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Abstract: In this paper, we consider the problem of estimating the drift parameters in the mixed
fractional Vasicek model, which is an extended model of the traditional Vasicek model. Using the
fundamental martingale and the Laplace transform, both the strong consistency and the asymptotic
normality of the maximum likelihood estimators are studied for all H ∈ (0, 1), H 6= 1/2. On the
other hand, we present that the MLE can be simulated when the Hurst parameter H > 1/2.

Keywords: maximum likelihood estimator; mixed fractional Vasicek model; asymptotic theory;
Laplace transform

1. Introduction

The standard Vasicek models, including the diffusion models based on Brownian
motion and the jump-diffusion models driven by Lévy processes, provide good service in
cases where the data demonstrate the Markovian property and a lack of memory. However,
over the past few decades, numerous empirical studies have found that the phenomenon of
long-range dependence may be observed in the data of hydrology, geophysics, climatology,
telecommunication, economics, and finance. Consequently, several time series models or
stochastic processes have been proposed to capture long-range dependence, both in discrete
time and in continuous time. In the continuous time case, the best-known and widely used
stochastic process that exhibits long-range dependence or short-range dependence is of
course the fractional Brownian motion (fBm), which describes the degree of dependence
by the Hurst parameter. This naturally explains the appearance of fBm in the modeling
of some properties of “real-world” data. As well as in the diffusion model with the fBm,
the mean-reverting property is very attractive to understand volatility modeling in finance.
Hence, the fractional Vasicek model (fVm) becomes the usual candidate to capture some
phenomena of the volatility of financial assets (see, for example, [1–3]). More precisely, the
fVm can be described by the following Langevin equation:

dXt = (α− βXt)dt + γdBH
t , t ∈ [0, T], (1)

where β, γ ∈ R+, α ∈ R, the initial condition is set at X0 = 0, and BH
t , an fBm with Hurst

parameter H ∈ (0, 1), is a zero mean Gaussian process with the covariance:

E
(

BH
t BH

s

)
= RH(s, t) =

1
2

(
|t|2H + |s|2H − |t− s|2H

)
. (2)

The process BH
t is self-similar in the sense that ∀a ∈ R+, BH

at
d
= aH BH

t . It becomes
the standard Brownian motion Wt when H = 1/2 and can be represented as a stochastic
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integral with respect to the standard Brownian motion. When 1/2 < H < 1, it has long-
range dependence in the sense that ∑∞

n=1 E
(

BH
1 (BH

n+1 − BH
n )
)
= ∞. In this case, the positive

(negative) increments are likely to be followed by positive (negative) increments. The
parameter H, which is also called the self-similarity parameter, measures the intensity of
the long-range dependence. Recently, borrowing the idea of [4], these papers [5,6] used the
mixed fractional Vasicek model (mfVm) to describe some phenomena of the volatility of
financial assets, which can be expressed as:

dXt = (α− βXt)dt + γdξt, t ∈ [0, T], X0 = 0. (3)

where β, γ ∈ R+, α ∈ R, and the initial condition is set at X0 = 0. Here, the process of the
so-called mixed fractional Brownian motion ξ = (ξt, t ∈ [0, T]) is defined by ξt = Wt + BH

t ,
H ∈ (0, 1) where W and BH are independent standard and fractional Brownian motions.

When the long-term mean α in (3) is known (without loss of generality, it is assumed
to be zero), (3) becomes the mixed fractional Ornstein–Uhlenbeck process (mfOUp). Using
the canonical representation and spectral structure of the mfBm, the authors of [7] origi-
nally proposed the maximum likelihood estimator (MLE) of β in (3) and considered the
asymptotical theory for this estimator with the Laplace transform and the limit presence
of the eigenvalues of the covariance operator for the fBm (see [8]). Using an asymptotic
approximation for the eigenvalues of its covariance operator, the paper of [9] explained
the mfBm from the viewpoint of spectral theory. Some surveys and a complete literature
related to the parametric and other inference procedures for stochastic models driven by
the mfBm were summarized in a recent monograph of [10,11].

However, in some situations, the long-term mean α in (3) is always unknown. Thus, it
is important to estimate all the drift parameters, α and β, in the mfVm. To the best of our
knowledge, the asymptotic theory of the MLE of α and β has not developed yet; even some
methods for the fractional diffusion cases can be applied in this situation (e.g., see [12]).
This paper fills in the gaps in this area. Using the Girsanov formula for the mfBm, we
introduce the MLE for both α and β. When a continuous record of observations of Xt is
available, both the strong consistency and the asymptotic laws of the MLE are established
in the stationary case for the Hurst parameter H ∈ (0, 1).

In the aspect of simulation, as far as we know, until now, there are few works referring
to the exact experiment for the MLE even in the fractional O-U process. The difficulties
come from the process Qt defined in (9): it is not easy to simulate and also will cost much
time. Here, we try to illustrate that the MLE of the drift parameter in the mixed fractional
O-U process (the same for the Vasicek process) can be achieved when H > 1/2, even if it is
not practical.

The rest of the paper is organized as follows. Section 2 introduces some preliminaries
of the mfBm. Section 3 proposes the MLE for the drift parameters in the mfVm and studies
the asymptotic properties of the MLE for the Hurst parameter range H ∈ (0, 1) in the
stationary case. Section 4 provides the proofs of the main results of this paper. We complete
with the simulation of the drift parameter in Section 5. Some technical lemmas are gathered

in Section 6. We use the following notations throughout the paper: a.s.→, P→, d→, and∼ denote
convergence almost surely, convergence in probability, convergence in distribution, and
asymptotic equivalence, respectively, as T → ∞.

