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Abstract: The scientific community has recently seen a fast-growing number of publications tackling
the topic of fractional-order controllers in general, with a focus on the fractional order PID. Several
versions of this controller have been proposed, including different tuning methods and implementa-
tion possibilities. Quite a few recent papers discuss the practical use of such controllers. However, the
industrial acceptance of these controllers is still far from being reached. Autotuning methods for such
fractional order PIDs could possibly make them more appealing to industrial applications, as well. In
this paper, the current autotuning methods for fractional order PIDs are reviewed. The focus is on
the most recent findings. A comparison between several autotuning approaches is considered for
various types of processes. Numerical examples are given to highlight the practicality of the methods
that could be extended to simple industrial processes.

Keywords: direct autotuning methods; indirect autotuning methods; fractional-order controllers;
simulation results

1. Introduction

Despite the abundance of research in advanced control strategies, the PID (proportional-
integrative-derivative) controller remains the preferred control algorithm in industrial
applications [1,2]. To produce the desired effects, PIDs need to be adequately tuned. A
mathematical model is usually needed in order to properly tune the controller. However,
large industrial plants are characterized by numerous sub-systems and obtaining an ac-
curate process model is not cost effective as it can be difficult and/or time consuming. To
overcome this issue, two different approaches for autotuning PIDs were developed, as
indicated in Figure 1.

Both approaches use step or sinusoidal input data and collect the process output
response. For a direct autotuner the PID parameters are determined directly from process
input/output data, while for the indirect PID autotuner, simple process models are first
determined and then the PID parameters are computed according to some tuning rules
based on the model parameters. The majority of indirect methods use either first-order
plus dead time (FOPDT) or second-order plus dead time (SOPDT) models.

Two of the most popular autotuning methods have been developed by Ziegler and
Nichols [3]. One of these methods is a direct approach, based on the relay experiment,
as indicated in Figure 2. Once the relay test is performed on a process, it will lead to a
sinusoidal output signal which is used to estimate the process critical frequency and the cor-
responding critical gain. Tuning rules based on the process critical frequency and gain are
employed to compute the PID controller parameters. The Ziegler-Nichols direct autotuning
method is highly popular because of its simplicity and good performance results.
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Figure 2. Relay experiment. 

Several extensions of this approach and alternative solutions have been developed 
over the years. One of these uses the describing function analysis and a simple relay feed-
back test to estimate the process critical gain and corresponding frequency [4]. A solution 
for noisy signals was proposed based on a relay with hysteresis [5]. An artificial time delay 
is added within the relay closed-loop system in order to determine the process gain and 
phase at a random oscillation frequency. Then, a PI (proportional-integrative) controller 
is tuned according to this process data. A modified Ziegler-Nichols method [6]—where 
the ratio between the integral and derivative time constants is r = 4—was also developed. 
Other research papers discuss the impact the ratio value has upon the control performance 
[7]. Solutions to improve the robustness of the control system have been addressed [2]. 
Åström and Hägglund [1] use the relay test to design controllers based on robust loop 
shaping, with a clear tradeoff between robustness and performance. 

The second method developed by Ziegler and Nichols [3] consists in applying a step 
signal on the process input and collecting the output data. The method is suitable for pro-
cesses that have FOPDT dynamics or exhibit an S-shaped response, as indicated in Figure 3. 
The approach goes through an indirect step, where the parameters of the FOPDT model 
are estimated. Finally, the PID controller parameters are computed using a set of tuning 
rules that depend on the FOPDT model parameters.  
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Figure 2. Relay experiment.

Several extensions of this approach and alternative solutions have been developed over
the years. One of these uses the describing function analysis and a simple relay feedback
test to estimate the process critical gain and corresponding frequency [4]. A solution for
noisy signals was proposed based on a relay with hysteresis [5]. An artificial time delay is
added within the relay closed-loop system in order to determine the process gain and phase
at a random oscillation frequency. Then, a PI (proportional-integrative) controller is tuned
according to this process data. A modified Ziegler-Nichols method [6]—where the ratio
between the integral and derivative time constants is r = 4—was also developed. Other
research papers discuss the impact the ratio value has upon the control performance [7].
Solutions to improve the robustness of the control system have been addressed [2]. Åström
and Hägglund [1] use the relay test to design controllers based on robust loop shaping,
with a clear tradeoff between robustness and performance.

The second method developed by Ziegler and Nichols [3] consists in applying a step
signal on the process input and collecting the output data. The method is suitable for
processes that have FOPDT dynamics or exhibit an S-shaped response, as indicated in
Figure 3. The approach goes through an indirect step, where the parameters of the FOPDT
model are estimated. Finally, the PID controller parameters are computed using a set of
tuning rules that depend on the FOPDT model parameters.
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The demand for better control performance and increased robustness has led to
several modifications of the standard PID controller, including a generalization to fractional
order [8]. Research on fractional order PID (FO-PID) controllers has demonstrated that
this generalization allows for more flexibility in the design, due to the two supplementary
tuning parameters involved, the fractional orders of integration and differentiation [9–13].
This flexibility comes with important advantages, such as better closed-loop performance,
disturbance rejection capabilities, improved control of time-delay systems and increased
robustness [9–14]. The fractional order PID transfer function is given as:

