
����������
�������

Citation: Sahoo, S.K.; Tariq, M.;

Ahmad, H.; Kodamasingh, B.; Shaikh,

A.A.; Botmart, T.; El-Shorbagy, M.A.

Some Novel Fractional Integral

Inequalities over a New Class of

Generalized Convex Function. Fractal

Fract. 2022, 6, 42. https://doi.org/

10.3390/fractalfract6010042

Academic Editor: Ahmed I. Zayed

Received: 3 December 2021

Accepted: 11 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Some Novel Fractional Integral Inequalities over a New Class
of Generalized Convex Function
Soubhagya Kumar Sahoo 1 , Muhammad Tariq 2 , Hijaz Ahmad 3,4 , Bibhakar Kodamasingh 1 ,
Asif Ali Shaikh 2, Thongchai Botmart 5,* and Mohammed A. El-Shorbagy 6,7

1 Department of Mathematics, Institute of Technical Education and Research,
Siksha ’O’ Anusandhan University, Bhubaneswar 751030, India; soubhagyakumarsahoo@soa.ac.in (S.K.S.);
bibhakarkodamasingh@soa.ac.in (B.K.)

2 Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology,
Jamshoro 76062, Pakistan; captaintariq2187@gmail.com (M.T.); asif.shaikh@faculty.muet.edu.pk (A.A.S.)

3 Information Technology Application and Research Center, Istanbul Ticaret University, Istanbul 34445, Turkey;
hijaz@ticaret.edu.tr or hijaz555@gmail.com

4 Department of Mathematics, Faculty of Humanities and Social Sciences, Istanbul Ticaret University,
Istanbul 34445, Turkey

5 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
6 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz

University, Al-Kharj 11942, Saudi Arabia; ma.hassan@psau.edu.sa
7 Department of Basic Engineering Science, Faculty of Engineering, Menoufia University,

Shebin El-Kom 32511, Egypt
* Correspondence: thongbo@kku.ac.th

Abstract: The comprehension of inequalities in convexity is very important for fractional calculus
and its effectiveness in many applied sciences. In this article, we handle a novel investigation that
depends on the Hermite–Hadamard-type inequalities concerning a monotonic increasing function.
The proposed methodology deals with a new class of convexity and related integral and fractional
inequalities. There exists a solid connection between fractional operators and convexity because of
its fascinating nature in the numerical sciences. Some special cases have also been discussed, and
several already-known inequalities have been recaptured to behave well. Some applications related
to special means, q-digamma, modified Bessel functions, and matrices are discussed as well. The
aftereffects of the plan show that the methodology can be applied directly and is computationally
easy to understand and exact. We believe our findings generalise some well-known results in the
literature on s-convexity.

Keywords: Hermite–Hadamard inequality; fractional integral operator; convex function; $-s-convex
function; special means; q-digamma functions; modified Bessel functions; matrices

1. Introduction

The theory of convexity is an amazing and compelling methodology for contemplating
enormous and beautiful issues that emerge in different fields of pure and applied sciences [1–3].
Numerous new structures have been presented and researched involving convex sets and
related functions. This theory has a rich history and has been the focus and motivation
for unusual mathematical research for over a century. Numerous speculations, variations,
and theories within convexity theory have been drawn into the thoughts of various mathe-
maticians. The theory of convexity, moreover, is accepted as a critical part in the progression
of the idea of inequalities. Inequalities have an intriguing mathematical model because
of their significant applications in traditional calculus, fractional calculus [4], quantum
calculus [5], interval valued [6], stochastic [7], time-scale calculus [8], fractal sets [9], etc.
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Definition 1 ([10]). Let G : I→ R be a real valued function. A function G is said to be convex if

G(κb1 + (1− κ)b2) ≤ κG(b1) + (1− κ)G(b2), (1)

holds for all b1, b2 ∈ I and κ ∈ [0, 1].

Indeed, convex mapping is perhaps the most fundamental and significant mapping
in the hypothesis of mathematical inequality because it has general applications in pure
and applied mathematics [11], mechanics [12], statistics [13], and economics [14]. Recently,
speculation, augmentations, variations, and refinements related to convexity have raised
legitimate concerns among a few scientists.

Many integral inequalities have been developed so far by different researchers in
the due course of time. In the literature, convexity is one of the most important notions
involved in proving inequalities and their applications. In the literature, we have many
types of inequalities that involve convex functions, such as Hardy-type inequalities [15],
Olsen inequalities [16], Gagliardo–Nirenberg-type inequalities [17], Hermite–Hadamard-
Fejér-type inequalities [18], Opial inequalities [19], Simpson type inequalities [20], and
Ostrowski inequalities [21]. Likewise, there are a lot of well-known integral inequalities
but the most notable one is the Hermite–Hadamard-type integral inequality.

Definition 2 ([22]). A function G : [0,+∞)→ R is called s–convex, in the second sense, if

G(κb1 + (1− κ)b2) ≤ κsG(b1) + (1− κ)sG(b2), (2)

holds ∀ b1, b2 ∈ [0,+∞), s ∈ (0, 1] and κ ∈ [0, 1].

During the literature review, we noticed that most of the researchers in this field use the
notion of convex function to establish different types of integral inequalities. For example,
the Hermite–Hadamard inequality for convex functions is defined as follows:

Let G : [b1, b2] ⊂ R −→ R be an integrable convex function with b1 < b2. Then, the
Hermite–Hadamard inequality is expressed as follows: (see [23]):

G
(

b1 + b2

2

)
≤ 1

b2 − b1

∫ b2

b1

G(x)dx ≤ G(b1) + G(b2)

2
.

Later, under the assumption of s-convexity theory, Dragomir and Fitzpatrick [24]
established the following version of H–H inequality:

2s−1G
(

b1 + b2

2

)
≤ 1

b2 − b1

∫ b2

b1

G(x)dx ≤ G(b1) + G(b2)

s + 1
. (3)

Avci et al. [25] presented a new integral identity for differentiable mappings and
established related H–H-type inequalities for mappings whose first derivatives are s-convex.
Moreover, İşcan [26] took a step in the advancement of this inequality by establishing a
new version of the H–H inequality via harmonic convex functions. Toplu et al. [27]
introduced a new generalised convexity called the n-polynomial convex function and
also established its related inequalities. Tariq et al. [28] incorporated the concepts of n-
polynomial convexity, harmonic convexity, and s-convexity to define a new generalization,
namely an n-polynomial harmonically s-type convex function. Tunc et al. [29] refined
the concept of convex function to present a new function called tgs-convex function,
and employing this new concept, they proved the H–H type inequality in both classical
as well as fractional integrals. Kadakal et al. [30] investigated the notion of exponential
convexity and related integral inequalities.