2. Preliminaries

This section is dedicated to some notions that are used in our paper, related mainly to
the integro-differential equation and the Radon–Nikodym derivative of the mfBm. In fact,
mixtures of stochastic processes can have properties quite different from the individual
components. The mfBm drew considerable attention since some of its properties were
discovered in [4,11,13]. Moreover, the mfBm has been proven useful in mathematical
finance (see, for example, [14]). We start by recalling the definition of the main process of
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our work, which is the mfBm. For more details about this process and its properties, the
interested reader can refer to [4,11,13].

Definition 1. An mfBm of the Hurst parameter H ∈ (0, 1) is a process ξ = (ξt, t ∈ [0, T])
defined on a probability space (Ω,F , P) by:

ξt = Wt + BH
t ,

where W = (Wt, t ∈ [0, T]) is the standard Brownian motion and BH = (BH
t , t ∈ [0, T]) is the

independent fBm with the Hurst exponent H ∈ (0, 1) and the covariance function:

K(s, t) = EBH
t BH

s =
1
2

(
t2H + s2H − |t− s|2H−1

)
.

Let us observe that the increments of the mfBm are stationary and ξt is a centered
Gaussian process with the covariance function:

E
[
ξH

t ξH
s

]
= min{t, s}+ 1

2

[
t2H + s2H − |t− s|2H

]
, s, t > 0 .

In particular, for H > 1/2, the increments of the mfBm exhibit long-range dependence,
which makes it important in modeling volatility in finance. Let F ξ = (F ξ

t , t ∈ [0, T]). We
use the canonical representation suggested in [13], based on the martingale:

Mt = E(Wt|F ξ
t ), t ∈ [0, T]. (4)

To this end, let us consider the integro-differential equation:

g(s, t) + H
d
ds

∫ t

0
g(r, t)|r− s|2H−1sign(s− r)dr = 1, 0 < s 6= t ≤ T. (5)

By Theorem 5.1 in [13], this equation has a unique solution for any H ∈ (0, 1). It
is continuous on [0, T], and the F ξ-martingale defined in (4) and its quadratic variation
〈M〉t, t ∈ [0, T] satisfy:

Mt =
∫ t

0
g(s, t)dξs, 〈M〉t =

∫ t

0
g(s, t)ds, t ≥ 0, t ∈ [0, T], (6)

where the stochastic integral is defined for L2(0, T) deterministic integrands in the usual
way. By Corollary 2.9 in [13], the process ξ admits canonical representation:

ξt =
∫ t

0
G(s, t)dMs, t ∈ [0, T] (7)

with:

G(s, t) = 1− d
d〈M〉s

∫ t

0
g(r, s)dr. (8)

Remark 1. For H > 1/2, the equation g(s, t) is a Wiener–Höpfner equation:

g(s, t) + H(2H − 1)
∫ t

0
g(r, t)|r− s|2H−2dr = 1, 0 ≤ s ≤ t ≤ T,

and the quadratic variation 〈M〉 is:

〈M〉t =
∫ t

0
g2(s, s)ds
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Let us mention that the canonical representation (6) and (7) can be also used to derive
an analogue of Girsanov’s theorem, which will be the key tool for constructing the MLE.

Corollary 1. Consider a process Y = (Yt, t ∈ [0, T]) defined by:

Yt =
∫ t

0
f (s)ds + ξt, t ∈ [0, T] ,

where f = ( f (t), t ∈ [0, T]) is a process with a continuous path and E
∫ T

0 | f (t)|dt < ∞, adapted to
a filtration G = (Gt) with respect to a martingale M. Then, Y admits the following representation:

Yt =
∫ t

0
G(s, t)dZs

with G(s, t) defined in (8), and the process Z = (Zt, t ∈ [0, T]) can be written as:

Zt =
∫ t

0
g(s, t)dYs, t ∈ [0, T] .

Let us mention that Zt is a G-martingale with the Doob–Meyer decomposition:

Zt = Mt +
∫ t

0
Φ(s)d〈M〉s ,

where:

Φ(t) =
d

d〈M〉t

∫ t

0
g(s, t) f (s)ds.

In particular, FY
t = FZ

t , P− a.s. for all t ∈ [0, T]. Moreover, if:

E exp
{
−
∫ T

0
Φ(t)dMt −

1
2

∫ T

0
Φ2(t)d〈M〉t

}
= 1,

then the measures µξ and µY are equivalent and the corresponding Radon–Nikodym derivative is
given by:

dµY

dµξ
(Y) = exp

{∫ T

0
Φ̂(t)dZt −

1
2

∫ T

0
Φ̂2(t)d〈M〉t

}
,

where Φ̂(t) = E(Φ(t)|FY
t ).

3. Estimators and Asymptotic Behaviors

Now, we return to the model (3); similar to the previous corollary, we define:

Zt =
∫ t

0
g(s, t)dXs, Qt =

d
d〈M〉t

∫ t

0
g(s, t)Xsds, t ∈ [0, T] . (9)

From the following Lemma 10 and Equation (44), we know:

Qt =
α

β
− α

β

d
d〈M〉t

∫ t

0
g(s, t)e−βsds + QU

t ,

where QU
t is Qt when α = 0. By Theorem 2.4 of [13] and Lemma 2.1 of [7], we know

the derivative of the martingale bracket d〈M〉t/dt exists and is continuous, as well as the
process QU

t admits the representation as the stochastic integral with respect to auxiliary
observation process Zt. That is to say, the process Qt is well defined.

