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Abstract: Considering the performance requirements in actual applications, a look-up table based
fractional order composite control scheme for the permanent magnet synchronous motor speed servo
system is proposed. Firstly, an extended state observer based compensation scheme was adopted
to suppress the motor parametric uncertainties and convert the speed servo plant into a double-
integrator model. Then, a fractional order proportional-derivative (PDµ) controller was adopted as the
speed controller to provide the optimal step response performance for the servo system. A universal
look-up table was established to estimate the derivative order of the PDµ controller, according to the
optimal samples collected by an improved differential evolution algorithm. With the look-up table,
the optimal PDµ controller can be tuned analytically. Simulation and experimental results show that
the servo system using the composite control scheme can achieve optimal tracking performance and
has robustness to the motor parametric uncertainties and disturbance torques.

Keywords: permanent magnet synchronous motor (PMSM); extended state observer (ESO); PDµ

controller; look-up table; differential evolution (DE)

1. Introduction

With high power density and efficiency, the permanent magnet synchronous motor
(PMSM) has been widely used in modern industrial applications, e.g., numerical control
machines and industrial robots. It is widely known that the proportional–integral–derivative
(PID) control approach is the most widely used in the industrial field, because of its simple
implementation and clear physical meaning in control engineering [1]. However, in actual
applications, the PMSM servo system is unavoidably faced with various uncertainties and
disturbances [2,3]. The traditional feedback control method may find it difficult to provide
good tracking performance and disturbance rejection performance simultaneously [4]. A com-
posite control strategy may be an efficient way to improve the performance. By introducing
a feedforward compensation, the composite control strategy allows the separate regulation
of the tracking performance and the disturbance rejection performance. The commonly
used composite control methods include the disturbance observer-based control (DOBC)
method [5] and the active disturbance rejection control (ADRC) method [6]. By applying the
ADRC method, the uncertainties and disturbances of the system are estimated by an extended
state observer (ESO) and compensated by the feedforward compensation [7]. Therefore, the
composite control method provides the possibility to ensure the good tracking performance
and disturbance rejection performance simultaneously.

In the last few decades, fractional calculus has been continuously developed in system
modeling and control fields [8–10]. Fractional differential systems have been widely
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studied and applied to describe various real systems and processes [11–14]. Recently,
various strategies based on fractional calculus have been developed and applied to different
areas, such as feedback control, disturbance estimation and signal processing [15–17]. In
addition, fractional order controllers have been found to obtain more control options
and flexibility than integer order controllers. The fractional order proportional–integral–
derivative (PIλDµ) controller is derived from the conventional PID controller by extending
the integral and derivative orders from 1 to real numbers [18,19]. It is reported that a
PIλDµ controller can provide more flexibility and better control performance than a PID
controller [20,21]. Meanwhile, with two additional tunable parameters, more sophisticated
strategies are required when designing a PIλDµ controller [22].

Generally, the design methods of a PIλDµ controller include the analytic methods
and the optimization methods. The "flat-phase" design method is a typical analytic de-
sign method [23]. By introducing a tuning rule called the flat-phase specification, this
method configures the control system’s phase characteristic to obtain a zero slope at the
gain crossover frequency. In contrast, the optimization design method tunes the controller
by optimizing an objective function, which is often introduced to characterize the spe-
cific demands on system performance, such as the dynamic performance, stability and
robustness [8,15]. In addition, the controller’s parameters are often optimized within the
feasible regions constructed by different constraints characterizing practical restrictions
on the control systems [24]. Thus, the optimized PIλDµ controller can achieve the optimal
dynamic performance under different constraints. However, in real applications, these
methods may need time and high-performance control chips to finish optimization.

In this paper, taking advantage of fractional order controllers and the composite
control strategy, a fractional order composite control method is proposed to improve both
the robustness and the dynamic performance of a class of PMSM servo systems. Firstly,
ESO-based feedforward compensation was adopted to compensate the lumped disturbance
and convert the PMSM speed servo plant into a general double-integrator model. Secondly,
a fractional order PDµ controller was adopted as the feedback controller to provide the
optimal step response performance. To simplify the tuning process of the PDµ controller,
a universal look-up table was established to estimate the derivative order of the PDµ

controller, according to the optimal samples collected by an improved differential evolution
(DE) algorithm [25]. With the estimated derivative order, the PDµ controller can be tuned
analytically based on the design specifications.

The composite control method was applied to the PMSM speed servo system. Simu-
lations and experiments were implemented to test the robustness, the step response and
load disturbance response performances, respectively. In addition, the control performance
of the proposed scheme is compared with those of some commonly used approaches.
The advantages of the composite control scheme are demonstrated by simulation and
experimental results.