The H–H inequality has been extended in different ways using s-convexity. For ex-
ample, Khan et al. [31] proved some H–H-type inequalities for s-convex and s-concave
functions via both classical and fractional integrals. They also provided some applications
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of their results involving error estimations for trapezoidal formulas. In [32], the authors
proved some H–H-type inequalities for functions, whose absolute values are twice dif-
ferentiable s-convex functions. Further, Özcan and İşcan [33] investigated some related
inequalities by applying Hölder-İşcan inequality and improved power mean inequality.
Korus [34] provided refinements of the H–H inequality for convex and s-convex function
using iterated integrals.

In the last few decades, many mathematicians and research scholars have concentrated
their great contributions and attention on the study of this inequality. A few scientists have
determined new variations related to convex functions; for instance, see [35–39] and the
references cited therein. In addition, it is impressive that convexity offers multiple thoughts
and fruitful applications in both pure and applied science.

Classical fractional integral operators are introduced and used to define fractional
derivatives. The fractional derivative is known to present its corresponding fractional
integral in fractional operators with nonsingular kernels. Fractional integral inequalities
are valuable speculations on traditional inequalities. The Hadamard inequality shows
the geometric representation of convex functions, which has been investigated by nu-
merous researchers for fractional integral operators. Sarikaya et al. [4] started applying
the Riemann–Liouville fractional integral operator to the Hermite–Hadamard inequality
using convex functions. After the publication of this article, many mathematicians (see for
example [40–44]) started employing the same technique for different types of convexities
and various new fractional operators. To acquire detailed and in-depth knowledge about
fractional inequalities associated with different convexities, we will allude to the following
(see [45–49]).

For our purpose, we need the Ψ-R-L fractional integral, defined as follows (see refer-
ences [50,51]).

Definition 3. The left side and right side of Ψ-R-L fractional integral of a function G, associated
with a monotonic increasing positive function Ψ(x), whose first order derivative is continuous on
(m, n) ⊂ R and for α > 0, are given as

Iα:Ψ
m+ G(x) =

1
Γ(α)

∫ x

m
Ψ′(z)(Ψ(x)−Ψ(z))α−1G(z)dz,

and
Iα:Ψ
n− G(x) =

1
Γ(α)

∫ n

x
Ψ′(z)(Ψ(z)−Ψ(x))α−1G(z)dz.

2. Preliminaries

Before coming to the main discussion, some of the associated definitions and results
have been brought forward. Recently, Wu et al. [52] introduced the following new classes
of $-convex sets and $-convex functions.

Definition 4. A set I ⊂ R is said to be $-convex set if

M[$](b1, b2) = $−1(κ$(b1) + (1− κ)$(b2)) ∈ I

for each b1, b2 ∈ I, $ is a strictly monotone and continuous function and κ ∈ [0, 1].

Definition 5. A function G : I ⊂ R −→ R is said to be $-convex function if

M[$](b1, b2) = G($−1(κ$(b1) + (1− κ)$(b2))) ≤ κG(b1) + (1− κ)G(b2) (4)

for each b1, b2 ∈ I, $ is a strictly monotone and continous function and κ ∈ [0, 1].

Recently, Mohammed et al. [53] used this new convex function for a fractional operator
to present the following results:
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Theorem 1. Let G : [b1, b2] ⊆ R −→ R be an integrable $-convex function and G ∈ L1(b1, b2)
with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is continuous
on (b1, b2) , then for α > 0

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ Γ(α + 1)

2($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
≤ G(b1) + G(b2)

2
.

Theorem 2. Let G : [b1, b2] ⊆ R −→ R be an integrable $-convex function and G ∈ L1(b1, b2)
with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is continuous
on (b1, b2), then for α > 0 we have:

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 2α−1Γ(α + 1)

($(b2)− $(b1))α

[
Iα,$(

$−1
(

$(b1)+$(b2)
2

))+G(b2) + Iα,$(
$−1

(
$(b1)+$(b2)

2

))−G(b1)

]

≤ G(b1) + G(b2)

2
.

Theorem 3. Let G : [b1, b2] ⊆ R −→ R be an integrable $-convex function and G ∈ L1(b1, b2)
with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is continuous
on (b1, b2), then for α > 0

G(b1) + G(b2)

2
− Γ(α + 1)

(($(b2)− $(b1))
α

[
Iα:$
b1

+G(b2) + Iα:$
b2
−

]
=

1
2(($(b2)− $(b1))

α

∫ b2

b1

(
(($(z)− $(b1))

α − (($(b2)− $(z))α)G ′(z)dz.

Theorem 4. Let G : [b1, b2] ⊆ R −→ R be an integrable $-convex function and G ∈ L1(b1, b2)
with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is continuous
on (b1, b2) , then for α > 0 we have:

2α−1Γα + 1
($(b2)− $(b1))α

[
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2) + Iα:$(
$−1

(
$(b1)+$(b2)

2

))−G(b1)

]

− G
(

$−1
(

$(b1) + $(b2)

2

))
=

2α−1

($(b2)− $(b1))α

[∫ b2

$−1
(

$(b1)+$(b2)
2

)($(b2)− $(z))αG ′(z)dz

−
∫ $−1

(
$(b1)+$(b2)

2

)
b1

($(z)− $(b1))
αG ′(z)dz

]
.

Furthermore, in [52,53], several inequalities of the Hermite–Hadamard type have been
established using the notion of $-convexity.

The main aim of this article is to introduce a new class of convex functions and,
employing this, we present some Hermite–Hadamard inequalities for both classical and
fractional integral operators.

Owing to the aforementioned trend and inspired by the ongoing activities, the rest
of this paper is structured as follows: First of all, in Sections 1 and 2, we discuss some
preliminary ideas about convexity and the theory of inequality. Next, in Section 3, we define
and explore the newly introduced idea of $-s-convex functions and some of their special
cases. Sections 4 and 5 deal with deriving some new variants of H–H-type inequalities
employing $-s-convexity via both classical and fractional integral operators. Applications to
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means, q-digamma, modified Bessel functions, and matrices are demonstrated in Section 6.
In Section 7, we present the conclusion of the paper.