CFO−PID(s) = kp

(
1 +

1
Tisλ

+ Tdsµ

)
(1)

where 0 < λ < 2 and 0 < µ < 1 are the fractional orders of integration and differentiation,
respectively, and kp is the proportional gain, and Ti and Td are the integral and derivative
time constants. The “classical” tuning rules used to determine the five controller parameters
are derived from the following performance specifications [9,12,15–17]:

1. A gain crossover frequency ωc. This leads to the magnitude condition:

|Hol(jωc)| = 1 (2)

with Hol(s) the open-loop transfer function is defined as: Hol(s) = P(s). CFO-PID(s),
where P(s) is the process transfer function;

2. A phase margin PM. This leads to the phase condition:

∠Hol(jωc) = −π + PM (3)

3. Iso-damping property (or robustness to gain variations). This is specified through:

d(∠Hol(jω))

dω

∣∣∣∣
ω=ωc

= 0 (4)

where ω denotes the frequency. This last condition ensures that the overshoot of the
closed-loop system remains approximately constant in the case of gain variations;

4. Good output disturbance rejection. This leads to a constraint on the sensitivity
function S: ∣∣∣∣S(jω) =

1
1 + P(jω)HFO−PID(jω)

∣∣∣∣ ≤ B dB (5)

for frequencies ω ≤ ωs, with B a scalar;
5. High frequency noise rejection. This leads to a constraint on the complementary

sensitivity function T as:∣∣∣∣T(jω) =
P(jω)HFO−PID(jω)

1 + P(jω)HFO−PID(jω)

∣∣∣∣ ≤ A dB (6)

for frequencies ω ≥ ωT , with A a scalar.

Further information regarding the tuning, implementation and related topics to frac-
tional order PIDs can be found in some excellent review papers [15,16,18–24]. The phase
shaper [25] is among the first automatic controller designs that uses fractional calculus
tools. The autotuning method is based on the iso-damping property, but the final controller
is an integer order PID. Throughout the past two decades, a couple of FO-PID autotuning
methods have emerged. Some of these provide direct and indirect tuning rules for FO-PIDs
in general or for fractional order PI (FO-PI) controllers. The purpose of this manuscript
is to offer a comprehensive review of these autotuning methods, to compare them and to
discuss which method is ranked best for controlling a specific type of process.

The paper is structured as follows. Sections 2 and 3 provide for a review of the
most widely known indirect and direct autotuning methods for FO-PIDs, while Section 4
provides for some numerical examples. Possible applications of autotuning methods
are reviewed in Section 5, along with a survey on self-tuning FO-PIDs. The last section
concludes the paper.
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2. Indirect Fractional Order Autotuning Methods

A popular indirect autotuning method, suitable only for FO-PIs, was developed by
extending the Ms constrained integral (MIGO)-based controller design approach [26]. F-
MIGO tuning determines the optimum parameters of the FO-PI controller such that the load
disturbance rejection is optimized, with a constraint on the maximum or peak sensitivity.
The F-MIGO method provides the tuning rules for the FO-PI controller provided that
the process step response has an S-shaped form, as indicated in Figure 3, that could be
approximated by the following transfer function:

P(s) =
k

Ts + 1
e−Ls (7)

where k is the process gain, L is the delay and T is the time constant of the process. The
relative dead time can be computed as:

τ =
L

T + L
(8)

Systems where L >> T are delay dominant, whereas systems in which T >> L are lag
dominant. Research studies performed in [26] revealed that the FO-PI fractional order
is almost independent of L, but depends on the relative dead time. For some particular
situations, where 0.4 ≤ τ < 0.6, an integer order PI controller was determined to be more
suitable for controlling the process. A summary of the results is indicated below:

λ =


1.1, τ ≥ 0.6
1, 0.4 ≤ τ < 0.6
0.9, 0.1 ≤ τ < 0.4
0.7, τ < 0.1

(9)

The proportional and integrative gains of the FO-PI controller were also determined
as a function of the relative dead time:

kp =
1
k

0.2978
τ + 0.00037

and Ti = T
0.8578

τ2 − 3.402τ + 2.405
(10)

An indirect autotuning method that applies to the S-shaped step response process was
developed in [27]. The tuning is unnecessarily complicated as the parameters of (7) are
firstly estimated and then used to determine the process critical frequency ωcr and critical
gain kcr, according to:

ωcrT = − tan(ωcrL) and kcr = −
1 + ωcrT2

k(cos(ωcrL)−ωcrT sin(ωcrL))
(11)

Then, the parameters of an integer order PID are determined using the previously
computed process critical frequency and gain, as well as three additional design parameters
referring to the ratio of the integral and derivative time constants, loop phase and gain:

kp = kcrrb cos∅b, Ti = −
Tcr

π

π cos∅b
sin∅b + 1

and Td = αTi (12)

where α, rb and ∅b are design parameters [28]. Once the PID controller parameters are
computed, a possible range for the fractional orders in the FO-PID is selected and an
optimization routine is performed. The algorithm attempts to minimize the integral time
absolute error with the open loop gain and phase margin imposed as design specifications.