The contributions of this paper mainly include:

1. A composite control scheme is presented, providing the optimal dynamic performance
and sufficient robustness for the PMSM speed servo system;

2. A look-up table based synthesis method is proposed to simplify the tuning of the optimal
PDµ controller, creating a wide potential application scope for the proposed method.

The content of this paper is arranged as follows: the PMSM speed control problem
is described in Section 2; the fractional order composite controller synthesis method is
discussed in Section 3; the simulation and experimental studies of the composite control
scheme are presented in Section 4; the conclusions are discussed in Section 5.

2. PMSM Speed Control Problem

The commonly used rotor synchronous rotating coordinates (d-q coordinates) are
adopted as the reference coordinates, where the d-axis is synchronized with the rotor flux
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vector and the q-axis is perpendicular to the d-axis. Thus, the model of a three-phase
rotating PMSM can be described by the following equations [4],

i̇d =
1
Ld

(ud − Rid + npωLqiq), (1)

i̇q =
1
Lq

(uq − Riq − npωLdid − npωψ f ), (2)

ω̇ =
1
J
(Te − Tf − TL), (3)

Te =
3
2

np[ψ f iq + (Ld − Lq)idiq], (4)

where

id, iq: d- and q-axis stator currents, respectively;
ud, uq: d and q-axis stator voltages, respectively;
Ld, Lq: d and q-axis stator inductances, respectively;
R: stator resistance;
np: pole pairs number;
ω: motor angular velocity;
ψ f : magnetic flux linkage;
J: motor rotating inertia;
Tf , TL: friction and load torques, respectively.

When adopting the common field-oriented vector control scheme, with the reference
current id

∗ set to be 0, the d-axis stator current id will be close to 0 under the control of the
current controller. Thus, (2) can be simplified as

i̇q =
1
Lq

(uq − Riq − npωψ f ). (5)

Since the variation of iq is much faster than that of ω, the back electromotive force (EMF)
npωψ f can be approximated as a constant disturbance when designing the q-axis current
controller [26].

By adopting a PI controller as the q-axis current controller,

uq(t) = Kse(t) +
KsR
Lq

∫ t

0
e(τ)dτ, (6)

where e = iq
∗ − iq, iq

∗ is the q-axis reference current. Thus, the PMSM speed servo plant
can be approximated as the following:

i̇q = −Ks

Lq
iq +

Ks

Lq
iq
∗, (7)

ω̇ =
Cm

J
iq −

Td
J

, (8)

where Cm represents the torque coefficient: Cm = 3npψ f /2; Td represents the total dis-
turbance torque: Td = Tf + TL. In this paper, adopting a common simplified assump-
tion in motion control research, Td is assumed to be a slowly-varying disturbance, i.e.,
Ṫd ≈ 0 [27,28]. Assume that the feedback controller of the PMSM servo system is C(s).
According to (7) and (8), the transfer function from Td to ω can be represented as

GTd→ω(s) =
Lqs/Ks + 1

Js(Lqs/Ks + 1) + C(s)
. (9)
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According to the internal model principle, the feedback controller should contain
an integrator to completely eliminate the tracking error of the motor velocity caused by
the slowly-varying disturbance. However, in some cases, the integrator in the feedback
controller may lead to large overshooting and oscillations. Therefore, it may be difficult to
design a feedback controller to achieve good step response performance and disturbance
rejection performance simultaneously. This paper mainly addresses a composite control
method to make the PMSM servo system achieve optimal step response performance and
sufficient rejection of the slowly-varying disturbance torque.

3. Fractional Order Composite Control Strategy
3.1. Eso-Based Composite Control Scheme

The q-axis current loop represented by (7) is an ideal model. An actual PMSM servo
system may have unmodeled dynamics and parametric uncertainties. Thus, (7) should be
modified as

i̇q = −Ks

Lq
iq +

Ks

Lq
iq
∗ + ε = h + b0iq∗, (10)

where b0 = Ks/Lq; ε represents the effect of the unmodeled dynamics and uncertainties;
h = −b0iq + ε, which is regarded as the lumped disturbance. By defining x1 = iq and
introducing an extended state x2 = h, (10) can be represented as

ẋ1 = x2 + b0iq∗,

ẋ2 = ḣ.
(11)

According to the ADRC strategy, an ESO is applied to estimate the state and lumped
disturbance of the control system. Thus, a commonly used linear ESO is derived for
system (11) [29],