Then, using the quadratic variation of Z on [0, T], we can estimate γ almost surely from
any small interval as long as we have a continuous observation of the process. Moreover,
the estimation of H in the mfBm was performed in [15]. As a consequence, for further
statistical analysis, we assumed that H and γ are known, and without loss of generality,
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from now on, we suppose that γ is equal to one. For γ = 1, our observation will be
Z = (Zt, t ∈ [0, T]), where Zt satisfies the following equation:

dZt = (α− βQt)d〈M〉t + dMt, t ∈ [0, T]. (10)

Applying the analog of the Girsanov formula for an mfBm, we can obtain the following
likelihood ratio and the explicit expression of the likelihood function:

LT(α, β, ZT) = exp
(∫ T

0
(α− βQt)dZt −

1
2

∫ T

0
(α− βQt)

2d〈M〉t
)

. (11)

3.1. Only One Parameter Is Unknown

Denote the log-likelihood equation by Λ(ZT) = logLT(α, β, ZT). First of all, if we
suppose α is known and β > 0 is the unknown parameter, then the MLE β̃T is defined by:

β̃T =

∫ T
0 αQtd〈M〉t −

∫ T
0 QtdZt∫ T

0 Q2
t d〈M〉t

(12)

then using (10) for all H ∈ (0, 1), H 6= 1/2, the estimator error can be presented by:

β̃T − β =

∫ T
0 QtdMt∫ T

0 Q2
t d〈M〉t

. (13)

We have the following results:

Theorem 2. For H > 1/2, √
T(β̃T − β)

d−→ N (0, 2β)

and for H < 1/2,
√

T(β̃T − β)
d−→ N

(
0,

2β2

2α2 + β

)
Now, we suppose β is known and α is the parameter to be estimated. Then, the MLE

α̃T is:

α̃T =
ZT + β

∫ T
0 Qtd〈M〉t
〈M〉T

. (14)

Still with (10), the estimator error will be:

α̃− α =
MT
〈M〉T

. (15)

The asymptotical property is the same, as well as the linear case, which was demon-

strated in [7]. That is, for H > 1/2, T1−H(α̃T − α)
d−→ N (0, vH) where vH is a constant

defined in Theorem 3 and for H < 1/2,
√

T(α̃− α)
d−→ N (0, 1).

3.2. Two Parameters Unknown

Then, taking the derivatives of the log-likelihood function, Λ(ZT), with respect to α
and β and setting them to zero, we can obtain the following results:

∂Λ(ZT)
∂α = ZT − α〈M〉T + β

∫ T
0 Qtd〈M〉t = 0

∂Λ(ZT)
∂β = −

∫ T
0 QtdZt + α

∫ T
0 Qtd〈M〉t − β

∫ T
0 Q2

t d〈M〉t
(16)
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The MLE α̂T and β̂T is a solution of the equation of (16), and the maximization can be
confirmed when we check the second partial derivative of Λ(ZT) by the Cauchy–Schwarz
inequality. Now, the solution of (16) gives us:

α̂T =

∫ T
0 QtdZt

∫ T
0 Qtd〈M〉t − ZT

∫ T
0 Q2

t d〈M〉t(∫ T
0 Qtd〈M〉t

)2
− 〈M〉T

∫ T
0 Q2

t d〈M〉t

and:

β̂T =
〈M〉T

∫ T
0 QtdZt − ZT

∫ T
0 Qtd〈M〉t(∫ T

0 Qtd〈M〉t
)2
− 〈M〉T

∫ T
0 Q2

t d〈M〉t
.

From the expression of Z = (Zt, t ∈ [0, T]), we obtain that the error term of the MLE
can be written as:

α̂T − α =

∫ T
0 QtdMt

∫ T
0 Qtd〈M〉t −MT

∫ T
0 Q2

t d〈M〉t(∫ T
0 Qtd〈M〉t

)2
− 〈M〉T

∫ T
0 Q2

t d〈M〉t
(17)

and:

β̂T − β =
〈M〉T

∫ T
0 QtdMt −MT

∫ T
0 Qtd〈M〉t(∫ T

0 Qtd〈M〉t
)2
− 〈M〉T

∫ T
0 Q2

t d〈M〉t
. (18)

We can now describe the asymptotic laws of α̂T and β̂T for H ∈ (0, 1), but H 6= 1/2.

Theorem 3. For H > 1/2 and as T → ∞, we have:

√
T
(

β̂T − β
) d−→ N (0, 2β) , (19)

and:
T1−H(α̂T − α)

d−→ N (0, vH) , (20)

where vH = 2HΓ(H+1/2)Γ(3−2H)
Γ(3/2−H)

.

Theorem 4. In the case of H < 1/2, the maximum likelihood estimator of β̂T has the same property
of the asymptotical normality presented in (19), and for α̂T , we have:

√
T(α̂T − α)

d−→ N (0, 1 +
2α2

β
) (21)

Remark 2. From the previous theorem, we can see that when H > 1/2, whether one parameter is
unknown or two parameters are unknown together, the asymptotical normality of the estimator error
has the same result, and they are also the same, as well as the linear case and Ornstein–Uhlenbeck
process with the pure fBm with Hurst parameter H > 1/2. However, for H < 1/2, the situation
changes, and these differences come from the limit representation of the quadratic variation of the
martingale M = (Mt, 0 ≤ t ≤ T).

Now, we consider the joint distribution of the estimator error. For H < 1/2, if we

consider ϑ =

(
α
β

)
as the two-dimensional unknown parameter, then the following

theorem gives us the joint distribution of the estimator error of ϑ̂T :

Theorem 5. The maximum likelihood estimator ϑ̂T =

(
α̂T
β̂T

)
is asymptotically normal:

√
T
(
ϑ̂T − ϑ

) d−→ N (0, I−1(ϑ)). (22)
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where 0 =

(
0
0

)
and I(ϑ) =

(
1 − α

β

− α
β

1
2β + α2

β2

)
is the matrix of the Fisher information.

Remark 3. From Theorem 4, we can see that the convergence rates of α̂T and β̂T are the same, and
we can use the central limit theorem of the martingale in the proof. On the contrary, for H > 1/2,
when the function g(s, t) defined in (5) has no explicit formula, we cannot use the method in [16] to
obtain the joint distribution of ϑ̂T . In fact, the convergence rates of α̂T and β̂T are different, which
causes many difficulties, and we leave it for further study.