As s-convex is a very special type of convexity, it has many applications in inequality
theory. Several mathematicians have employed innovative approaches to investigate the H–
H inequality. To take a step forward in the advancement of inequality theory, we have intro-
duced a new type of s-convexity, where the function is associated with another monotonic
continuous function. It employs the formulaM[$](b1, b2) = $−1(κ$(b1) + (1− κ)$(b2)),
which is related to all the power means. Furthermore, we have demonstrated our results
through applications to means, matrices, and some special functions. The main motivation
for this manuscript is to incorporate the concepts of fractional integral operators with the
new convexity.

3. $-s-Convex Function

Definition 6. A function G : I ⊂ R −→ R is said to be $-s-convex function iff

G($−1(κ$(b1) + (1− κ)$(b2))) ≤ κsG(b1) + (1− κ)sG(b2), (5)

holds for some fixed s ∈ (0, 1) and $ is a strictly monotone and continous function and κ ∈ [0, 1].

Remark 1. When $(x) = x, the inequality given in (5) reduces to s-convex function (2).

Remark 2. When s = 1, the inequality given in (5) reduces to $-convex function (4).

Remark 3. When κ = 1
2 , the inequality given in (5) reduces to $-s mid point convex function as

G
(

$−1
(

$(u) + $(v)
2

))
≤ G(u) + G(v)

2s . (6)

Some special cases are obtained as follows.
Case-I

When $(x) = lnx, the inequality given in (5) reduces to geometric s-convex function as.

G(b1
κb2

1−κ) ≤ κsG(b1) + (1− κ)sG(b2), (7)

for b1, b2 ∈ I and κ ∈ [0, 1].
Case-II

When $(x) = 1
x , the inequality given in (5) reduces to harmonic s-convex function as

G
(

b1b2

κb2 + (1− κ)b1

)
≤ κsG(b1) + (1− κ)sG(b2), (8)

for b1, b2 ∈ I and κ ∈ [0, 1].
Case-III

When $(x) = xp, the inequality given in (5) reduces to p-type s-convex function as

G
(
(κb1

p + (1− κ)b2
p)

1
p

)
≤ κsG(b1) + (1− κ)sG(b2), (9)

for b1, b2 ∈ I and κ ∈ [0, 1].
Case-IV

When $(x) = ex, the inequality given in (5) reduces to log exponential s-convex
function as

G
(

ln
(

κeb1 + (1− κ)eb2
))
≤ κsG(b1) + (1− κ)sG(b2), (10)

for b1, b2 ∈ I and κ ∈ [0, 1].
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4. Hermite–Hadamard Type and Related Integral Inequalities

The principal intention of this research article is to establish some generalized Hermite–
Hadamard-type fractional integral inequalities via the $-s convex function (5).

Theorem 5. Let G : [b1, b2] ⊆ R −→ R be an integrable $-s convex function and G ∈ L1(b1, b2)
with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is continuous
on (b1, b2), then for α > 0

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 1

2s−1($(b2)− $(b1))

∫ b2

b1

G(x)$′(x)dx ≤ G(b1) + G(b2)

2s−1(s + 1)
. (11)

Proof. To prove the first inequality of (11), assume that G is a $-s convex function, i.e.,

G
(

$−1(κ$(u) + (1− κ)$(v))
)
≤ κsG(u) + (1− κ)sG(v).

Setting κ = 1
2 , we obtain

G
(

$−1
(

$(u) + $(v)
2

))
≤ G(u) + G(v)

2s .

2sG
(

$−1
(

$(u) + $(v)
2

))
≤ G(u) + G(v). (12)

Putting
u = $−1(κ$(b1) + (1− κ)$(b2)) and
v = $−1(κ$(b2) + (1− κ)$(b1)) in (12), one has

2sG
(

$−1
(

$(b1) + $(b2)

2

))
≤ G($−1(κ$(b1) + (1− κ)$(b2))) + G($−1(κ$(b2) + (1− κ)$(b1))).

Now, integrating both sides of the last inequality w.r.t to κ over [0, 1], we get

G
(

$−1
(

$(b1) + $(b2)

2

))
≤
∫ 1

0
G($−1(κ$(b1) + (1− κ)$(b2)))dκ

+
∫ 1

0
G($−1(κ$(b2) + (1− κ)$(b1)))dκ

=
1

2s−1($(b2 − $(b1))

∫ b2

b1

G(x)$′(x)dx. (13)

In this way, the first inequality is proved.
For the proof of the second inequality, we use the definition of $-s convex function:

G
(

$−1(κ$(b2) + (1− κ)$(b1))
)
≤ κsG(b2) + (1− κ)sG(b1).

Integrating w.r.t to κ over [0, 1], we get
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∫ 1

0
G
(

$−1(κ$(b2) + (1− κ)$(b1))
)

dκ ≤ G(b2)
∫ 1

0
κsdκ + G(b1)

∫ 1

0
(1− κ)sdκ.

Which leads to

1
($(b2)− $(b1))

∫ b2

b1

G(x)$′(x)dx ≤ G(b1) + G(b2)

s + 1
.

Consequently gives,

1
2s−1($(b2)− $(b1))

∫ b2

b1

G(x)$′(x)dx ≤ G(b1) + G(b2)

2s−1(s + 1)
. (14)

Upon combining the last two inequalities (13) & (14), we have the desired result, i.e.,

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 1

2s−1($(b2)− $(b1))

∫ b2

b1

G(x)$′(x)dx ≤ G(b1) + G(b2)

2s−1(s + 1)
.

Theorem 6. Let G,H : I −→ R be two integrable $-s convex functions with respect to the function
$. Then the following inequality holds true:

1
($(b2)− $(b1))2

∫ b2

b1

($(b2)− $(x))(H(b1)G(x) + G(b1)H(x))$
′
(x)dx

+
1

($(b2)− $(b1))2

∫ b2

b1

($(x)− $(b1))(H(b2)G(x) + G(b2)H(x))$
′
(x)dx

≤ M(b1, b2)

2s + 1
+ N(b1, b2)[β(s + 1, s + 1)] +

1
$(b2)− $(b1)

∫ b2

b1

G(x)H(x)$
′
(x)dx.

Proof. Using the definition of $-s convex functions, we have

G($−1(κ$(b1) + (1− κ)$(b2))) ≤ κsG(b1) + (1− κ)sG(b2),

and
H($−1(κ$(b1) + (1− κ)$(b2))) ≤ κsH(b1) + (1− κ)sH(b2).