ż1 = z2 + b0iq
∗ + β1(x1 − z1),

ż2 = β2(x1 − z1),
(12)

where z1 and z2 are the estimates of iq and h, respectively; and β1 and β2 are the observer
gains. When adopting a bandwidth design method, the observer gains are set as β1 = 2ω0,
β2 = ω0

2, where ω0 represents the bandwidth of the ESO.
According to the estimated lumped disturbance, the control law is designed as

iq
∗ = u0 −

z2

b0
. (13)

where u0 represents the output of the speed controller. Therefore, the q-axis current loop
with ESO-based compensation can be represented as Figure 1.

q-axis current 

loop

ESO

b0

1/b0

*

qi qiu0

z2

Figure 1. ESO-based q-axis current loop.

Assume that the lumped uncertainties satisfy lim
t→∞

ḣ(t) = 0. If the ESO is suitably

designed, the estimation error of the ESO, h− z2 will converge to zero. Then, by combin-
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ing (10) and (13), the q-axis current loop with the ESO-based feedforward compensation
can be approximated as an integrator:

i̇q = b0u0 + (h− z2) ≈ b0u0. (14)

Combining (14) and (8), under the slowly-varying disturbance torque, the PMSM
speed servo plant can be reduced to a double-integrator model:

ω̈ ≈ Cmb0

J
u0, (15)

Thus, with the ESO-based feedforward compensation, the tracking error of the motor
velocity caused by the slowly-varying disturbance torque can be completely eliminated.

A PDµ controller is adopted as the speed controller. The PDµ controller can be repre-
sented as

C(s) = Kp(1 + Kdsµ), (16)

where Kp and Kd are the proportional and derivative gains, respectively; and Dµ represents
the differential operator with real-number order µ, µ ∈ (0, 2). Taking the deviation between
the reference and actual angular velocity as the input, the output of the speed controller
can be represented as

u0 = Kp(1 + KdDµ)(ωr −ω), (17)

where ωr is the reference velocity.
By combining (15) and (17), the transfer function of the closed-loop system with the

PDµ controller and the double-integrator plant can be obtained:

Gc(s) =
cb0Kp(1 + Kdsµ)

s2 + cb0KpKdsµ + cb0Kp
, (18)

where c represents the term Cm/J.

3.2. Stability

A system is said to be bounded-input bounded-output (BIBO) stable if every bounded
input excites a bounded output. A linear time-invariant (LTI) system is BIBO-stable if and
only if all poles of its transfer function are in the left half of the complex plane [30]. Let e1 =
x1 − z1 and e2 = x2 − z2. According to (11) and (12), the estimation error equation can be
obtained: [

ė1
ė2

]
=

[−β1 1
−β2 0

][
e1
e2

]
+

[
0
1

]
ḣ. (19)

Thus, the characteristic polynomial of the estimation error equation can be represented as

λ(s) = s2 + β1s + β2. (20)

Therefore, the linear ESO described in (12) is BIBO-stable if all the roots of the characteristic
polynomial have negative real parts [29].

Theorem 1. The composite control design according to (12), (13) and (17) obtains a BIBO-stable
control system if the ESO in (12) and the control law (17) for the double-integrator model are stable,
and Td and ḣ are bounded.
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Proof. By combining (8), (11), (12), (13) and (17), the composite control system can be
represented by the following state equations.

ω̇ = cx1 + d,

ẋ1 = x2 − z2 + b0Kp(1 + KdDµ)(ωr −ω),

ẋ2 = ḣ,

ż1 = β1(x1 − z1) + b0Kp(1 + KdDµ)(ωr −ω),

ż2 = β2(x1 − z1).

(21)

where d = −Td/J. Under zero initial conditions, the following equations can be derived by
using the Laplace transform.

sω(s) = cx1(s) + d(s),

sx1(s) = h(s)− β2

s
(x1(s)− z1(s)) + b0Kp(1 + KdDµ)(ωr(s)−ω(s)),

sz1(s) = β1(x1(s)− z1(s)) + b0Kp(1 + KdDµ)(ωr(s)−ω(s)).

(22)

Then the angular velocity ω(s) can be derived by solving (22):

ω(s) =
cb0Kpωr(s)

s2 + cb0KpKdsµ + cb0Kp

+
c(s2 + β1s)h(s)

(s2 + β1s + β2)(s2 + cb0KpKdsµ + cb0Kp)

+
sd(s)

s2 + cb0KpKdsµ + cb0Kp
.