In the above discussions, we were concerned with the asymptotical laws of the estima-
tors; however, even in [7] with α = 0, the authors did not consider the strong consistency
of β̂T . In what follows, we conclude that β̂T converges to β almost surely.

Theorem 6. For H ∈ (0, 1), H 6= 1/2, the estimators of β̂T have strong consistency, that is, as
T → ∞,

β̂T
a.s.−→ β. (23)

Remark 4. For the estimator α̂T , the strong consistency is clear when β = 0 and the same proof
for β is unknown, and that is why we do not write this conclusion.

4. Proofs of the Main Results
4.1. Proof of Theorem 2

From (13), we have:
√

T(β̃T − β) =

1√
T

∫ T
0 QtdMt

1
T
∫ T

0 Q2
t d〈M〉t

.

In fact, the process
(∫ t

0 QsdMs, 0 ≤ t ≤ T
)

is a martingale. From Lemma 13, when
H > 1/2,

1
T

∫ T

0
Q2

t d〈M〉t
P−→ 1

2β

and from Equation (38) in Proof of Theorem 5, when H < 1/2:

1
T

∫ T

0
Q2

t d〈M〉t
P−→
(

α

β

)2
+

1
2β

.

The central limit theorem of the martingale (see [17]) achieves the proof.

4.2. Proof of Theorem 3

First, we consider the asymptotical normality of β̂T . Using (18), we have:

√
T
(

β̂T − β
)
=

1√
T

∫ T
0 QtdMt − MT

〈M〉T
1√
T

∫ T
0 Qtd〈M〉t(

1√
T〈M〉T

∫ T
0 Qtd〈M〉t

)2
− 1

T
∫ T

0 Q2
t d〈M〉t

, (24)

where MT is a centered Gaussian random variable with variation 〈M〉T . Using
Lemmas 11 and 12, we can obtain:

MT
〈M〉T

1√
T

∫ T

0
Qtd〈M〉t

P−→ 0 , (25)

and: (
1√

T〈M〉T

∫ T

0
Qtd〈M〉t

)2
P−→ 0 . (26)
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Combining (24)–(26) with Lemma 13, we can obtain (19).
Now, we deal with the convergence of α̂T . From (17), we can easily have:

T1−H(α̂T − α) =

1√
T

∫ T
0 QtdMt

T1−H

〈M〉T
√

T

∫ T
0 Qtd〈M〉t − T1−H MT

〈M〉T
1
T
∫ T

0 Q2
t d〈M〉t(

1√
T〈M〉T

∫ T
0 Qtd〈M〉t

)2
− 1

T
∫ T

0 Q2
t d〈M〉t

. (27)

It is worth noting that:

1√
T

∫ T

0
QtdMt

T1−H

〈M〉T
√

T

∫ T

0
Qtd〈M〉t

P−→ 0 , (28)

and: (
1√

T〈M〉T

∫ T

0
Qtd〈M〉t

)2
P−→ 0. (29)

Moreover, from [7], we can see that:

T1−H MT
〈M〉T

d−→ N (0, vH), (30)

where vH = 2HΓ(H+1/2)Γ(3−2H)
Γ(3/2−H)

. Finally, combining (27)–(30), we can obtain (20).

4.3. Proof of Theorem 4

For β̂T , let us relook at Equation (24) with H < 1/2. First of all, let us develop the
denominator,(∫ T

0
Qtd〈M〉t

)2

=

(
α

β

)2
〈M〉2T +

(
α

β

)2(∫ T

0
V(t)d〈M〉t

)2

+

(∫ T

0
QU

t d〈M〉t
)2

− 2
(

α

β

)2
〈M〉T

∫ T

0
V(t)d〈M〉t + 2

(
α

β

)
〈M〉T

∫ T

0
QU

t d〈M〉t

− 2
(

α

β

) ∫ T

0
V(t)d〈M〉t

∫ T

0
QU

t d〈M〉t

where V(t) and QU
t are defined in Lemma 10. On the other hand:

∫ T

0
Q2

t d〈M〉t =

(
α

β

)2
〈M〉T +

(
α

β

)2 ∫ T

0
V2(t)d〈M〉t +

∫ T

0
(QU

t )
2d〈M〉t

− 2
(

α

β

)2 ∫ T

0
V(t)d〈M〉t + 2

(
α

β

) ∫ T

0
QU

t d〈M〉t − 2
(

α

β

) ∫ T

0
V(t)QU

t d〈M〉t.

Consequently, we have:

1
T〈M〉T

(∫ T

0
Qtd〈M〉t

)2

− 1
T

∫ T

0
Q2

t d〈M〉t

=
1

T〈M〉T

(
α

β

)2(∫ T

0
V(t)d〈M〉t

)2

+
1

T〈M〉T

(∫ T

0
QU

t d〈M〉t
)2

− 2
T〈M〉T

(
α

β

) ∫ T

0
V(t)d〈M〉t

∫ T

0
QU

t d〈M〉t −
1
T

∫ T

0
(QU

t )
2d〈M〉t

− 1
T

(
α

β

)2 ∫ T

0
V2(t)d〈M〉t +

2
T

(
α

β

) ∫ T

0
V(t)QU

t d〈M〉t.

We study this one by one. From Lemmas 9, 11, and 14, we have:
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1
T〈M〉T

(
α

β

)2(∫ T

0
V(t)d〈M〉t

)2

→ 0,
1
T

(
α

β

)2 ∫ T

0
V2(t)d〈M〉t → 0, T → 0.

From [7], we can easily obtain:

1
T

∫ T

0
(QU

t )
2d〈M〉t

P−→ 1
2β

.

Using Lemma 15, we have:

1
T〈M〉T

(∫ T

0
Qtd〈M〉t

)2

− 1
T

∫ T

0
Q2

t d〈M〉t
P−→ 1

2β
. (31)

Now, we consider the numerator,

1√
T

∫ T

0
QtdMt −

Mt

〈M〉T
√

T

∫ T

0
Qtd〈M〉t = −

(
α

β

)
1√
T

∫ T

0
V(t)dMt +

1√
T

∫ T

0
QU

t dMt

+
MT

〈M〉T
√

T

∫ T

0

((
α

β

)
V(t)−QU

t

)
d〈M〉t.