Using e ≤ f and p ≤ r

=⇒ er+ fp ≤ ep+ fr.

G($−1(κ$(b1) + (1− κ)$(b2)))[κ
sH(b1) + (1− κ)sH(b2)]

+H($−1(κ$(b1) + (1− κ)$(b2)))[κ
sG(b1) + (1− κ)sG(b2)]

≤ G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

+ [κsG(b1) + (1− κ)sG(b2)][κ
sH(b1) + (1− κ)sH(b2)].
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Integrating both the sides, we obtain

H(b1)
∫ 1

0
κsG($−1((κ$(b1) + (1− κ)$(b2)))dκ

+H(b2)
∫ 1

0
(1− κ)sG($−1(κ$(b1) + (1− κ)$(b2)))dκ

+ G(b1)
∫ 1

0
κsH($−1((κ$(b1) + (1− κ)$(b2)))dκ

+ G(b2)
∫ 1

0
(1− κ)sH($−1(κ$(b1) + (1− κ)$(b2)))dκ

≤ G(b1)H(b1)
∫ 1

0
κ2sdκ + G(b1)H(b2)

∫ 1

0
κs(1− κ)sdκ

+ G(b2)H(b1)
∫ 1

0
κs(1− κ)sdκ + G(b2)H(b2)

∫ 1

0
(1− κ)2sdκ.

By changing the variables, we have

∫ 1

0
κsG($−1(κ$(b1) + (1− κ)$(b2)))dκ

=
1

($(b2)− $(b1))2

∫ b2

b1

($(b2)− $(x))G(x)$
′
(x)dx,

and ∫ 1

0
(1− κ)sG($−1(κ$(a) + (1− κ)$(b2)))dκ

=
1

($(b2)− $(b1))2

∫ b2

b1

($(x)− $(b1))G(x)$
′
(x)dx.

Similarly, ∫ 1

0
κsH($−1(κ$(b1) + (1− κ)$(b2)))dκ

=
1

($(b2)− $(b1))2

∫ b2

b1

($(b2)− $(x))H(x)$
′
(x)dx,

and ∫ 1

0
(1− κ)sH($−1(κ$(b1) + (1− κ)$(b2)))dκ

=
1

($(b2)− $(b1))2

∫ b2

b1

($(x)− $(b1))H(x)$
′
(x)dx.

It is easily verified that ∫ 1

0
κ2sdκ =

1
2s + 1

,

∫ 1

0
κs(1− κ)sdκ = β(s + 1, s + 1),

and ∫ 1

0
(1− κ)2sdκ =

1
2s + 1

.
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Taking the above computations into consideration, we get

H(b1)

($(b2)− $(b1))2

∫ b2

b1

($(b2)− $(x))G(x)$
′
(x)dx

+
H(b2)

($(b2)− $(b1))2

∫ b2

b1

($(x)− $(b1))G(x)$
′
(x)dx

+
G(b1)

($(b2)− $(b1))2

∫ b2

b1

($(b2)− $(x))H(x)$
′
(x)dx

+
G(b2)

($(b2)− $(b1))2

∫ b2

b1

($(x)− $(b1))H(x)$
′
(x)dx

≤ G(b1)H(b1) + G(b2)H(b2)

2s + 1
+ [G(b1)H(b2) + G(b2)H(b1)]β(s + 1, s + 1).

which implies

1
($(b2)− $(b1))2

∫ b2

b1

($(b2)− $(x))(H(b1)G(x) + G(b1)H(x))$
′
(x)dx

+
1

($(b2)− $(b1))2

∫ b2

b1

($(x)− $(b1))(H(b2)G(x) + G(b2)H(x))$
′
(x)dx

≤ M(b1, b2)

2s + 1
+ N(b1, b2)[β(s + 1, s + 1)] +

1
$(b2)− $(b1)

∫ b2

b1

G(x)H(x)$
′
(x)dx.

Theorem 7. Let G,H : I −→ R be two integrable $-s convex functions with respect to the function
$. Then, the following inequality holds true:

1
$(b2)− $(b1)

∫ b2

b1

[
G
(

$−1
(

$(b1) + $(b2)

2

))
H(x)

+H
(

$−1
(

$(b1) + $(b2)

2

))
G(x)

]
$
′
(x)dx

≤ 1
2($(b2)− $(b1))

∫ b2

b1

G(x)H(x)$
′
(x)dx

+ G
(

$−1
(

$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

M(b1, b2)

2
β(s + 1, s + 1) +

N(b1, b2)

2(2s + 1)
.

Proof. From the definition of $-s convex function, we have

G
(

$−1
(

$(b1) + $(b2)

2

))
= G

(
$−1

(
$($−1(κ$(b1) + (1− κ)$(b2))) + $($−1((1− κ)$(b1) + κ$(b2)))

2

))
≤ G($

−1(κ$(b1) + (1− κ)$(b))) + G($−1((1− κ)$(b1) + κ$(b2)))

2
,
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and

H
(

$−1
(

$(b1) + $(b2)

2

))
= H

(
$−1

(
$($−1(κ$(b1) + (1− κ)$(b2))) + $($−1(1− κ)$(b1) + κ$(b2))

2

))
≤ H($−1(κ$(b1) + (1− κ)$(b2))) +H($−1((1− κ)$(b1) + κ$(b2)))

2
.

Using the same technique as the previous theorem, we have

G
(

$−1
(

$(b1) + $(b2)

2

))
× H($−1(κ$(b1) + (1− κ)$(b2))) +H($−1((1− κ)$(b1) + κ$(b2)))

2

+H
(

$−1
(

$(b1) + $(b2)

2

))
× G($

−1(κ$(b1) + (1− κ)$(b2))) + G($−1((1− κ)$(b1) + κ$(b2)))

2

≤ G
(

$−1
(

$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

[
G($−1(κ$(b1) + (1− κ)$(b2))) + G($−1((1− κ)$(b1) + κ$(b2)))

2

]
×
[
H($−1(κ$(b1) + (1− κ)$(b2))) +H($−1((1− κ)$(b1) + κ$(b2)))

2

]
≤ G

(
$−1

(
$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

1
4

{
G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

+ G($−1(κ$(b1) + (1− κ)$(b2)))H($−1((1− κ)$(b1) + κ$(b2)))

+ G($−1((1− κ)$(b1) + κ$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

+ G($−1((1− κ)$(b1) + κ$(b2)))H($−1((1− κ)$(b1) + κ$(b2)))