Another indirect tuning method is proposed in [29] for processes that produce an
S-shaped step response. The method is based on determining first the process dead time L
and time constant T, as well as the value at which the system reaches steady state k. The
standard Ziegler-Nichols equations are used then to estimate the kp, Ti and Td parameters
of an integer order PID. Then, the fractional orders of differentiation and integration are
determined by the Nelder-Mead optimization algorithm in order to meet certain phase
and gain margins. A second approach based on the standard Cohen-Coon method is also
used in [29], for processes that exhibit first order plus dead time dynamics. Based on the
process parameters, the integer order PID parameters are first computed. The Nelder-Mead
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optimization algorithm is used afterwards to estimate the fractional orders of differentiation
and integration based on certain phase and gain margin requirements. The Cohen-Coon
tuning method is proposed as an alternative to the Ziegler-Nichols approach in order to
improve the slow, steady state response of the latter.

An indirect autotuning method for designing only FO-PI controllers using the Ziegler-
Nichols open-loop approach is described in [30]. The parameters of the integer order PI
controller are firstly determined using the standard Ziegler-Nichols approach. In order to
improve the overall closed-loop response, the research suggests that the PI performance
can be improved a lot with a fractional order of integration. An error filter as proposed
in [31] is used for steady state error compensation:

Ge(s) =
s + n

s
(13)

where n is chosen to be small enough so that high frequency specifications are maintained
and the system gain will not be altered drastically. The research in [30] proposed a modifi-
cation of (13) such that the value of n is adjustable with respect to the fractional order of
integration. The tuning of the fractional order and of the filter is performed by trial and
error for a specific type of process. The method is evaluated experimentally on a steam
temperature process and compared to the F-MIGO method [26] in terms of robustness
for set point changes and disturbance rejection. The proposed controller shows better
performance compared to the F-MIGO autotuning method, but it also requires higher
control effort.

In [32], two existing analytical methods for tuning the parameters of fractional PIDs
are reviewed. Then, for two specific sets of performance criteria similar to (2)–(6), the
corresponding sets of tuning rules are developed based on an optimization method applied
to the FO-PID control of an S-shaped process dynamics similar to (7). The newly developed
tuning rules for fractional order PIDs use the time delay L value and the estimated process
time constant, T, much like the standard S-shaped Ziegler-Nichols approach, to produce
the controller parameters. The method works provided the step response of the process
is S-shaped. These two methods were initially presented in [33]. The first set of rules
developed works if 0.1 ≤ T ≤ 50 and L ≤ 2, while the second set of rules can be applied
for processes with 0.1 ≤ T ≤ 50 and L ≤ 0.5. Both sets of rules are determined in a
similar manner. For a batch of process described as FOPDT systems, a set of performance
specifications is imposed. The set included values for the gain crossover frequency, for the
phase margin, a high-frequency value for the improved high-frequency noise cancellation
and the corresponding maximum magnitude limit, as well as a low frequency value for
improved output disturbance and the corresponding maximum magnitude. Tuning by
minimization is then applied using the fmincon Matlab® (Natick, Massachusetts, USA)
function, where the magnitude equation in (2) is used as the main function to minimize,
whereas the remaining conditions in (3)–(6) are used as constraints. Using least squares fit,
polynomials are determined to compute the controller parameters based on the process time
constant T and time delay L: P = −0.0048 + 0.2664L + 0.4982T + 0.0232L2 − 0.0720T2 −
0.0348LT. Using Figures 4 and 5, for the first set of rules and for the second one, the FO-PID
controller parameters, as indicated in (1), can be finally computed:

kp = P, Ti =
kp

I
and Td =

D
kp

(14)
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3. Direct Fractional Order Autotuning Methods

Most of the direct autotuning methods are based on using the relay test to determine
the process critical gain and critical period of oscillations, but other methods have been
developed [34].

Several generalizations of the Ziegler-Nichols ultimate gain method have been pro-
posed over the years for the tuning of FO-PIDs. A new tuning method for such a controller
that combines both the Ziegler-Nichols as well as the Astrom and Hagglund methods has
been proposed in [35]. The idea is based on obtaining the process critical frequency and crit-
ical gain and then computing the kp and Ti parameters using the classical Ziegler-Nichols
method. For a specified phase margin, the Td parameter is computed using the Astrom and
Hagglund method. Two equations referring to the controller’s real and imaginary parts
are obtained. Fine tuning of Td is employed to achieve the best numerical solution of the
equations, for each specified phase margin. Matlab®’s built in functions, such as fsolve,
are used to solve the two equations to obtain numerical values of λ and µ by considering
the new value of Td for each specified phase margin. An optimization Simulink model is
used to obtain a better step response. The least squares method is used in the optimization
model and the optimized FO-PID parameters are obtained. The approach is tedious and
involves three controller designs before the final optimized FO-PID is obtained. However,
the design allows for a direct specification of the loop phase margin.