(23)

It can be observed that the eigenvalues of the closed-loop system are the roots of
the characteristic polynomials of the ESO’s estimation error (see (20)) and the closed-loop
system with the PDµ controller and the double-integrator model (see (18)). Since ωr, Td
and ḣ are bounded, the composite control system is BIBO-stable if its eigenvalues have
negative real parts, i.e., both the ESO and the system with the PDµ controller and the
double-integrator model are stable.

The PMSM speed servo system with the ESO-based compensation can be represented
as Figure 2, where n∗ and n represent the reference and actual motor speed, respectively;
n = 60ω/(2π); and Cv(s) represents the speed controller. Thus, the PMSM speed servo
model (from u0 to n) can be approximated in a double-integrator model:

P(s) =
K
s2 , (24)

where K = 60b0Cm/(2π J).

ESO-based 

plant Eq. (14)

qiu0

mC)(sCv

n* 
neT

dT

Jsp2

60

Figure 2. The PMSM speed servo system with the ESO-based compensation.

Remark 1. By introducing the ESO-based feedforward compensation, the PMSM speed servo
plants with different parameters can be converted into the double-integrator models with different
gains. Under slowly-varying disturbances, the feedback controller can ensure zero speed deviation
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without using an integrator. In addition, the model’s gain can be directly compensated by the gain
of the feedback controller. Therefore, the ESO-based control scheme creates the possibility to design
the universal feedback controllers for different PMSM speed servo systems.

3.3. Optimal PDµ Controller Design

Optimal control is to select a permissible control law that allows the control system to
achieve the optimal performance, which is often quantized by a loss function [31]. In this
paper, the PDµ controller is designed to ensure the optimal step response performance of
the servo system, under the given design specifications (ωc, ϕm). Suppose that ωc and ϕm
are given. Two equations can be derived:

|C(jωc)P(jωc)| = 1, (25)

Arg[C(jωc)] + Arg[P(jωc)] = ϕm − π, (26)

where Arg[P(jω)] and Arg[C(jω)] represent the phase of the plant model and the PDµ

controller, respectively. Thus, if the derivative order µ is determined, Kp and Kd can be
calculated according to (25) and (26).

The performance of the PDµ controller is quantified by the following loss function.

J = κ1

∫ ∞

0
t|ε(t)|dt + κ2

∫ ∞

0
|u0(t)|dt, (27)

where ε(t) = n∗(t)− n(t); u0(t) is the controller’s output. Thus, the first term represents
the integrated time absolute error (ITAE) of the motor speed, and the second term represents
the energy consumption of the control signal. κ1 and κ2 are the weights used to balance the
requirements of the tracking performance and energy consumption [32].

An improved DE algorithm was implemented in Matlab to determine the derivative
order µ. At first, the population is initialized by randomly selecting N values of µ to be the
individuals. Then, the PDµ controller corresponding to each individual (µ) is obtained by
solving (25) and (26), according to the design specifications (ωc, ϕm).

Secondly, when the population is generated, several individuals are randomly selected
as the target individuals according to a given mutation rate. Taking advantage of the
adaptive parameter strategies [33], an adaptive mutation rate is proposed to enhance the
efficiency of the algorithm. The mutation rate Pm,i in the mth iteration for the ith individual
is defined as

Pm,i = P0 · 2γ, γ = e
1−m

1−m+ms ·
Fi−Fl+δl
Fu−Fl+δl , (28)

where P0 is the initial mutation rate; ms is the upper limit of the iteration count; Fi is the
fitness of the ith individual; Fu and Fl are the largest and smallest fitness values of the
current population, respectively; and δl is a factor used to keep Fu − Fl + δl larger than zero.
The term (1−m)/(1−m + ms) is used to tune the basic mutation rate in each iteration: at
the beginning of the iteration, it is close to zero and then the basic mutation rate is close to
2P0, suitable for keeping the individual diversity and avoiding the over-expansion of the
local optimal individuals. Late in the iteration process, it decreases to close to 1−m and
the basic mutation rate is close to P0, suitable for protecting the potential global optimal
individual from being mutated. In addition, the term (Fi − Fl + δl)/(Fu − Fl + δl) is used
to tune the mutation rate of each individual: an individual with less fitness has a larger
mutation rate to explore the searching space, whereas one with more fitness has a smaller
mutation rate.