}
≤ G

(
$−1

(
$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

1
4

{
G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

+ G($−1((1− κ)$(b1) + κ$(b2)))H($−1((1− κ)$(b1) + κ$(b2)))

+ (κsG(a) + (1− κ)sG(b))((1− κ)sH(a) + κsH(b))

+ ((1− κ)sG(a) + κsG(b))(κsH(a) + (1− κ)sH(b))
}

= G
(

$−1
(

$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

1
4

{
G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

+ G($−1((1− κ)$(b1) + κ$(b2)))H($−1((1− κ)$(b1) + κ$(b2)))

+ 2κs(1− κ)s[G(a)H(a) + G(b)H(b)] + (κ2s + (1− κ)2s)[G(a)H(b) + G(a)H(b)]
}

.
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Now, integrating both the sides,∫ 1

0
G
(

$−1
(

$(b1) + $(b2)

2

))
× H($−1(κ$(b1) + (1− κ)$(b2))) +H($−1((1− κ)$(b1) + κ$(b2)))

2
dκ

+
∫ 1

0
H
(

$−1
(

$(b1) + $(b2)

2

))
× G($

−1(κ$(b1) + (1− κ)$(b2))) + G($−1((1− κ)$(b1) + κ$(b2)))

2
dκ

≤ G
(

$−1
(

$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

1
2

[
1

($(b2)− $(b1))2

∫ b2

b1

G(x)H(x)$
′
(x)dx + M(b1, b2)β(s + 1, s + 1) +

N(b1, b2)

2s + 1

]
.

This implies,

1
$(b2)− $(b1)

∫ b2

b1

[
G
(

$−1
(

$(b1) + $(b2)

2

))
H(x)

+H
(

$−1
(

$(b1) + $(b2)

2

))
G(x)

]
$
′
(x)dx

≤ 1
2($(b2)− $(b1))

∫ b2

b1

G(x)H(x)$
′
(x)dx

+ G
(

$−1
(

$(b1) + $(b2)

2

))
H
(

$−1
(

$(b1) + $(b2)

2

))
+

M(b1, b2)

2
β(s + 1, s + 1) +

N(b1, b2)

2(2s + 1)
.

This completes the desired proof.

5. Fractional Inequalities for $-s Convex Function

Theorem 8. Let G : [b1, b2] ⊆ R −→ R be an integrable $-s convex function and G ∈ L1(b1, b2)
with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is continuous
on (b1, b2), then for α > 0

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ Γ(α + 1)

2s($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
≤ α[G(b1) + G(b2)]

2s

[
1

s + α
+ β(α, s + 1)

]
. (15)

Proof. To prove the first inequality of (15), assume G as a $-s convex function, i.e.,

G
(

$−1(κ$(u) + (1− κ)$(v))
)
≤ κsG(u) + (1− κ)sG(v).

Setting κ = 1
2 , we obtain

G
(

$−1
(

$(u) + $(v)
2

))
≤ G(u) + G(v)

2s .

2sG
(

$−1
(

$(u) + $(v)
2

))
≤ G(u) + G(v). (16)
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Putting
u = $−1(κ$(b1) + (1− κ)$(b2)) and
v = $−1(κ$(b2) + (1− κ)$(b1)) in (16), one has

2sG
(

$−1
(

$(b1) + $(b2)

2

))
≤ G($−1(κ$(b1) + (1− κ)$(b2))) + G($−1(κ$(b2) + (1− κ)$(b1))).

Multiplying both the sides by κα−1 and integrating w.r.t to κ over [0, 1], we get

2s

α
G
(

$−1
(

$(b1) + $(b2)

2

))
≤
∫ 1

0
G($−1(κ$(b1) + (1− κ)$(b2)))κ

α−1dκ

+
∫ 1

0
G($−1(κ$(b2) + (1− κ)$(b1)))κ

α−1dκ.

By changing the variables as
x = $−1(κ$(b1) + (1− κ)$(b2)) and y = $−1(κ$(b2) + (1− κ)$(b1))

2s

α
G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 1

($(b2)− $(b1))α

∫ b2

b1

$′(x)($(b2)− $(x))α−1G(x)dx

+
1

($(b2)− $(b1))α

∫ b2

b1

$′(y)($(y)− $(b1))
α−1G(y)dy.

i.e., G
(

$−1
(

$(b1) + $(b2)

2

))
≤ Γ(α + 1)

2s($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
. (17)

In this way, the first inequality is proved.
Next, to prove the second inequality, we use the definition of $-s convex function:

G
(

$−1(κ$(b1) + (1− κ)$(b2))
)
≤ κsG(b1) + (1− κ)sG(b2),

and
G
(

$−1(κ$(b2) + (1− κ)$(b1))
)
≤ κsG(b2) + (1− κ)sG(b1).

Adding, we get:

G
(

$−1(κ$(b1) + (1− κ)$(b2))
)
+ G

(
$−1(κ$(b2) + (1− κ)$(b1))

)
≤ [κs + (1− κ)s][G(b1) + G(b2)].

Multiplying both the sides by κα−1 and integrating with respect to κ over [0, 1], we get∫ 1

0
G
(

$−1(κ$(b1) + (1− κ)$(b2))
)

κα−1dκ +
∫ 1

0
G
(

$−1(κ$(b2) + (1− κ)$(b1))
)

κα−1dκ

≤ [G(b1) + G(b2)]
∫ 1

0
[κs + (1− κ)s]κα−1dκ.

Γ(α)
($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
≤ [G(b1) + G(b2)]

[
1

s + α
+ β(α, s + 1)

]
.

So,

Γ(α + 1)
2s($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
≤ α[G(b1) + G(b2)]

2s

[
1

s + α
+ β(α, s + 1)

]
. (18)
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Combining (17) and (18), we get the desired result.

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ Γ(α + 1)

2s($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
≤ α[G(b1) + G(b2)]

2s

[
1

s + α
+ β(α, s + 1)

]
.

Remark 4. Under the assumptions of Theorem 8 when s = 1, we get

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ Γ(α + 1)

2($(b2)− $(b1))α

[
Iα,$
b1

+G(b2) + Iα,$
b2
−G(b1)

]
≤ [G(b1) + G(b2)]

2
,

which was established by Mohammed et al. [53].

Remark 5. Under the assumptions of Theorem 8 when α = 1, we have

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 1

2s−1($(b2)− $(b1))

∫ b2

b1

G(x)$′(x)dx

≤ [G(b1) + G(b2)]

2s

[
1

s + 1
+ β(1, s + 1)

]
.