In [36], an extension of the modified Ziegler-Nichols tuning rules for fractional-order
controllers is presented. The proposed design approach is only suitable for tuning fractional
order PI controllers. The tuning rules are derived without any knowledge of the process
model, but they require the critical frequency ωcr, as well as the corresponding critical gain
kcr. Based on this process information, the FO-PI autotuning objective is to determine the
controller parameters such that the loop frequency response is moved to a point in the
Nyquist plane where a performance criterion is minimized, according to a constraint. The
performance criterion is mathematically expressed as a measure of the system ability to
handle low-frequency load disturbances, subjected to a robustness constraint referring to
the maximum sensitivity function of the closed-loop system. The tuning rules are given by:

λ =
1.11k180 + 0.084

k180 + 0.07
, kp = kcrrb cos β + kcrrb cot λ sin β and Ti =

kp

ki
(15)

where k180 = 1
kcrk , rb = 0.34k180+0.03

k180+0.52 , β = −0.92k180−0.012
k180+0.6 , ki =

−kcrrbωλ
cr

sin γ sin β and γ = π
2 λ,

with k the process gain as indicated in (7).
The method is compared with several other direct and indirect autotuning methods for

integer order PIDs and it provides good performance results. The method is also compared
to some similar autotuning approaches developed in [37,38] and the results demonstrate
the superiority of the current approach.

A similar idea as the one used in [31] is employed in [39], where an error filter is
cascaded with a FO-PI controller. Unlike the autotuning approach taken in [31], the
research in [39] is focused on estimating the parameters of an integer order PI controller
using the relay method. An estimation of the process critical gain and period of oscillation is
firstly determined, which in turn leads to the computation of an integer order PI controller
parameters according to the standard Ziegler-Nichols approach. The same error filter
is used in [39] as in [31] with the same advantage. Various values for the fractional
order integration are used and the results evaluated on a steam temperature process.
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Experimental results show that the FO-PI controller leads to better performance during the
set-point change and load disturbance test in terms of output and control effort. However,
poor closed-loop performance is obtained if λ is set too low. Even though both the direct [39]
and the indirect [31] autotuning methods are simple enough for designing the FO-PI
controllers, there is no clear advice on the selection of the fractional order of integration.

A modification of the Ziegler-Nichols closed-loop method is proposed in [40]. The
method provides for an improvement of the standard Ziegler-Nichols results. The idea is
based on the fact that a fractional order can help shape the “direction” of the loop frequency
response in a fixed point in the Nyquist plot and thus keep the loop frequency response
further away from the −1 point. The process critical frequency of oscillation, as well as the
critical gain are obtained based on the relay test. To simplify the tuning method, the same
fractional order of integration and differentiation is used in the FO-PID, similarly to [41]:

CFO−PID(s) = kp

(
1 +

1

(τis)
λ
+ (τds)λ

)
(16)

where Ti = τi
λ and Td = τd

λ. The ratio r = τi
τd

between the integral and derivative time
constants is considered to be a design parameter. The final tuning rules are exemplified for
a ratio r = 4, similarly to [6,41]. Unlike the standard Ziegler-Nichols approach, the tuning
rules depend not only on the process critical gain Kcr and critical period of oscillation Pcr,
but also on the fractional order. The parameters of the FO-PID controller can thus be easily
computed, without any complex optimization procedure [40], as indicated in Table 1.

Table 1. FO-PID parameters according to the modified Ziegler-Nichols method and for different
values of the fractional order λ [40].

λ kp Ti Td

0.4 0.16 kcr 2.27Tcr
0.4 0.57 Ti

0.5 0.23 kcr 1.55Tcr
0.5 0.50 Ti

0.6 0.29 kcr 1.12Tcr
0.6 0.44 Ti

0.7 0.36 kcr 0.87Tcr
0.7 0.38 Ti

0.8 0.42 kcr 0.71Tcr
0.8 0.33 Ti

0.9 0.50 kcr 0.59Tcr
0.9 0.29 Ti

1 0.6 kcr 0.5Tcr
1.0 0.25 Ti

The critical process gain and period of oscillation are used in [42] to determine the
parameters of a FO-PID controller. Three sets of tuning rules are developed. Processes
described as FOPDT systems are used for two of the sets, whereas for the third one,
integrative processes are considered. The first set of tuning rules applies when the critical
period of oscillations Pcr ≤ 8 and PcrKcr ≤ 640. For the case when Pcr ≤ 2, a second set of
tuning rules is developed. Both of these are quite restrictive and do not often work properly
for plants with a pole at the origin [42]. The third set of rules is designed specifically for
integrative processes (without time delay), but can be used only when 0.2 ≤ Pcr ≤ 5 and
1 ≤ Kcr ≤ 200. The research in [42] concludes that the closed-loop performance can be poor
near the borders of the mentioned range. All of these rules were developed in order to
meet certain performance specifications regarding the loop gain crossover frequency, phase
margin, iso-damping, rejection of high-frequency noise and output disturbance. All tuning
rules are developed similarly to those in [32], by minimizing the magnitude equation in
(2) and using the remaining conditions in (3)–(6) as design constraints. The controller
parameters are obtained by polynomial fitting using least squares. The coefficients of the
polynomials for the three sets of tuning rules are indicated in Figures 6–8.
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The relay test is also used in [43], but with a variation that includes also a time delay,
as indicated in Figure 9. The process frequency response at any frequency can be identified
using this scheme. The main issue is to determine the correct value of the time delay that
corresponds to a specific frequency. An iterative method is used [44] and two initial values
for the time delay and their corresponding frequencies are needed to start the iteration.
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The autotuning method is based on specifying an iso-damping property, a gain
crossover frequency and a phase margin. A fractional order PI controller is designed
first, followed by a fractional order PD controller with a filter. The fractional order PI
controller will be used to ensure the iso-damping property around the gain crossover
frequency wcg. The slope of the phase of the plant is computed using the gain crossover
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frequency and the corresponding phase and a supplementary frequency and its correspond-
ing process phase as resulting from the relay experiment. Once the slope is cancelled using
the FO-PI controller, the FO-PD controller is designed to fulfill the design specifications
of gain crossover frequency and phase margin. To ensure a maximum robustness to plant
gain variations, a robustness criterion based on the flatness of the phase curve of the FO-PD
controller is used such that the resulting phase of the open-loop system will be the flattest
possible. The procedure is rather lengthy. A mechanical unit consisting mainly of a servo
motor is used to experimentally validate the proposed method. The experimental results
illustrate the effectiveness of this method.