From the previous proof, it is not difficult to show that:

−
(

α

β

)
1√
T

∫ T

0
V(t)dMt

P−→ 0,
MT

〈M〉T
√

T

∫ T

0

((
α

β

)
V(t)−QU

t

)
d〈M〉t

P−→ 0, T → ∞.

With the fact in [7]:
1√
T

∫ T

0
QU

t dMt
d−→ N

(
0,

1
2β

)
,

we have:
1√
T

∫ T

0
QtdMt −

Mt

〈M〉T
√

T

∫ T

0
Qtd〈M〉t

d−→ N
(

0,
1

2β

)
. (32)

Then, combining Equation (31) with (32), it is easy to obtain:

√
T
(

β̂T − β
) d−→ N (0, 2β).

Now, we look at α̂T . In fact:

√
T(α̂T − α) =

1
〈M〉T

√
T

∫ T
0 QtdMt

∫ T
0 Qtd〈M〉t − 1√

T
MT
〈M〉T

∫ T
0 Q2

t d〈M〉t(
1√

T〈M〉T

∫ T
0 Qtd〈M〉t

)2
− 1

T
∫ T

0 Q2
t d〈M〉t

.

We observe that the denominator is the same formula in β and it adapts to Equation (31),
so we only need to consider the numerator. From Lemmas 11 and 15, it is easy to know:

1
〈M〉T

∫ T

0
Qtd〈M〉t

a.s.−→ α

β
. (33)

For the numerator,

1
〈M〉T

√
T

∫ T

0
QtdMt

∫ T

0
Qtd〈M〉t =

T
〈M〉T

(
1√
T

∫ T

0
QtdMt

1
T

∫ T

0
Qtd〈M〉t

)
.
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With Lemmas 9, 11, and 14:

1
〈M〉T

√
T

∫ T

0
QtdMt

∫ T

0
Qtd〈M〉t −

(
α

β

)2 MT√
T

d−→ α

β
N
(

0,
1

2β

)
(34)

On the other hand:

1√
T

MT
〈M〉T

∫ T

0
Q2

t d〈M〉t −
(

α

β

)2 MT√
T

d−→ 1
2β
N (0, 1). (35)

Further study tells us that the two convergences in the distribution of (34) and (35)
come from the terms 1√

T

∫ T
0 QU

t dMt and 〈M〉T√
T

, when M = (Mt, 0 ≤ t ≤ T) is a martingale,
then these two terms are asymptotically independent, and then, from Equations (33)–(35),
we can easily obtain:

√
T(α̂T − α)

d−→ N
(

0,
2α2

β
+ 1
)

.

4.4. Proof of Theorem 5

From Equations (17) and (18), we have:

ϑ̂T − ϑ =

(
α̂T
β̂T

)
−
(

α
β

)
= Q−1

T RT

where:

RT =

(
MT

−
∫ T

0 QtdMt

)
, QT =

(
〈M〉T −

∫ T
0 Qtd〈M〉t

−
∫ T

0 Qtd〈M〉t
∫ T

0 Q2
t d〈M〉t

)
.

We can see that Rt, 0 ≤ t ≤ T is a martingale and Qt is its quadratic variation.
Strictly speaking, in order to use the central limit theorem for the martingale (see [17]),
it is better for us if we can compute the Laplace transform for QT to achieve the proof,
but as the quadratic formula of

∫ T
0

(
QU

t
)2d〈M〉t was verified in [7], here, we just study the

asymptotical properties of every component of QT .
First of all, from [7], we know:

lim
T→∞

1
T
〈M〉T = 1. (36)

On the other hand, from Lemmas 10, 11, and 15, we have:

1
T

∫ T

0
Qtd〈M〉t

P−→ α

β
. (37)

Finally, from Lemmas 10, 11, and 15 and [7], we have:

1
T

∫ T

0
Q2

t d〈M〉t
P−→ 1

2β
+

α2

β2 . (38)

The limits of (36)–(38) achieve the proof.

Remark 5. In fact, it is easy to calculate:

I−1(ϑ) =

(
1 + 2α2

β 2α

2α 2β

)
which indicates Theorem 4.
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4.5. Proof of Theorem 6

First of all, from Lemma 2.2 of [7], for every fixed µ ∈ R and fixed T, the Laplace
transform:

E
(
−µ

∫ T

0

(
QU

t

)2
d〈M〉t

)
< ∞. (39)

We prove the strong consistency of β̂T . For α̂T , the proof is similar. To simplify the
notation, we first assumed α = 0. Then, using the fact α = 0, we can write:

β̂T − β =

∫ T
0 QU

t dMt∫ T
0

(
QU

t
)2d〈M〉t

.

With (39) and similar to Proposition of 2.5 in [18], due to the strong law of large
numbers, to obtain the convergence almost surely, it suffices to prove:∫ T

0

(
QU

t

)2
d〈M〉t

a.s.−→ ∞ . (40)

From the Appendix of [19], if we define:

KT(µ) =
1
T

log E exp
(
−µ

∫ T

0

(
QU

t

)2
d〈M〉t

)
,

then:

lim
T→∞

KT(µ) =
β

2
−
√

β2

4
+

µ

2
,

for all µ > − β2

2 . When µ > 0, the limit of the Laplace transform can be written as:

lim
T→∞

E
(
−µ

∫ T

0

(
QU

t

)2
d〈M〉t

)
= 0 ,

which achieves (40).
Now, we turn to the case of α 6= 0: in this situation, using (18), we have:

β̂T − β =
〈M〉T

∫ T
0 QtdMt(∫ T

0 Qtd〈M〉t
)2
− 〈M〉T

∫ T
0 Q2

t d〈M〉t
−

MT
T〈M〉T

∫ T
0 Qtd〈M〉t(

1√
T〈M〉T

∫ T
0 Qtd〈M〉t

)2
− 1

T
∫ T

0 Q2
t d〈M〉t

For the first term of the above equation, we can write:

〈M〉T
∫ T

0 QtdMt(∫ T
0 Qtd〈M〉t

)2
− 〈M〉T

∫ T
0 Q2

t d〈M〉t
=

1(∫ T
0 Qtd〈M〉t

)2

〈M〉T
∫ T

0 QtdMt
−
∫ T

0 Q2
t d〈M〉t∫ T

0 QtdMt

.