Remark 6. Under the assumptions of Theorem 8 when $(x) = x, we have the following frac-
tional inequality

2s−1G
(

b1 + b2

2

)
≤ Γ(α + 1)

(b2 − b1)α

[
Iα
b1

+G(b2) + Iα
b2
−G(b1)

2

]
≤ α

[
G(b1) + G(b2)

2

][
1

s + α
+ β(α, s + 1)

]
.

Remark 7. Under the assumptions of Theorem 8 when $(x) = x and α = 1, we get

2s−1G
(

b1 + b2

2

)
≤ 1

b2 − b1

∫ b2

b1

G(x)dx ≤ G(b1) + G(b2)

s + 1
, (19)

which is the classical Hermite–Hadamard inequality under s-convex function proved by Dragomir
and Fitzpatrick [24].

Theorem 9. Let G : [b1, b2] ⊆ R −→ R be an integrable $ − s-convex function and G ∈
L1(b1, b2) with 0 ≤ b1 < b2. If the function $ is increasing and positive on [b1, b2] and $′(x) is
continuous on (b1, b2) , then for α > 0 we have:

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 2α−sΓ(α + 1)

($(b2)− $(b1))α

[
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2) + Iα:$(
$−1

(
$(b1)+$(b2)

2

))−G(b1)

]

≤
[

1
2s(s + α)

+ 2αβ 1
2
(α, s + 1)

]
α[G(b1) + G(b2)]

2s . (20)

Proof. Since G is $-s-convex function, we have

2sG
(

$−1
(

$(x) + $(y)
2

))
≤ G(x) + G(y). (21)
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Putting,
x = $−1( κ

2 $(b1) +
2−κ

2 $(b2)) and
y = $−1( 2−κ

2 $(b1) +
κ
2 $(b1)) in (21), multiplying by κα−1 and then integrating over [0,1],

we have

2s
∫ 1

0
G
(

$−1
(

$(b1) + $(b2)

2

))
κα−1dκ

≤
∫ 1

0
G
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
κα−1dκ

+
∫ 1

0
G
(

$−1
(

2− κ

2
$(b1) +

κ

2
$(b1)

))
κα−1dκ. (22)

By applying the change of variable technique, (22) becomes:

u = $−1( κ
2 $(b1) +

2−κ
2 $(b2)) or κ = 2($(u)−$(b2))

$(b1)−b2
and dκ = 2$′(u)du

$(b1)−$(b2)

v = $−1( 2−κ
2 $(b1) +

κ
2 $(b1)

)
or κ = 2($(v)−$(b1))

$(b2)−b1
and dκ = 2$′(v)dv

$(b2)−$(b1)

G
(

$−1
(

$(b1) + $(b2)

2

))
(23)

≤ 2α−sΓ(α + 1)
($(b2)− $(b1))α

[
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2) + Iα:$(
$−1

(
$(b1)+$(b2)

2

))−G(b1)

]
.

For the second inequality, we use the definition of $-s convexity, i.e.,

G
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
≤
(κ

2

)s
G(b1) +

(
2− κ

2

)s
G(b2).

G
(

$−1
(

2− κ

2
$(b1) +

κ

2
$(b2)

))
≤
(

2− κ

2

)s
G(b1) +

(κ

2

)s
G(b2).

Upon adding both the inequalities, we have

G
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
+ G

(
$−1

(
2− κ

2
$(b1) +

κ

2
$(b2))

))
≤ [G(b1) + G(b2)]

[
(2− κ)s + κs

2s

]
. (24)

Multiplying by κα−1 (24) and integrating with respect to κ over [0, 1], we get

∫ 1

0
G
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
κα−1dκ

+
∫ 1

0
G
(

$−1
(

2− κ

2
$(b1) +

κ

2
$(b2))

))
κα−1dκ

≤ [G(b1) + G(b2)]
∫ 1

0

[
(2− κ)s + κs

2s

]
κα−1dκ.

2α−sΓ(α + 1)
($(b2)− $(b1))α

[
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2) + Iα:$(
$−1

(
$(b1)+$(b2)

2

))−G(b1)

]

≤
[

1
2s(s + α)

+ 2αβ 1
2
(α, s + 1)

]
α[G(b1) + G(b2)]

2s . (25)

The result is established by comparing (23) and (25) .



Fractal Fract. 2022, 6, 42 15 of 22

Remark 8. Under the assumption of Theorem 9 and s = 1

G
(

$−1
(

$(b1) + $(b2)

2

))
≤ 2α−1Γ(α + 1)

($(b2)− $(b1))α

[
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2) + Iα:$(
$−1

(
$(b1)+$(b2)

2

))−G(b1)

]

≤
[

1
2(1 + α)

+ 2αβ 1
2
(α, 2)

]
α[G(b1) + G(b2)]

2
. (26)

Remark 9. Under the assumption of Theorem 9 when $(x) = x and α = 1

22sG
((

b1 + b2

2

))
≤ 2s+2

b2 − b1

[
I( b1+b2

2

)+G(b2) + I( b1+b2
2

)−G(b1)

]

≤ 21−2s
[

1
2s(s + 1)

+ 2β 1
2
(1, s + 1)

]
[G(b1) + G(b2)].

Pachpatte-Type Fractional Inequalities

Theorem 10. Let G and H be integrable $-s convex functions with respect to the function $ on
[b1, b2]. Then the following fractional integral inequality holds:

Γ(α)
($(b2)− $(b1))

α

[
Iα:$
b1

+G(b2)H(b2) + Iα:$
b2
−G(b1)H(b1)

]
≤ M(b1, b2)

[
1

2s + α
+ β(2s + 1, α)

]
+ 2N(b1, b2)β(s + 1, s + α).

Proof. Using the definition of $-s convex functions, we have

G($−1(κ$(b1) + (1− κ)$(b2))) ≤ κsG(b1) + (1− κ)sG(b2),

and
H($−1(κ$(b1) + (1− κ)$(b2))) ≤ κsH(b1) + (1− κ)sH(b2).

Multiplying both the above equations side by side, we have

G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

≤ κ2sG(b1)H(b1) + (1− κ)2sG(b2)H(b2) + (1− κ)sκs[G(b1)H(b2) + G(b2)H(b1)].

Consequently, we also have

G($−1(κ$(b2) + (1− κ)$(b1)))H($−1(κ$(b2) + (1− κ)$(b1)))

≤ κ2sG(b2)H(b2) + (1− κ)2sG(b1)H(b1) + (1− κ)sκs[G(b2)H(b1) + G(b1)H(b2)].