The same method is described in [45], where experimental results with the FO-PID on
a similar servo motor are used to validate the efficiency of the approach. A refinement of
the relay feedback test in [43,45] is introduced in [46]. The improvement is based on adding
a moving average filter. Simulation results for the control of a position servo with time
delay are presented and validate the autotuning algorithm. The same autotuning method
for determining a FO-PID controller for the servo system in [46] is presented in [47]. A
similar approach is detailed in [48] for the design of FO-PID controllers. Two numerical
case studies are provided for a double-integrator process and a fractional order integrative
process. The simulation results validate the autotuning method.

Instead of using the relay test to determine the process magnitude, phase and phase
slope, a single sine test at the gain crossover frequency is used in [34]. Novel filtering
techniques are used to determine the process phase slope, as indicated in Figure 10. To
determine the parameters of either a FO-PI or a FO-PD controller, performance specifica-
tions regarding the phase margin, gain crossover frequency and iso-damping property are
used. The process magnitude, phase and phase slope previously determined are used in
the resulting nonlinear equations. Optimization techniques or graphical methods are then
employed to determine the controller parameters. Numerical examples are used to validate
the approach. A different approach is presented in [49], where a forbidden region circle is
defined based on the iso-damping property and phase margin specifications. The same sine
test used in [34] is required here as well, in order to estimate the process phase, magnitude
and phase slope. Instead of using optimization routines, the parameters of the optimal
fractional order PID controller are determined by minimizing the slope difference between
the circle border and the loop-frequency response. Numerical results are presented to
validate the approach.
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4. Numerical Examples

Some of the previously presented autotuning methods are used to determine the
parameters of various types of fractional-order controllers for a series of processes that
exhibit time delays, integrative effects, overdamped and poorly damped responses, higher
orders. For simplicity, only the most recent and widely used autotuning methods are con-
sidered. All resulting fractional-order controllers are implemented using the same method
and the same approximation parameters [50]. For the numerical examples considered in
this manuscript, all fractional-order controllers are implemented with the proportional,
fractional integration and differentiation actions on the error signal. The peaks in some
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FO-PID controller output signals are not the result of the tuning; they are simply the result
of using derivative action on a setpoint step. These can be removed by implementing the
FO-PI action on the error signal and FO-D action on the output signal.

4.1. The FOPDT Lag-Dominant Process

The following FOPDT lag-dominant process taken from [26] is considered:

P(s) =
2.4351

12.5688s + 1
e−1.0787s (17)

In this case, k = 2.4315, L = 1.0787, T = 12.5688. Based on the relay test, the critical
gain is Kcr = 7.78 and Pcr = 4.175. The parameters of the fractional-order controllers used
for comparative purposes are indicated in Table 2. Indirect [26,27,32] and direct tuning
methods [36,40,42,49] are used. The direct autotuning method in [34] produces the same
result as in [49] and, therefore, was omitted from the comparison. Only the first set of
tuning rules in [32] is used, as the second set of tuning rules cannot be applied. The same is
valid for the direct autotuning method in [42], where only the first set of tuning rules is
used, since the other two sets of tuning rules cannot be applied to this particular process.

Table 2. FO-PID parameters computed for the lag-dominant process.

Controller Type kp Ti λ Td µ

FO-PID Tepljakov [27] 1.9255 0.8653 0.8 0.4010 0.6935
FO-PI F-MIGO [26] 1.5413 5.0326 0.7 - -

FO-PI Gude [36] 0.6641 6.6277 1.1613 - -
FO-PID ZN-FOC [40] 2.8008 2.3658 0.7 0.8990 0.7

FO-PID [42] critical first set 1.1112 1.5809 1.2298 0.5944 0.8976
FO-PID [32] S-shaped first set −5.2747 0.8678 0.1903 1.7823 −1.5272

