L1 ‖ Us −Usn−1 ‖ +

2α

(2− α)M(α)
L1 ‖ Us −Usn−1 ‖ t

Carrying out the procedure, we get

‖ K1n(t) ‖≤
[

2(1− α)

(2− α)M(α)
+

2αt
(2− α)M(α)

]n+1
L1

n+1k

At t = t1, we get

‖ K1n(t) ‖≤
[

2(1− α)

(2− α)M(α)
+

2αt1

(2− α)M(α)

]n+1
L1

n+1k

Taking the limit as n→ ∞, we get

‖ K1n(t) ‖→ 0

Similarly, we get

‖ K2n(t) ‖, ‖ K3n(t) ‖, ‖ K4n(t) ‖, ‖ K5n(t) ‖→ 0

Finally, to show uniqueness, assume that some solutions exist, say, Us
1(t), As

1(t),
Vs

1(t), I1(t) and R1(t), then

‖ Us(t)−Us
1(t) ‖

(
1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
≤ 0
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The following theorem completes the result. �

Theorem 3: If (
1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
> 0

then the solution is unique.

Proof of Theorem 3: Consider

‖ Us(t)−Us
1(t) ‖

(
1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
≤ 0

Since, (
1− 2(1− α)

(2− α)M(α)
L1 −

2αt
(2− α)M(α)

L1

)
> 0

then
‖ Us(t)−Us

1(t) ‖= 0

This implies:
Us(t) = Us

1(t)

This applies to the remaining functions. �

4. Optimal Control Analysis

In this chapter, we give details of the formation of the optimal control problem,
together with the analysis of the control function.

Formation of Optimal Control Problems
The dynamics of the control system can be described by the following system of

fractional-order differential equations in the Caputo-Fabrizio sense:

CF
0 Dα

t US(t) = πα − βα
1US I − µαUS − θu1US+ ∈ AS

CF
0 Dα

t AS(t) = βα
2 AS I − µα AS− ∈ AS −∅u2 AS + ρu3VS (1)

CF
0 Dα

t VS(t) = ∅u2 AS − βα
3VS I − µαVS − ρu3VS

CF
0 Dα

t I(t) = βα
1US I + βα

2 AS I + βα
3VS I − (µα + γα + δα)I

CF
0 Dα

t R(t) = δα I − µαR

where
u1 = AwarenesscampaignaboutCOVID-19

u2 = vaccinationfortheawareclass

u3 = takingoptimalvaccine

The objective function to be minimized can be given as:

J(u1 , u2, u3) =
∫ t f

0
(aUS + bAS + cVS + du2

1 + eu2
2 + f u2

3 )dt (2)

The objective here is minimizing US , AS and VS at the same time to minimize the
cost of the three controls u1, u2 and u3. Hence, we need to get the optimal control
u∗1 , u∗2 and u∗3 such that:

J(u∗1 , u∗2 , u∗3 ) = min
u1, u2
{J(u1 , u2, u3)|u1, u2, u3 ∈ Ω} (3)
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The set of control as:

Ω =
{
(u1, u2, u3)

∣∣∣ui :
[
0, t f

]
→ [0, ∞)Lebesguemeasurable, i = 1, 2, 3

}
The expenses of minimizing US is represented by the term aUS, that of minimizing

AS is represented by bAS, while minimizing VS is represented by cVS. Likewise, all the
expenses associated with the control u1 is represented by du2

1 , all the expenses associated
with the control u2 are represented by eu2

2 and also all the expenses associated with the
control u3 is represented by f u2

3 The sufficient conditions required for the optimal control
to be fulfilled can be found by using the most popular PMP. The said principle can be used
to turn Equations (1) and (3) into a point-wise minimizing problem of the Hamiltonian H
for ( u1, u2u3) stated as follows:

H = aUS + bAS + cVS + du2
1 + eu2

2 + f u2
3 + λUS{π

α − βα
1US I − µαUS−

θu1US+ ∈ AS}+ λAS{β
α
2 AS I − µα AS− ∈ AS −∅u2 AS + ρu3VS}+ λVS{∅u2 AS−

βα
3VS I − µαVS − ρu3VS}+ λI{βα

1US I + βα
2 AS I + βα

3VS I − (µα + γα + δα)I}+
λR{δα I − µαR}

(4)

where, λUS , λAS , λVS , λI , and λR are the adjoint variables or co-state variables.