Once a target individual is selected, a mutated individual will be generated by adding
a difference vector to the target individual:

Vi = Xi + k(Xj − Xk), (29)
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where Vi represents the mutated individual, Xi represents the target individual, Xj and Xk
are two randomly selected individuals and k is a scaler coefficient. In addition, the PDµ

controllers corresponding to the mutated individuals are also obtained.
Thirdly, the step response simulations are implemented on the Simulink platform,

which was constructed according to the closed-loop system shown in Figure 2. Customized
constraints can be introduced into the simulation modules. In this study, the output
saturation was introduced according to the amplitude limitation of the actuator. The PDµ

controller corresponding to each individual was used as the speed controller. The fitness of
each individual is defined as the reciprocal of the loss function of the control system, i.e.,
Fi = 1/Ji.

Finally, a comparison is performed between the mutated and target individuals: the
one with greater fitness will be selected in the population, while the other one will be
abandoned. The termination condition of the optimization is determined as follows: if
the variation of the population’s average fitness in the latest 10 iterations is smaller than a
threshold δ, or the iteration count reaches the upper limit, the optimization will be ended.

According to (24) and (26), the parameters of the PMSM and q-axis current controller have
no effect on the derivative order of the optimal PDµ controller. Therefore, a universal look-up
table of the derivative order with respect to different design specifications can be established
to simplify the controller design process. The look-up table is established within the ranges
of ωc and ϕm. The range of ωc was set as 30 to 80 rad/s. In addition, the range of ϕm was
set as 30◦ to 60◦, in accordance with the general selection of the phase margin in engineering
applications [26,34]. According to the ranges of ωc and ϕm, several values were selected
uniformly, obtaining the sequences of ωc (30 rad/s, 35 rad/s, . . . , 80 rad/s) and ϕm (30◦, 35◦,
. . . , 60◦). Therefore, the design specification pairs (ωc, ϕm) could be constructed by combining
the selected values of ωc and ϕm in sequence. Taking the double-integrator model (24) as
the controlled plant, the PDµ controller corresponding to each design specification pair was
obtained by applying the DE algorithm. The parameters of the DE algorithm were selected
as follows: N = 20, ms = 100, P0 = 0.1, k = 0.5, δ = 0.0001. The look-up table of the derivative
order µ for different design specifications is presented in Table 1.

Table 1. Look-up table of the derivative order µ for different design specifications.

ϕm (◦)
ωc (rad/s)

30 35 40 45 50 55 60 65 70 75 80

30 0.765 0.781 0.795 0.808 0.820 0.831 0.842 0.852 0.861 0.869 0.878
35 0.806 0.823 0.836 0.848 0.859 0.869 0.879 0.887 0.893 0.900 0.907
40 0.845 0.861 0.872 0.883 0.891 0.899 0.907 0.914 0.920 0.927 0.933
45 0.881 0.893 0.903 0.911 0.919 0.926 0.931 0.935 0.939 0.942 0.946
50 0.911 0.922 0.930 0.937 0.941 0.944 0.948 0.950 0.954 0.956 0.959
55 0.939 0.946 0.952 0.956 0.959 0.962 0.964 0.967 0.968 0.970 0.972
60 0.962 0.968 0.972 0.975 0.977 0.978 0.980 0.981 0.982 0.983 0.984

If the design specifications are located within the grids of the look-up table, the derivative
order can be estimated applying a commonly used bilinear interpolation method [35]. As
shown in Figure 3, the derivative order of the target point (ωc, ϕm) is estimated based on the
four nearest rectangular points surrounding the target point, using the following formula.

µ(ωc, ϕm) = w1µ1 + w2µ2 + w3µ3 + w4µ4, (30)

where
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w1 =
(ωc2 −ωc)(ϕm2 − ϕm)

(ωc2 −ωc1)(ϕm2 − ϕm1)
,

w2 =
(ωc −ωc1)(ϕm2 − ϕm)

(ωc2 −ωc1)(ϕm2 − ϕm1)
,

w3 =
(ωc2 −ωc)(ϕm − ϕm1)

(ωc2 −ωc1)(ϕm2 − ϕm1)
,

w4 =
(ωc −ωc1)(ϕm − ϕm1)

(ωc2 −ωc1)(ϕm2 − ϕm1)
.

(31)

φm1

φm2

ωc1 ωc2

φm

ωc

μ1 μ2

μ3 μ4

Figure 3. Estimation of the derivative order based on the four nearest rectangular points.