From the proof of Lemma 13 and Equation (40), we see immediately that:∫ T
0 Q2

t d〈M〉t∫ T
0 QtdMt

−→ ∞.

With the previous proofs, we obtain that:(∫ T
0 Qtd〈M〉t

)2

〈M〉T
∫ T

0 QtdMt
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is bounded. This shows that the first term tends to zero almost surely, as well as the second
term. Hence, H > 1/2, and we have the strong consistency. The result for H < 1/2 can be
proven with the same method, so we do not present it again.

5. Simulation Study
5.1. Numerical Solution of ġ(s, t)

From the construction of the MLE of the two parameters α and β, we found that the
procedure of the simulation will be the same for these two. In order to reduce the time of
the simulation, in this part, we only considered the mixed fractional O-U case, that is α = 0
and defined in (43):

dUt = −βUtdt + dξt, t ∈ [0, T], U0 = 0.

Now:

β̂T − β = −
∫ T

0 QU
t dMt∫ T

0

(
QU

t
)2d〈M〉t

where QU
t is defined in (45):

QU
t =

d
d〈M〉t

∫ t

0
g(s, t)Usds.

a direct computation leads to:

QU
t =

dt
d〈M〉t

d
dt

∫ t

0
g(s, t)Usds =

1
g2(t, t)

(
g(t, t)Ut +

∫ t

0
ġ(s, t)Usds

)
,

and now, the only new thing is the numerical solution of ġ(s, t) = d
dt g(s, t). In fact, we

have two methods to find the numerical solution of ġ(s, t): first of all, we can first find the
solution of g(s, t) and g(s, t− ∆t) where ∆t is a small enough positive constant, then we
calculate:

g(s, t− ∆t)− g(s, t)
∆t

.

However, with this method, we need two different divisions, and how to choose
∆t is also a problem. Therefore, we chose the second method—the explicit formula of
ġ(s, t) from Equation (5). However, when H < 1/2, the integral and the difference are not
interchangeable, so we only consider H > 1/2 and:

ġ(s, t) + H(2H − 1)
∫ t

0
ġ(r, t)|r− s|2H−2dr = −H(2H − 1)g(t, t)|s− t|2H−2, 0 ≤ s < t ≤ T. (41)

The following is the procedure of the numerical solution of ġ(s, t). For every t fixed,
we divide the interval [0, t] into n equal parts, and we denote every point 0 = s1 < s2 <
· · · < sn = n−1

t , then the distance will be 1/n. With Equation (41), for every si, we have:

lim
n→∞

ġ(si, t) +
H(2H − 1)

n

n−1

∑
j=0

ġ(sj, t)|sj − si|2H−2 = −H(2H − 1)g(t, t)|si − t|2H−2.

From the definition of the Riemann integral, for j = i when n → ∞, the term |sj −
si|2H−2 can be negligible. Therefore, we have the following relationship for the vector
g = (g(s1, t), · · · g(sn, t))∗.

Lemma 7. With the previous definition, when n→ ∞,

lim
n→∞

(
Id +

H(2H − 1)
n

A
)

g = −H(2H − 1)g(t, t)b

where A is an n× n matrix with Ai,i = 0 and Ai,j = |sj − si|2H−2 and the vector b is defined by
b = (|s1 − t|2H−2, · · · , |sn − t|2H−2)∗.
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From this lemma, we have the numerical solution of the function g(s, t) for t fixed
with the formula of g:

g ∼ −H(2H − 1)
(

Id +
H(2H − 1)

n
A
)−1

g(t, t)b.

Even if we do not have the explicit solution of g(t, t), we can use its numerical
result with the probability method from [20]. In Figure 1, we simulate the results for
t = 1, 2, · · · , 10 and H = 0.8 of ġ(s, t).

Figure 1. the solutions of ġ(s, t) for t = 1, 2, 3, · · · , 10 when H = 0.8.

Then, one may ask: Is our simulation reasonable or not? Of course, we can verify
this with the method of the derivative directly, but as we mentioned before, this is very
complicated. Notice that when H > 1/2:

g2(t, t) =
d
dt

∫ t

0
g(s, t)ds = g(t, t) +

∫ t

0
ġ(s, t)ds. (42)

From (42), we can compare the two numerical results: g2(t, t)− g(t, t) and the integral∫ t
0 ġ(s, t)ds; if they are nearby, we can say that our simulation is reasonable. We divide all

the intervals with n=5000 for every t fixed, and the following are the numerical results:

• H = 2/3, t = 1, g2(t, t)− g(t, t) = −0.233542,
∫ t

0 ġ(s, t)ds = −0.217080;
• H = 2/3, t = 5, g2(t, t)− g(t, t) = −0.249744,

∫ t
0 ġ(s, t)ds = −0.232879;

• H = 2/3, t = 10, g2(t, t)− g(t, t) = −0.248964,
∫ t

0 ġ(s, t)ds = −0.232367;
• H = 0.8, t = 1, g2(t, t)− g(t, t) = −0.241762,

∫ t
0 ġ(s, t)ds = −0.240436;

• H = 0.8, t = 5, g2(t, t)− g(t, t) = −0.238866,
∫ t

0 ġ(s, t)ds = −0.237451;
• H = 0.8, t = 10, g2(t, t)− g(t, t) = −0.218105,

∫ t
0 ġ(s, t)ds = −0.216969.