−
dλUS

dt
=

∂H
∂US

= a + λUS{−βα
1 I − µα − θu1}+ λI βα

1 I

−
dλAS

dt
=

∂H
∂AS

= b + λUS ∈ +λAS{β
α
2 I − µα− ∈ −∅u2}+ λI βα

2 I (5)

−
dλVS

dt
=

∂H
∂VS

= c + λAS ρu3 + λVS{−βα
3 I − µα − ρu3}+ λI βα

3 I

−dλI
dt

=
∂H
∂I

= −λUS βα
1US + λAS βα

2 AS + λVS βα
3VS + λI{βα

1US + βα
2 AS + βα

3VS−

(µα + γα + δα)}

− dλR
dt

=
∂H
∂R

= −λRµαR

The transversality conditions are:

λUS

(
t f

)
= λAS

(
t f

)
= λVS

(
t f

)
= λI

(
t f

)
= λR

(
t f

)
= 0

for 0 < ui < 1, for i = 1, 2, 3,
From the interior of the controls, we have:

∂H
∂u1

= 2du1 − λUS θUS = 0

∂H
∂u2

= 2eu2 − λAS∅AS + λVS∅AS = 0 (6)

∂H
∂u3

= 2 f u3 + λAS ρVS − λVS ρVS = 0

from where:
u1 =

1
2d

λUS θUS

u2 =
1
2e
∅AS

[
λAS − λVS

]
(7)

u3 =
1

2 f
ρVS

[
λVS − λAS

]
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Existence of optimal solutions
We give the following theorem for the existence of optimal controls:

Theorem 4: The control values ( u∗1 , u∗2 , u∗3 ) which can minimize (u1 , u2, u3) over U are given by

u∗1 = max
{

0, min
[

1,
1

2d
λUS θUS

]}
u∗2 = max

{
0, min

[
1,

1
2e
∅AS

[
λAS − λVS

]]}
(8)

u∗3 = max
{

0, min
[

1,
1

2 f
ρVS

[
λVS − λAS

]]}
where, λUS , λAS , λVS , λI , and λR are, co-state variables that satisfy (1–8) as well as the

transversality conditions that follow λUS

(
t f

)
= λAS

(
t f

)
= λVS

(
t f

)
= λI

(
t f

)
= λR

(
t f

)
=

0 and

u∗1 =


0, i f u1 ≤ 0,

u1, i f 0 < u1 < 1,
1, i f u1 ≥ 0,

u∗2 =


0, i f u2 ≤ 0,

u2, i f 0 < u2 < 1,
1, i f u2 ≥ 0.

(9)

u∗3 =


0, i f u3 ≤ 0,

u3, i f 0 < u3 < 1.
1, i f u3 ≥ 0.

Proof of Theorem 4: To prove the existence of the optimal control solution, we use the
convexity of the integrand of J to controls u1, u2 and u3 for the boundedness of the
solutions of the state and the Lipschitz property of the system of the state concerning the
variables of the state. Hence, we apply the PMP and obtain the following:

CF
0 Dα

t λUS(t) =
∂H
∂US

; CF
0 Dα

t λAS(t) =
∂H
∂AS

(10)

CF
0 Dα

t λVS(t) =
∂H
∂VS

; CF
0 Dα

t λI(t) =
∂H
∂I

; CF
0 Dα

t λR(t) =
∂H
∂R

with,
λUS

(
t f

)
= λAS

(
t f

)
= λVS

(
t f

)
= λI

(
t f

)
= λR

(
t f

)
= 0

The conditions for optimality can be obtained after differentiating the Hamiltonian H
with respect to u1, u2 and u3:

∂H
∂u1

= 0 ;
∂H
∂u2

= 0;
∂H
∂u3

= 0. (11)

The adjoint systems (4) and (5) come from the solution of (1), and the optimal controls
(7) can be obtained from (8). The optimal system comprises the controlled system (1) and
its initial conditions, the system of adjoint (4), and the conditions for transversality. �
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5. Numerical Simulation and Discussion