Upon adding,

G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))

+G($−1(κ$(b2) + (1− κ)$(b1)))H($−1(κ$(b2) + (1− κ)$(b1)))

≤ [κ2s + (1− κ)2s][G(b1)H(b1) + G(b2)H(b2)] + 2κs(1− κ)s[G(b1)H(b2) + G(b2)H(b1)].
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Multiplying both the sides by κα−1 and then integrating with respect to κ,∫ 1

0
κα−1G($−1(κ$(b1) + (1− κ)$(b2)))H($−1(κ$(b1) + (1− κ)$(b2)))dκ

+
∫ 1

0
κα−1G($−1(κ$(b2) + (1− κ)$(b1)))H($−1(κ$(b2) + (1− κ)$(b1)))dκ

≤ [G(b1)H(b1) + G(b2)H(b2)]
∫ 1

0
κα−1[κ2s + (1− κ)2s]dκ

+ 2[G(b1)H(b2) + G(b2)H(b1)]
∫ 1

0
κα−1κs(1− κ)sdκ.

Consequently,

1
($(b2)− $(b1))

α

∫ b2

b1

G(x)H(x)$′(x)($(b2)− $(b1))
α−1dx

+
1

($(b2)− $(b1))
α

∫ b2

b1

G(y)H(y)$′(y)($(b2)− $(b1))
α−1dy

≤ M(b1, b2)

[
1

2s + α
+ β(2s + 1, α)

]
+ 2N(b1, b2)β(s + 1, s + α).

Using the definition of the Ψ- Riemann–Liouville fractional operator, we have

Γ(α)
($(b)− $(a))α

[
Iα:$
b1

+G(b2)H(b2) + Iα:$
b2
−G(b1)H(b1)

]
≤ M(b1, b2)

[
1

2s + α
+ β(2s + 1, α)

]
+ 2N(b1, b2)β(s + 1, s + α).

This completes the proof.

Theorem 11. Let G and H be integrable $-s convex functions with respect to the function $ on
[b1, b2]. Then, the following fractional integral inequality holds:

2Γ(α)
($(b)− $(a))α

[
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2)H(b2) + Iα:$(
$−1
(

$(b1)+$(b2)
2

))−G(b1)H(b1)

]
≤ M(b1, b2)

[[
1

4s(2s + α)

]
+ 2F1(α,−2s, α + 1, 1/2)

α

]
+ N(b1, b2)[2αβ(1/2, α + s), s + 1]. (27)

Proof. From the definition of $-s convex function, we have

G
(

$−1
(

κ

2
$((b1)) +

2− κ

2
$(b2)

))
≤
(κ

2

)s
G(b1) +

(
2− κ

2

)s
G(b2).

H
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
≤
(

t
2

)s
H(b1) +

(
2− κ

2

)s
H(b2).

Multiplying both the inequalities side by side, we have

G
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
H
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
≤
(κ

2

)2s
G(b1)H(b1) +

(
2− κ

2

)s
G(b2)H(b2)

+
(κ

2

)s
H(b2)

(
2− κ

2

)s
[G(b1)H(b2) + G(b2)H(b1)].
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Similarly,

G
(

$−1
(

κ

2
$(b2) +

2− κ

2
$(b1)

))
H
(

$−1
(

κ

2
$(b2) +

2− κ

2
$(b1)

))
≤
(

t
2

)2s
G(b2)H(b2) +

(
2− κ

2

)s
G(b1)H(b1)

+
(κ

2

)s
H(b2)

(
2− κ

2

)s
[G(b1)H(b2) + G(b2)H(b1)].

Upon adding,

G
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
H
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
+ G

(
$−1

(
κ

2
$(b2) +

2− κ

2
$(b1)

))
H
(

$−1
(

κ

2
$(b2) +

2− κ

2
$(b1)

))
≤
(κ

2

)2s
[G(b1)H(b1) + G(b2)H(b2)] +

(
2− κ

2

)2s
[G(b1) +H(b1) + G(b2)H(b2)]

+ 2
(κ

2

)s
(

2− κ

2

)s
[G(b1)H(b2) + G(b2)H(b1)]

=

[(κ

2

)2s
+

(
2− κ

2

)2s
]

M(b1, b2) +
(κ

2

)2s
(

2− κ

2

)2s
N(b1, b2).

Upon multipling both sides of the above inequality by κα−1 and then integrating with
respect to κ over [0, 1], we get

Let $−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

)
= u

=⇒ κ

2
$(b1) +

2− κ

2
$(b2) = $(u)

=⇒ κ =
2($(u)− $(b2))

$(b1)− $(b2)
=

2($(b2)− $(u))

$(b2)− $(b1)

=⇒ dκ =
−2$

′
(u)

$(b2)− $(b1)
du.

This implies∫ 1

0
κα−1G

(
$−1

(
κ

2
$(b1) +

2− κ

2
$(b2)

))
H
(

$−1
(

κ

2
$(b1) +

2− κ

2
$(b2)

))
dκ

=
∫ $−1

(
$(b1)+$(b2)

2

)
b

G(u)H(u)

(
2($(b2)− $(u))

$(b2)− $(b1)

)α−1 −2$
′
(u)

$(b2)− $(b1)
du

=
2Γ(α)

($(b)− $(a))α
Iα:$(

$−1
(

$(b1)+$(b2)
2

))+G(b2)H(b2).

Similarly,∫ 1

0
κα−1G

(
$−1

(
κ

2
$(b2) +

2− κ

2
$(b1)

))
H
(

$−1
(

κ

2
$(b2) +

2− κ

2
$(b1)

))
dκ

=
2Γ(α)

($(b)− $(a))α
Iα:$(

$−1
(

$(b1)+$(b2)
2

))−G(b1)H(b1).



Fractal Fract. 2022, 6, 42 18 of 22

Also,

M(b1, b2)
∫ 1

0

[(κ

2

)2s
+

(
2− κ

2

)2s
]

dκ + N(b1, b2)
∫ 1

0

(κ

2

)2s
(

2− κ

2

)2s
dκ

=M(b1, b2)

[[
1

4s(2s + α)

]
+ 2F1(α,−2s, α + 1, 1/2)

α

]
+ N(b1, b2)[2αβ(1/2, α + s, s + 1)].

By arranging the above computations, we have the desired proof.