FO-PI FO KC [49] 1.0922 13.7410 1.15 - -

The FO-PID [42] leads to a highly oscillating closed-loop response, while the FO-
PID [32] is an unstable controller, which suggests that the proposed tuning rules work
poorly for the lag-dominant system in (17). In fact, in both cases the expected phase
margin is 38◦ [32,42], which explains the highly oscillating character. The FO-PI [49] was
tuned to meet the iso-damping property, as well as a gain crossover frequency of 0.2 rad/s
and a phase margin of 70◦. These performance specifications were selected in order to
obtain a small overshoot, as well as the fastest possible settling time. The closed-loop
results considering step reference tracking and disturbance rejection are given in Figure 11,
while the numerical values of the overshoot, settling time and disturbance rejection time
are given in Table 3. The results show that the smallest overshoot is obtained using the
FO-PI in [49], at the expense of a large settling time and the time required to reject the
load disturbance. Small overshoot is obtained also using the FO-PID of Tepljakov in [27]
or using the F-MIGO method [26], while the settling time is slightly larger in the latter
case. However, the required control effort for Tepljakov’s FO-PID [27] is extremely large
compared to the other methods, as indicated in Figure 11b). A larger control effort is also
observed in the case of the FO-PI controller in [40], which achieves the fastest settling time
and the smallest disturbance rejection time. A decent control effort is necessary when using
FO-PI controllers tuned according to [26,36,49]. Among these, the fastest settling time is
obtained with the FO-PI controller [26], while the smallest overshoot is achieved by the
FO-PI controller [49]. Improved settling time might be possible in this last case, if a FO-PD
controller is designed and implemented in series with the FO-PI.
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Table 3. Closed-loop results obtained with the FO-PID controller for the lag-dominant process.

Controller Overshoot Settling Time Disturbance
Rejection Time

FO-PID Tepljakov [27] 12% 11.5 13.5
FO-PI F-MIGO [26] 13% 15.7 17

FO-PI Gude [36] 28% 51 41.5
FO-PID ZN-FOC [40] 27% 7.2 10

FO-PI FO KC [49] 9% 41 23.5

4.2. The Higher Order Process

The following higher order process taken from [36] is considered:

P(s) =
1

(s + 1)4 (18)

In this case, k = 1, L = 1.42, T = 2.92 and the critical gain is Kcr = 4 and Pcr = 6.28 [36]. The
parameters of the fractional-order controllers used for comparative purposes are indicated
in Table 4. Indirect [26,32] and direct tuning methods [36,40,42,49] are used. The direct
autotuning method in [34] produces the same result as in [49] and therefore was omitted
from the comparison. Only the first set of tuning rules in [32] is used, as the second set of
tuning rules cannot be applied. The same is valid for the direct autotuning method in [42],
where only the first set of tuning rules is used, since the other two sets of tuning rules
cannot be applied to this particular processes.

Table 4. FO-PID parameters computed for the higher order process.

Controller Type kp Ti λ Td µ

FO-PI F-MIGO [26] 0.9093 1.7905 0.9 - -
FO-PI Gude [36] 0.6080 3.5486 1.13 - -

FO-PID ZN-FOC [40] 2 3.0847 0.9 0.5861 0.9
FO-PID [42] critical first set 1.3439 2.1448 1.2366 0.5501 0.9311

FO-PID [32] S-shaped first set 1.1168 1.1449 1.1 1.2152 1.0373
FO-PI FO KC [49] 0.8162 4.5733 1.18 - -

Figure 12 shows the closed-loop results obtained with the first three controllers in
Table 4, while Figure 13 presents the closed-loop simulations obtained with the last three
controllers. Note that the FO-PI [49] controller was first tuned for a gain crossover fre-
quency of 0.5 rad/s and a phase margin of 38◦. This is in agreement to the performance
specifications used in [32,42] for the first set of tuning rules. The results in Figure 13 show
that indeed similar overshoot and settling times are obtained with the fractional-order
controllers tuned according to [32,42,49].
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Table 5 contains the performance evaluation of the fractional-order controllers from
Figure 12. The remaining three controllers in Figure 13 are not evaluated due to the large
overshoot and settling time. The direct autotuning method from [49] can be used to tune
a better FO-PI controller. Table 4 shows the resulting parameters of this improved FO-PI
controller, which was tuned to meet a gain crossover frequency of 0.2 rad/s and a phase
margin of 75◦. The performance of this better FO-PI controller is compared to that of
the FO-PI controller in [36], which achieves the best overshoot and settling time. The
comparative simulation results are given in Figure 14 and in Table 5.

Table 5. Closed-loop results obtained with the FO-PID controller for the higher order process.

Controller Overshoot Settling Time Disturbance
Rejection Time

FO-PI F-MIGO [26] 31% 33.5 17.5
FO-PI Gude [36] 6.5% 34.3 13.1

FO-PID ZN-FOC [40] 27% 23.3 12.7
FO-PI FO KC [49] 6.5% 42.8 13.5
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To estimate the quantitative results given in Table 5 for the FO-PI and FO-PID con-
trollers designed according to [26,40], the closed-loop simulation results from Figure 12
were considered. The quantitative results in Table 5 show that the smallest overshoot is
possible using the FO-PI controller tuned using the methods in [36,49], which are also
suitable to achieve a quick disturbance rejection. Similarly to the lag-dominant case study,
in this case as well, the FO-PID controller [40] achieves the smallest settling time and the
fastest disturbance rejection time, at the expense of an increased control effort similar to
that of the FO-PID [42] and larger compared to the other controllers.

4.3. The Integrating Time-Delay Process

An integrating time-delay process [46] is considered here. The transfer function is:

P(s) =
0.55

s(0.6s + 1)
e−0.05s (19)

The classical Ziegler-Nichols autotuning method has a major disadvantage: poor
results are obtained regarding setpoint tracking, especially when used with integrating
systems [1]. Several extensions and improvements have been developed over the years to
deal with such systems. The autotuning methods based on an S-shaped response of the
process cannot be used in this particular situation.