In this chapter, numerical simulations are carried out. Variable and parameter values
are given as

π = 1, β1 = 0.0007, β2 = 0.00007, β3 = 0.000007, µ = 0.02, γ = 0.2,

δ = 0.01, θ = 0.002,∅ = 0.0012, p = 0.001

Figure 1 depicts the dynamics of the model. It can be seen that without any control, the
susceptible unaware population, susceptible aware population and susceptible vaccinated
populations all go to extinction, whereas infected and recovered populations proliferate.
This clearly shows the need for the application of various control measures to control
the pandemic.
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Figure 1. Dynamics of the model.

Figure 2 shows the influence of the variation in the fractional-order α on the biological
behavior of the infected population. It is clear from this figure that the population has
a decreasing effect when α is decreased from 1 to 0.2. Hence, the memory effect can be
seen clearly.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 1. Dynamics of the model. 

 

Figure 2. Dynamics of the infected population for various values of α. 

Figures 3–5 compare the effect of controls 𝑢 , 𝑢 &𝑢  respectively on the dynamics of 
the infected population. It is clear that when any control is observed, the population of 
infected individuals is reduced. This is a positive effect and hence there is a need for com-
pliance with the control measures. 

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

14

16
x 104

Time

P
op

ul
at

io
n

 

 
Suscetible Unaware Population
Suscetible Aware Population
Suscetible Vaccinated Population
Infected Population
Recovered Population

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
x 105

Time

P
op

ul
at

io
n

 

 
alpha=0.2
alpha=0.4
alpha=0.6
alpha=0.8
alpha=1.0

Figure 2. Dynamics of the infected population for various values of α.



Fractal Fract. 2022, 6, 533 12 of 17

Figures 3–5 compare the effect of controls u1, u2&u3 respectively on the dynamics
of the infected population. It is clear that when any control is observed, the population
of infected individuals is reduced. This is a positive effect and hence there is a need for
compliance with the control measures.

Figures 6–8 compare the effect of two controls, i.e., u1&u2, u1&u3, and u2&u3 respec-
tively on the dynamics of the infected population. It is clear that when two controls are
applied, a drastic change in the population of infected individuals is seen more than in
the application of a single control. Hence, to control the pandemic, there is a need for the
application of more than one control measure. However, the economic implications of
combining more than one control measure must be taken into consideration.
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Figure 9 compares the effects of the three controls, i.e., u1, u2&u3 on the dynamics
of the infected population. The application of all the control measures in the partitioned
susceptible population leads to the desired outcome. This effect is clearly seen. Hence,
to obtain the desired result, there is a need for awareness, and not only vaccinating the
susceptible population but also making sure that a full dosage is given.
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These results show the significant impact of awareness of COVID-19 and the vac-
cination process. Other models investigate the optimal control of vaccinations or the
restriction measures applied to susceptible classes, which do not reflect social awareness
about infections.

6. Summary and Conclusions

In this paper, Caputo-Fabrizio’s sense is used to develop the fractional-order COVID-19
model, which consists of five compartments: susceptible unaware compartment, susceptible
aware compartment, susceptible vaccinated compartment, infected compartment, and
recovered compartment. Three types of susceptible classes are studied in this paper:
a susceptible unaware class where awareness control is observed, a susceptible aware
class where vaccine control is observed, and a susceptible vaccinated class where optimal
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vaccination control is observed. Calculation of equilibrium points leads to the determination
of the basic reproduction ratio. The model’s properties of existence and uniqueness are
confirmed. In addition, the optimal control problem was developed, and consequently,
the existence of an optimal solution was achieved. The biological significance of fractional
order is established by the use of numerical simulations, which are conducted. By utilizing
a variety of control functions, it is evident that combining the three control methods
has a significant impact on decreasing the number of infected individuals. This study
incorporates both vaccination and awareness into consideration of the COVID-19 epidemic.
For further studies, it is suggested to utilize the environmental conditions as in [62] with
the awareness of susceptible class to see the impact of optimal control on such a model.
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