The effectiveness of the look-up table was verified by the estimation error tests. Several
PDµ controllers were designed as the test samples using the DE algorithm, based on the
design specifications constructed by the elements in the sequences of ωc and ϕm: (35
rad/s, 45rad/s, . . . , 75rad/s) and (35◦, 45◦, 55◦). An estimation error was defined as (32)
to quantify the deviation between the derivative order obtained using the optimization
method and that estimated by the look-up table:

∆(%) =
|µo − µe|

µo
× 100%, (32)

where µo and µe represent the derivative orders obtained using the DE algorithm and
the look-up table, respectively. The estimation errors corresponding to different design
specifications are listed in Table 2. It can be observed that all the estimation errors are
smaller than 0.1%. Thus, the derivative orders estimated by the look-up table can be
regarded as the optimal values.

Table 2. Estimation error of the derivative orders.

ϕm (◦)
ωc (rad/s)

35 45 55 65 75

35 0.059% 0.030% 0.017% 0.071% 0.008%

45 0.014% 0.005% 0.009% 0.054% 0.006%

55 0.003% 0.002% 0.009% 0.004% 0.021%

Remark 2. In actual applications, a PMSM speed servo model can be converted into a double-
integrator model by the ESO-based scheme. Then, the derivative order of the PDµ controller can
be estimated by the universal look-up table. The remaining parameters of the controller can be
calculated according to (25) and (26). In this way, the PDµ controller of the servo system can be
designed without optimization, which may be suitable for actual applications.



Fractal Fract. 2022, 6, 47 10 of 17

4. Application to the PMSM Speed Control Problem

The composite control scheme was applied to the PMSM speed control problem. The
robustness, step response performance and disturbance rejection performance of the control
system using the proposed controller were tested. In simulations and experiments, the PDµ

controller was approximated by an impulse response invariant discretization method [36].
While applying this method, the impulse response of the fractional operator was calculated
according to the Riemann–Liouville definition of fractional calculus [37], and then fitted by
a rational discrete transfer function.

4.1. Simulation Studies

Simulations were implemented on the Simulink platform to verify the composite
control system’s robustness to the parametric uncertainties. The parameters of the PMSM
module were set as: R = 0.5 Ω, Lq = 5 mH, J = 0.03 kg·m2, Cm = 0.6 N·m/A. Then the q-axis
current controller was obtained.

Cis(s) = 1.289
(

1 +
100

s

)
. (33)

Therefore, b0 = 257.7. A common rule of thumb is to choose the bandwidth of the ESO with
ω0 = 3∼5ωc [29]. The design specifications were ωc = 70 rad/s, ϕm = 60◦. Therefore, ω0 was
selected to be 300 rad/s. According to the parameters of the PMSM, the double-integrator
model of the PMSM speed servo plant was P(s) = 60b0Cm/(2π Js2) = 49, 217.1/s2.

According to the design specifications, the derivative order of the PDµ controller
should be estimated by the look-up table: µ = 0.982. Therefore, the PDµ controller was
obtained by solving (25) and (26):

Cv(s) = 0.047(1 + 0.0281s0.982). (34)

The stator resistance R has been found to vary with the temperature, which has an
impact on the control performance [2]. To verify the robustness of the composite control
system to the stator resistance uncertainties, PMSM modules with different resistances,
i.e., 0.1 Ω, 0.5 Ω and 1 Ω, were used for step response simulations. The speed response
curves are plotted in Figure 4. It can be observed that the systems with stator resistance
uncertainties achieved nearly the same speed response as the nominal system.
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Figure 4. Tests of robustness to stator resistance uncertainties.

The stator inductance Lq of the PMSM has been found to be the function of the
current magnitude and phase angle [2]. Since the compensation gain b0 is determined by
the nominal stator inductance Lq, the variations of Lq may degrade the performance of
the servo system. To verify the robustness of the composite control system to the stator
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inductance uncertainties, PMSM modules with different inductances, i.e., 2, 5 and 10 mH,
were used for step response simulations. The speed response curves are plotted in Figure 5.
It can be observed that the systems with stator inductance uncertainties also achieved
nearly the same speed response as the nominal system.
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Figure 5. Tests of robustness to stator inductance uncertainties.

According to the simulation results, under the proposed composite control scheme,
the control system obtains sufficient robustness to the motor parametric uncertainties.

4.2. Experimental Studies

The PMSM speed control experimental platform is shown in Figure 6. The PMSM was
driven by a DSP-based servo driver. A DC generator and a resistance box were used to
provide the resistive load of the servo system. The parameters of the PMSM were R = 0.5
Ω, Lq = 3.75 mH, Cm = 0.66 N·m/A, and J = 0.0336 kg·m2.

Figure 6. PMSM speed control experimental platform.

4.2.1. Comparison with the Composite Control Method Using the PD Controller

According to the composite control scheme, the PDµ controller was used to make
the servo system achieve the optimal step response performance. To demonstrate the
advantage of using the PDµ controller, a performance comparison was performed between
the FOPD-ESO controller and the integer order PD controller with the ESO (denoted as
IOPD-ESO).