We can see that the left side and the right side of (42) are almost the same, and we can
say our simulation is reasonable.

Remark 6. When we cannot find the convergence rate of the numerical solution of g(s, t) with the
probability method presented in [20], the same problem exists for ġ(s, t).

5.2. Procedure of The Simulation of β̂T

In this part, we present the simulation of the MLE step by step:
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• To obtain our estimator, first of all, we need to simulate the path of the mixed frac-
tional Ornstein–Uhlenbeck process. Different from the general stochastic differential
equation, we have the explicit formula of Ut defined in (43):

Ut = e−βt
∫ t

0
eβsdξs, 0 ≤ t ≤ T.

Then, with the numerical result of g(s, t), we can easily obtain the path of the process
of ZU

t =
∫ t

0 g(s, t)dUs;
• In the second step, we need the fundamental martingale Mt =

∫ t
0 g(s, t)dξs and the

important process QU
t = 1

g2(t,t)

(
g(t, t)Ut +

∫ t
0 ġ(s, t)Usds

)
;

• With all these prepared, we use the exact formula:

β̂T =

∫ T
0 QU

t dZU
t∫ T

0

(
QU

t
)2d〈M〉t

.

The asymptotical normality of the estimator ϑ̂T is presented in Figure 2 for ϑ = 0.2,
H = 2/3, and T = 100. Even in the figure, ϑ̂T still has a bias, but it almost satisfies the
property:

β̂T − β ∼ N (0, 2β).

Figure 2. asymptotical normality of β̂T − β when β = 0.2, H = 2/3, and T = 100.

Remark 7. Compared with the previous estimator, the MLE of course is a good estimator, but why
do we not suggest it? First of all, when we take the observation distance T = 10, it is far from the
theoretical result. To obtain a reasonable result, at least, we put T = 100; however, this is very time
consuming. On the contrary, in [21], we presented a practical estimator, and we just chose a small
T and took little time. In general, if one wants to obtain the drift estimator, we do not suggest the
MLE, but the previous practical estimator.



Fractal Fract. 2022, 6, 44 15 of 19

6. Auxiliary Results

This section contains some technical results needed in the proofs of the main theorems
of the paper. First, we introduce two important results from [7]:

Lemma 8. For H > 1/2, we have:

d
dT
〈M〉T ∼ T1−2H ,

(
d

dT
log

d
dT
〈M〉T

)2
∼ T−2, T → ∞.

This is Lemma 2.5 from [7].

Lemma 9. For H < 1/2, we have:

d
dT
〈M〉T ∼ const.,

(
d

dT
log

d
dT
〈M〉T

)2
∼ T−2, T → ∞.

This is Lemma 2.6 from [7].
The following lemma shows the relationship between the mfOUp and mfVm.

Lemma 10. Let U = (Ut, 0 ≤ t ≤ T) be an mfOUp with the drift parameter β:

dUt = −βUtdt + dξt, t ∈ [0, T], U0 = 0 . (43)

Then, we have:
Xt =

α

β
− α

β
e−βt + Ut, t ∈ [0, T] .

Moreover, we have the development of Qt with:

Qt =
α

β
− α

β
V(t) + QU

t , (44)

where:

V(t) =
d

d〈M〉t

∫ t

0
g(s, t)e−βsds, QU

t =
d

d〈M〉t

∫ t

0
g(s, t)Usds . (45)

Proof. In fact, the mixed fractional Vasicek process has a unique solution with the initial
value X0 = 0:

Xt =
α

β

(
1− e−βt

)
+
∫ t

0
e−β(t−s)dξs.

On the other hand, the mixed O-U process Ut with U0 = 0 is defined by:

Ut = e−βt
∫ t

0
eβsdξs.

The equality (44) is immediate. For the equation (44), we only need to take the integral
and the derivative on the two sides of (44).

Next, we present some limit results.

Lemma 11. For H ∈ (0, 1) and H 6= 1/2, as T → ∞, we have:∫ T

0
V(t)d〈M〉t ∼ O(1). ,

where V(t) is defined in (45).

Proof. From the definition of V(t), we have:∫ T

0
V(t)d〈M〉t =

∫ T

0
g(s, T)e−βsds.

The condition 0 ≤ g(s, t) ≤ 1 achieves the proof.
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Lemma 12. For H > 1/2, as T → ∞, we have:

1√
T〈M〉T

∫ T

0
QU

t d〈M〉t
P−→ 0 .

Proof. A standard calculation yields:

E
(∫ T

0
QU

t d〈M〉t
)2

= E
(∫ T

0
g(t, T)Utdt

)2

=
∫ T

0

∫ T

0
g(s, T)g(t, T)E(UsUt)dsdt

≤
∫ T

0
e−2β(T−t)dt + CH,β H(2H − 1)

∫ T

0

∫ T

0
g(t, T)g(s, T)|t− s|2H−2dsdt

=
∫ T

0
e−2β(T−t)dt + CH,β

∫ T

0
(1− g(s, T))g(s, T)ds

=
1

2β

(
1− e−2βT

)
+ 2CH,β〈M〉T .

From Lemma 8,

lim
T→∞

e−2βT

T〈M〉T
= 0.

Now, with the Chebyshev inequality, ∀ε > 0:

P

(
1√

T〈M〉T

∫ T

0
QU

t d〈M〉t ≥ ε

)
≤

E
(∫ T

0 QU
t d〈M〉t

)2

T〈M〉Tε2
T→∞−−−→ 0,

which implies the desired result.