In [47], an iterative experiment of a relay with delay is applied to the process in order
to determine the process magnitude, phase and phase slope at a specific gain crossover
frequency 2.3 rad/s. Then, a FO-PI in series with a FO-PD controller are designed to meet
the iso-damping property, a gain crossover frequency of 2.3 rad/s for the open-loop system
and a phase margin of 72◦. The resulting fractional-order controller is given by [47]:

CMONJE(s) =
(

0.4348s + 1
s

)1.1803(3.7282s + 1
0.0037s + 1

)1.1580
(20)

Four other direct autotuning methods are used for comparison purposes. First, based
on the relay test, the critical gain is Kcr = 36.88 and Pcr = 1.1043. The parameters of the
fractional-order controllers used for comparative purposes are indicated in Table 6, where
the fractional-order controllers have been determined using [40,42,49]. The first and the
third set of tuning rules in [42] are used to estimate the FO-PID controller parameters, as the
second set cannot be applied for the process in (19). The tuning rules in [42] were developed
for integrative processes without time delays (third set) and for FOPDT processes (first and
second set). For the process in (19), the third set of tuning rules [42] leads to an unstable
controller. Figure 15 shows the simulation results. The quantitative performance results
are indicated in Table 7. Similar overshoot is obtained for the fractional-order controller
in (20) designed using [47] and for the FO-PI controller [49], despite the latter having a
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large settling time. The fastest FO-PID controller is yet again the one designed according
to [40]. The poorest overshoot along with a significant settling time is obtained with the
FO-PID [42]. A comparison of the required control effort based on Figure 15b,c shows the
increased amplitudes of the input signals are necessary for the FO-PIDs designed based
on [40,42,47]. The smallest control effort is required by the FO-PI controller tuned according
to [49], which also exhibits the largest settling time and a significant disturbance rejection
time. However, this controller is also the simplest one, without any derivative effect.

Table 6. FO-PID parameters computed for the integrative time-delay process.

Controller Type kp Ti λ Td µ

FO-PID ZN-FOC [40] 5.9002 2.6760 0.4 1.5242 0.4
FO-PID [42] critical first set 1.0342 1.0606 1.0827 0.8148 0.7855
FO-PID [42] critical third set 0.4616 0.0919 0.5929 −2.7379 0.9360

FO-PI FO KC [49] 0.3812 2.7988 0.71 - -

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 26 
 

 

significant disturbance rejection time. However, this controller is also the simplest one, 
without any derivative effect.  

Table 6. FO-PID parameters computed for the integrative time-delay process. 

Controller Type kp Ti 𝝀 Td 𝝁 
FO-PID ZN-FOC [40] 5.9002 2.6760 0.4 1.5242 0.4 

FO-PID [42] critical first set 1.0342 1.0606 1.0827 0.8148 0.7855 
FO-PID [42] critical third set 0.4616 0.0919 0.5929 −2.7379 0.9360 

FO-PI FO KC [49] 0.3812 2.7988 0.71 - - 

Table 7. Closed-loop results obtained with the FO-PID controller for the integrative time-delay pro-
cess. 

Controller Overshoot Settling Time Disturbance Rejection Time 
FO-PID ZN-FOC [40] 40% 2.3 4.5 

FO-PID [42] critical first set 48.5% 30.7 19.1 
FO-PI FO KC [49] 13% 42 >70 

FO-PID Monje [47] 13.5% 5.3 3.8 
 

 
(a) 

  
(b) (c) 

Figure 15. (a) Output signals for FO-PID control of integrative time-delay process. (b) Input signals 
for FO-PID control of integrative time-delay process required for setpoint tracking. (c) Input signals 
for FO-PID control of integrative time-delay process required for disturbance rejection. Controllers 
tuned according to [40,42,47,49] 

4.4. The FOPDT Delay-Dominant Process 
A FOPDT delay-dominant process is considered in the comparison, with the transfer 

function given by: 
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for FO-PID control of integrative time-delay process required for setpoint tracking. (c) Input signals
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Table 7. Closed-loop results obtained with the FO-PID controller for the integrative time-delay process.

Controller Overshoot Settling Time Disturbance
Rejection Time

FO-PID ZN-FOC [40] 40% 2.3 4.5
FO-PID [42] critical first set 48.5% 30.7 19.1

FO-PI FO KC [49] 13% 42 >70
FO-PID Monje [47] 13.5% 5.3 3.8
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4.4. The FOPDT Delay-Dominant Process

A FOPDT delay-dominant process is considered in the comparison, with the transfer
function given by:

P(s) =
1

0.2s + 1
e−0.4s (21)

In this case, k = 1, L = 0.4, T = 0.2 and the critical gain is Kcr = 1.5202 and Pcr = 1.0985.
Three indirect autotuning methods are used in the comparisons with the FO-PID controllers
computed according to [32] using the first and the second set of rules for S-shaped process
response. The third method is the F-MIGO method described in [26]. The resulting
controller parameters are indicated in Table 8. Five direct autotuning methods are also
used for the comparison, namely: FO-PID tuned according to the first and second set of
rules in [42], FO-PID computed based on the method in [40] and two FO-PI controllers
determined using [36,49]. The controller parameters for these cases are also given in
Table 8. The FO-PI [49] is tuned to meet the iso-damping property, a gain crossover
frequency 1.2 rad/s and a 70◦ phase margin. The closed-loop results are indicated in
Figures 16 and 17, while the performance is evaluated using quantitative measures as
indicated in Table 9. The FO-PID controller obtained using the second set of tuning rules
in [42] is not included in the comparison, due to its highly oscillating nature.