According to the parameters of the PMSM, the q-axis current controller was designed:

Cie(s) = 0.966
(

1 +
133.33

s

)
. (35)
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Thus, b0 = 257.7. The design specifications were ωc = 70 rad/s and ϕm = 60◦. Therefore, ω0
was selected to be 300 rad/s. The double-integrator model of the PMSM speed servo plant
was P(s) = 48,338.5/s2. The derivative order µ of the PDµ controller was 0.982. Therefore,
the PDµ controller was obtained:

C1(s) = 0.048(1 + 0.0281s0.982). (36)

According to the same design specifications, an integer order PD controller was
obtained by solving (25) and (26) with µ = 1.

C2(s) = 0.051(1 + 0.0247s). (37)

Step responses were implemented on the experimental platform. The motor speed and
q-axis current of the systems using the IOPD-ESO and FOPD-ESO are plotted in Figure 7.
In addition, the quantitative performance comparisons are presented in Table 3. It can be
observed that the FOPD-ESO controller provided the better step response performance.
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Figure 7. Step response comparisons. (a) IOPD-ESO. (b) FOPD-ESO.

Table 3. Step response performances of IOPD-ESO and FOPD-ESO.

Index IOPD-ESO FOPD-ESO

Settling time (s) 0.266 0.207

Overshoot (%) 5.51 3.41

Load increase responses were also tested on the experimental platform. The partial
enlarged curves of the motor speed and q-axis current of the systems using the IOPD-
ESO and FOPD-ESO are plotted in Figure 8. In addition, the quantitative performance
comparisons are presented in Table 4. It can be observed that the control system using the
FOPD-ESO controller had a shorter recovery time.

Table 4. Load disturbance response performances of IOPD-ESO and FOPD-ESO.

Index IOPD-ESO FOPD-ESO

Dynamic speed drop (%) 2.59 2.30

Recovery time (s) 0.122 0.052
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Figure 8. Load disturbance response comparisons. (a) IOPD-ESO. (b) FOPD-ESO.

4.2.2. Comparisons with Some Fractional Order Controllers

Secondly, the proposed control scheme was compared with some commonly used
fractional order controllers. To guarantee fair comparisons, the controllers were designed
according to the same phase margin (ϕm = 60◦). According to (7) and (8), the PMSM speed
servo plant without the ESO-based compensation can be represented as

G(s) =
60Cm/(2π J)

s(Lqs/Ks + 1)
=

187.57
s(0.0039s + 1)

. (38)

Firstly, the fractional order PIλDµ controller was employed for a comparison. The
PIλDµ controller can be represented as

C(s) = Kp

(
1 +

Ki

sλ
+ Kdsµ

)
, (39)

where Kp, Ki and Kd are the proportional, integral and derivative gains, respectively; and λ
and µ are the integral and derivative orders, respectively.

By applying a state transition algorithm (STA)-based tuning method [38], an PIλDµ

controller was designed with the ITAE index adopted as the objective function:

C3(s) = 0.373
(

1 +
27.867
s0.945 + 0.0021s1.085

)
. (40)

Secondly, the fractional order controller based on the internal model control (IMC)
strategy was also employed for comparison. Using a classic tuning method [39], an IMC
controller was designed as follows.

QIMC(s) =
s(Ts + 1)

K(1 + τsξ)
, (41)

where K = 60Cm/(2π J), T = Lq/Ks, τ and ξ are the controller parameters configuring the
frequency characteristic of the servo system. Therefore, the equivalent feedback controller
contained a PD controller and a fractional order integrator:

C4(s) =
QIMC(s)

1−QIMC(s)G(s)
=

1.538
s0.333 (1 + 0.0039s). (42)

Thirdly, as a commonly used, robust fractional order controller, the second generation
CRONE controller was used. According to the CRONE design strategy [40], given the
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design specifications ωc and ϕm, the control system should have nearly the same phase
characteristic as a fractional order integrator around the gain crossover frequency ωc.