Lemma 13. Let H > 1/2; as T → ∞, we have:

1
T

∫ T

0
Q2

t d〈M〉t
P−→ 1

2β
. (46)

Moreover, from the martingale convergence theorem, we have:

1√
T

∫ T

0
QtdMt

d−→ N
(

0,
1

2β

)
. (47)

Proof. From the definition of Qt, we can write Q2
t as:

Q2
t =

(
α

β
− α

β
V(t) + QU

t

)2

=

(
α

β

)2
+

(
α

β

)2
V2(t) + (QU

t )
2 − 2

(
α

β

)2
V(t) +

2α

β
QU

t −
2α

β
V(t)QU

t . (48)

Using (48), we can write our target quantity as:

1
T

∫ T

0
Q2

t d〈M〉t =
1
T

∫ T

0

(
α

β

)2
d〈M〉t +

1
T

∫ T

0

(
α

β

)2
V2(t)d〈M〉t +

1
T

∫ T

0

(
QU

t

)2
d〈M〉t

−2
1
T

∫ T

0

(
α

β

)2
V(t)d〈M〉t +

1
T

∫ T

0

(
2α

β
QU

t

)
d〈M〉t

− 1
T

∫ T

0

(
2α

β
V(t)QU

t

)
d〈M〉t . (49)
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We consider the above six integrals separately. First, as T → ∞, from Lemma 8,

1
T

∫ T

0

(
α

β

)2
d〈M〉t =

(
α

β

)2 〈M〉T
T

a.s.−→ 0 . (50)

Now, we deal with the second term in (49). From Lemmas 8 and 11, we know
V(t) ∼ o(t2H−2), t→ ∞. Now, we have:

lim
T→∞

1
T

∫ T

0
V2(t)dt = 0 (51)

and:

lim
T→∞

1
T

∫ T

0
V(t)d〈M〉t = 0. (52)

From [7], as T → ∞, we have

1
T

∫ T

0
(QU

t )
2d〈M〉t

P−→ 1
2β

. (53)

Next, from the proof of Lemma 12 and the Borel–Cantelli theorem, as T → ∞, we
obtain:

1
T

∫ T

0
QU

t d〈M〉t
a.s.−→ 0 . (54)

With the Cauchy–Schwarz inequality, (51) and (53), we obtain:

∣∣∣∣ 1
T

∫ T

0
V(t)QU

t d〈M〉t
∣∣∣∣ ≤

√
1
T

∫ T

0
V2(t)d〈M〉t

1
T

∫ T

0
(QU

t )
2d〈M〉t

P−→ 0. (55)

Finally, the convergence in the probability of (46) can be obtained by (50)–(55).
For the convergence of (47), since the process

∫ t
0 Qsd〈M〉, t ∈ [0, T] is a martingale

and its quadratic variance is
∫ t

0 Q2
s d〈M〉s, t ∈ [0, T], we can obtain (47) by the martingale

convergence theorem.

The following are the results for H < 1/2. When Lemma 11 is also available for all
H ∈ (0, 1), then:

Lemma 14. For H < 1/2, we have:

V(t) ∼ O(1/t), t→ ∞.

Proof. ∫ T

0
V(t)d〈M〉t =

∫ T

0

(
V(t)

d〈M〉t
dt

)
dt ∼ Const.

The result is clear with Lemma 9.

Now, we deal with the difficulty of the integral of QU
t :

Lemma 15. For H < 1/2 we have:

1
T〈M〉T

(∫ T

0
QU

t d〈M〉t
)2

=
1

T〈M〉T

(∫ T

0
g(s, T)Usds

)2
a.s.−→ 0

and:
2
T

(
α

β

) ∫ T

0
V(t)QU

t d〈M〉t
a.s.−→ 0

Proof. ∫ T

0
QU

t d〈M〉t =
∫ T

0

d
d〈M〉t

∫ t

0
g(s, t)Usdsd〈M〉t =

∫ T

0
g(t, T)Utdt
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We still consider the integral:∫ T

0

∫ T

0
g(s, T)g(t, T)E(UsUt)dsdt

as presented in Lemma 12. When H < 1/2,

E(UsUt) =
∫ min(s,t)

0
e−ϑ(t−r)e−ϑ(s−r)dr +

∫ t

0
e−ϑ(t−v) d

dv

∫ s

0
H|v− u|2H−1sgn(v− u)e−ϑ(s−u)dudv.

The first part of this expectation, which comes from the Brownian motion of course,
admits the result. We develop the second part:∫ t

0
e−ϑ(t−v) d

dv

∫ s

0
H|v− u|2H−1sgn(v− u)e−ϑ(s−u)dudv

=
∫ t

0
e−ϑ(t−v) d

dv

∫ v

0
H(v− u)2H−1e−ϑ(s−u)dudv

−
∫ t

0
e−ϑ(t−v) d

dv

∫ s

v
H(u− v)2H−1e−ϑ(s−u)dudv

With this development and the same calculation in [22], we have:∫ T

0

∫ T

0
g(t, T)g(s, T)E(UsUt)dsdt

≤ O(T) + Cϑ,H

∫ T

0
g(t, T)

d
dt

∫ T

0
g(s, T)|t− s|2H−1sgn(t− s)dsdt

and the second converges with the inequality of Cauchy–Schwarz.

7. Conclusions

In this paper, we considered the maximum likelihood estimator for the drift parameters
α and β in the mixed fractional Vasicek model:

dXt = (α− βXt)dt + dWt + dBH
t , t ∈ [0, T], X0 = 0.

with the continuous observation path X = (Xt, t ∈ [0, T]). We presented the strong
consistency and the asymptotical normality of the MLE α̂T and β̂T for the two unknown
parameters for H 6= 1/2, as well as the joint distribution when H < 1/2. On the other
hand, we also tried to simulate the MLE when H > 1/2 with the numerical solution of
the derivative of the Wiener–Hopfequation even it is time consuming. There exist two
problems to be solved, the joint distribution of the MLE when H > 1/2 and the simulation
of the MLE when H < 1/2, and they will be our future study.
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