6. Applications
6.1. Special Means

Now, we propose some applications to special means of real numbers related to our
established results.

1. The arithmetic mean:

A = A(b1, b2) =
b1 + b2

2
, b1, b2 ∈ R.

2. The geometric mean:
G = G(b1, b2) =

√
b1b2

3. The logarithmic mean:

L(b1, b2) =
b2 − b1

ln |b2| − ln |b1|
, b1 6= b2, b1b2 6= 0.

Proposition 1. Let b1, b2 ∈ R+, b1 < b2; then[
eA(ln b1,ln b2)

]s
≤ 1

2s−1(ln b2 − ln b1)

[
b2

s − b1
s

s

]
≤
[
A(b1

s, b2
s)

2s−2[s + 1]

]
.

Proof. In Theorem 5, setting G(x) = xs with $(x) = ln x completes the proof.

Proposition 2. Let b1, b2 ∈ R+, b1 < b2; then

1
eA(ln b1,ln b2)

≤ 1
2s−1

[
L(b2, b1)

G2(b1, b2)

]
≤ 1

2s−2[s + 1]

[
A(b2, b1)

G2(b1, b2)

]
.

Proof. In Theorem 5, setting G(x) = 1
x with $(x) = ln x completes the proof.

6.2. q-Digamma Function

Example 1. The q-digamma(psi) function $ρ is the ρ-analogue of the digamma function $
(see [54]) given as:

$ρ = − ln(1− ρ) + ln ρ
∞

∑
k=0

ρk+γ

1− ρk+γ

= − ln(1− ρ) + ln ρ
∞

∑
k=0

ρkγ

1− ρkγ
.

For ρ > 1 and γ > 0, ρ-digamma function $ρ can be given as:
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$ρ = − ln(ρ− 1) + ln ρ

[
γ− 1

2
−

∞

∑
k=0

ρ−(k+γ)

1− ρ−(k+γ)

]
= − ln(ρ− 1) + ln ρ

[
γ− 1

2
−

∞

∑
k=0

ρ−kγ

1− ρ−kγ

]
.

If we set G(x) = ψ′$(x) in Remark 7, then we have the following inequality.

2s−1ψ′$

(
b1 + b2

2

)
≤

ψ$(b2)− ψ$(b1)

b2 − b1
≤

ψ′$(b1) + ψ′$(b2)

2($ + 1)(s + 1)
.

6.3. Modified Bessel Functions

Example 2. Let the function J$ : R→ [1, ∞) be defined [54] as

J$(u) = 2$Γ($ + 1)u−δI$(u), u ∈ R

Here, we consider the modified bessel function of first kind given in

I$(u) =
∞

∑
n=0

( u
2
)$+2n

n!Γ($ + n + 1)
.

The first and second order derivative are given as

J ′$(u) =
u

2($ + 1)
J$+1(u)

J ′′$ (u) =
1

4($ + 1)

[
u2

($ + 1)
J$+2(u) + 2J$+1(u)

]
If we use, Φ(u) = J ′$(u) and the above functions in Remark 7, we have

2s−3
(

b1 + b2

$ + 1

)
J$+1

(
b1 + b2

2

)
≤
[
J$(b2)−J$(b1)

]
b2 − b1

≤
[
b1J$(b1) + b2J$(b2)

]
2($ + 1)(s + 1)

.

6.4. Matrices

Here, we present some examples related to special functions and matrices.

Example 3. We represent Cn as the set of n× n complex matrices, Mn as the algebra of
n× n complex matrices, and M+

n as the strictly positive matrices in M. That is, A ∈ M+
n ,

if
〈
Au, u

〉
> 0 for all non-zero u ∈ Cn.

Sababheh [55] proved that G(κ) =‖ AκXB1−κ + A1−κXBκ ‖, A, B ∈ M+
n , X ∈ Mn

is convex for all κ ∈ [0, 1]. We also have that every non-negative convex function is an
s-convex function. Then, by using Theorem 8 for $(x) = x, we have

‖ A
(

b1+b2
2

)
XB1−

(
b1+b2

2

)
+ A1−

(
b1+b2

2

)
XB

(
b1+b2

2

)
‖

≤ Γ(α + 1)
2s(b2 − b1)α

×
[

Iα,$
b1

+ ‖ Ab2XB1−b2 + A1−b2XBb2 ‖ +Iα,$
b2
− ‖ Ab1XB1−b1 + A1−b1XBb1 ‖

]
≤ α[‖ Ab1XB1−b1 + A1−b1XBb1 ‖ + ‖ Ab2XB1−b2 + A1−b2XBb2 ‖]

2s

[
1

s + α
+ β(s + 1, α)

]
.

Furthermore, using Theorem 9 for $(x) = x, we get



Fractal Fract. 2022, 6, 42 20 of 22

‖ A
(

b1+b2
2

)
XB1−

(
b1+b2

2

)
+ A1−

(
b1+b2

2

)
XB

(
b1+b2

2

)
‖

≤ 2α−sΓ(α + 1)
(b2 − b1)α

[
Iα(

b1+b2
2

)+ ‖ Ab2XB1−b2 + A1−b2XBb2 ‖

+ Iα(
b1+b2

2

)− ‖ Ab1XB1−b1 + A1−b1XBb1 ‖
]

≤ α[‖ Ab1XB1−b1 + A1−b1XBb1 ‖ + ‖ Ab2XB1−b2 + A1−b2XBb2 ‖]
2s

×
[

1
2s(s + α)

+ 2αβ 1
2
(s + 1, α)

]
.

7. Conclusions

We have presented the ideas of $-s-convex sets and $-s-convex functions. Additionally,
we have shown that this class of convexity incorporates a few different classes of traditional
convexity. The $-s-convex function is a speculation of convex functions identified with
different power means. Moreover, by utilising the idea of $-s-convexity, we have presented
some new classical as well as fractional integral inequalities of the Hermite–Hadamard
type and the Pachpatte type. The outcomes acquired in this article can help establish other
kinds of inequalities. Additionally, these outcomes are general and can be determined to
give further, possibly helpful, and intriguing inequalities via different types of fractional
operators. In the future, our focus will be to incorporate these new class of convexities with
concepts such as interval-valued calculus and fractional calculus. We anticipate that the
thoughts and strategies in the paper might stimulate further investigations into this field.
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29. Tunç, M.; Göv, E.; Şanal, Ü. On tgs-convex function and their inequalities. Facta Univ. Ser. Math. Inform. 2015, 30, 679–691.
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