β(s) =
(ωc

s

)ν
, (43)

where ν is a fractional order determined by the phase margin ϕm. In addition, the integral
part and low-pass part are introduced into the open-loop transfer function (43) to ensure the
rejection of steady-state error and noise [40]. Therefore, according to the plant model (38)
and the design specifications, the feedback controller was designed as

C5(s) =
2π Jωc

ν

60Cm

(
1 +

ωl
s

)[ 1
sν−1

(
1 +

Lq

Ks
s
)]

1
1 + s/ωh

,

= 0.87
(

1 +
5
s

)[
1

s0.199 (1 + 0.0039s)
]

1
1 + s/500

.
(44)

Step response experiments were implemented, applying the PIλDµ controller C3(s)
(denoted as FOPID), the IMC-based controller C4(s) (denoted as IMC-PID), the CRONE
controller C5(s) (denoted as CRONE) and the proposed controller C1(s) with the ESO
(FOPD-ESO) as the speed controller. The motor speeds and q-axis currents of the systems
using FOPID, IMC-PID, CRONE and FOPD-ESO are plotted in Figure 9. In addition, the
quantitative performance comparisons are presented in Table 5. It can be observed that
FOPD-ESO provided the best step response performance.
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Figure 9. Step response comparisons. (a) FOPID. (b) IMC-PID. (c) CRONE. (d) FOPD-ESO.

Table 5. Step response performance indices of the systems

Index FOPID-STA IMC-PID CRONE FOPD-ESO
Settling time (s) 0.243 0.605 0.452 0.207
Overshoot (%) 12.43 23.77 16.40 3.41

Figure 9. Step response comparisons. (a) FOPID. (b) IMC-PID. (c) CRONE. (d) FOPD-ESO.
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Table 5. Step response performance indices of the systems.

Index FOPID-STA IMC-PID CRONE FOPD-ESO

Settling time (s) 0.243 0.605 0.452 0.207
Overshoot (%) 12.43 23.77 16.40 3.41

Load disturbance response experiments were also implemented. The partial enlarged
curves of the motor speed and q-axis current of the systems using FOPID, IMC-PID,
CRONE and FOPD-ESO are plotted in Figure 10. In addition, the quantitative performance
comparisons are presented in Table 6. It can be observed that FOPD-ESO provided similar
disturbance rejection performance to FOPID, and better performance than IMC-PID and
CRONE.
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Figure 10. Load disturbance response comparisons. (a) FOPID. (b) IMC-PID. (c) CRONE. (d) FOPD-ESO.

Table 6. Load disturbance response performance indices of the systems

Index FOPID IMC-PID CRONE FOPD-ESO

Dynamic speed drop (%) 2.26 6.65 2.42 2.30
Recovery time (s) 0.108 0.372 0.143 0.052

According to the experimental results, the FOPD-ESO control scheme can provide
the optimal step response performance for the PMSM speed servo system and sufficient
rejection to the load disturbances. Moreover, the FOPD-ESO shows better overall control
performance than the existing FOPID, IMC-PID and CRONE controllers.

5. Conclusions

A fractional order composite control scheme for the PMSM speed servo system is
proposed. A ESO-based feedforward compensation is proposed to improve the robustness
and convert the PMSM speed servo plant into a double-integrator model. In addition, a
fractional order PDµ controller is adopted to provide the optimal step response perfor-
mance. A look-up table based synthesis method is proposed to simplify the tuning of the
PDµ controller and make it suitable for actual applications. The dynamic performance and
robustness of the composite control system are demonstrated by simulations and experi-
ments. For other classes of plants, a similar look-up table can be established according to
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Table 6. Load disturbance response performance indices of the systems.

Index FOPID IMC-PID CRONE FOPD-ESO

Dynamic speed drop (%) 2.26 6.65 2.42 2.30
Recovery time (s) 0.108 0.372 0.143 0.052

According to the experimental results, the FOPD-ESO control scheme can provide
the optimal step response performance for the PMSM speed servo system and sufficient
rejection to the load disturbances. Moreover, the FOPD-ESO controller had better overall
control performance than the existing FOPID, IMC-PID and CRONE controllers.

5. Conclusions

A fractional order composite control scheme for the PMSM speed servo system was
proposed. A ESO-based feedforward compensation scheme was proposed to improve the
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robustness and convert the PMSM speed servo plant into a double-integrator model. In
addition, a fractional order PDµ controller was adopted to provide the optimal step response
performance. A look-up table based synthesis method was proposed to simplify the tuning
of the PDµ controller and make it suitable for actual applications. The dynamic performance
and robustness of the composite control system were demonstrated by simulations and
experiments. For other classes of plants, a similar look-up table can be established according
to specific design specifications. The success of the composite control scheme may be
duplicated. For future work, some open issues to be studied include the control and
synthesis strategies to cope with other types of uncertainties and disturbances; the further
investigation of the controllability and optimal control schemes of fractional order systems;
and the engineering applications of the proposed method.
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