Table 8. FO-PID parameters computed for the integrative time-delay process.

Controller Type kp Ti λ Td µ

FO-PI F-MIGO [26] 0.4465 0.2951 1.1 - -
FO-PI Gude [36] 0.3179 0.2878 1.1187 - -

FO-PID ZN-FOC [40] 0.7601 0.6420 0.9 0.1220 0.9
FO-PID [42] critical first set 0.2437 0.5649 1.4574 −0.1349 1.0028

FO-PID [42] critical second set −0.0293 −0.4905 1.2668 23.7347 −0.0293
FO-PI FO KC [49] 0.6573 0.3471 1.186 - -

FO-PID [32] S-shaped first set 0.1994 0.4622 1.4788 0.0845 0.9847
FO-PID [32] S-shaped second set 1.3281 1.7653 1.3168 −0.4142 −0.1793
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Figure 16. (a) Output signals for FO-PID control of delay-dominant process. (b) Input signals for
FO-PID control of the delay-dominant process (controllers tuned according to [26,32,36] second set
and [49]).

A small overshoot is obtained with the FO-PI controllers [26,36,49], combined with
small settling times and fast disturbance rejection. The control effort in all these cases is sim-
ilar, according to Figure 16b. FO-PID tuned using [40] manages to achieve a small settling
time for this case study, as well. Good results are also obtained for disturbance rejection,
at the expense of a larger control effort, compared to the other controllers (Figure 17b).
FO-PIDs determined according to [32,42] lead to larger overshoots and increased settling
times, as well as a poorer disturbance rejection, as indicated in Figure 17a. The required
control effort for these controllers is small (Figure 17b), comparable to the input amplitudes
given in Figure 16b.
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Figure 17. (a) Output signals for FO-PID control of delay-dominant process. (b) Input signals for
FO-PID control of the delay-dominant process (controllers tuned according to [40,42] first set and [32]
first set).

Table 9. Closed-loop results obtained with the FO-PID controller for the delay-dominant process.

Controller Overshoot Settling Time Disturbance
Rejection Time

FO-PI F-MIGO [26] 8% 4 1.5
FO-PI Gude [36] 8.2% 5.8 2.2

FO-PID ZN-FOC [40] 18% 5.5 2.9
FO-PID [42] critical first set 32% 17 9.9

FO-PI FO KC [49] 7.5% 6.7 1.8
FO-PID [32] S-shaped first set 37.8% 18.5 14.6

FO-PID [32] S-shaped second set 14.5% 10.1 8.4

4.5. The Poorly Damped Process

A final case study is considered in this section, with the process described by the
following transfer function:

P(s) =
22.24

s2 + 0.6934s + 5.244
e−0.8s (22)

The indirect autotuning methods based on an S-shaped response cannot be applied
for (21). An FO-PI controller tuned according to [36] is compared with a FO-PID obtained
using the method in [40] and a FO-PI controller determined using [49]. First, the relay
method is used to estimate the critical gain as Kcr = 0.0709 and Pcr = 2.8. These critical
gain and period of oscillations allow the design of a FO-PID controller according to the
first set of tuning rules in [42]. However, the proportional gain obtained in this way is
negative and destabilizes the closed-loop system. Thus, the design is not included in
this comparison. To tune the FO-PI controller [49], a sine test is firstly applied to the
process to determine its phase, magnitude and phase slope. Then, the parameters of the
FO-PI controller are determined such that the open-loop system achieves a gain crossover
frequency of 0.09 rad/s and a phase margin of 75◦, along with the iso-damping property.
The parameters of the fractional-order controllers are given in Table 10. Figure 18 shows the
closed-loop results, as well as the required input signals. The performance measures are
indicated in Table 11. The simulation results in Figure 18 and Table 11 show that the fastest
settling time is achieved by the FO-PID controller [40], with a zero overshoot. However, in
this case, the required control effort is the largest. The two FO-PI controllers determined
using [36,49] have a similar overshoot, as well as control effort. For the latter, the settling
and the disturbance rejection times are larger.
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Table 10. FO-PID parameters computed for the poorly damped process.

Controller Type kp Ti λ Td µ

FO-PI Gude [36] 0.0147 0.8348 1.1190 - -
FO-PID ZN-FOC [40] 0.0355 1.4904 0.9 0.2832 0.9

FO-PI FO KC [49] 0.6573 0.3471 1.186 - -
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Table 11. Closed-loop results obtained with the FO-PID controller for the poorly damped process.

Controller Overshoot Settling Time Disturbance
Rejection Time

FO-PI Gude [36] 4% 68 74
FO-PID ZN-FOC [40] 0% 33.5 85

FO-PI FO KC [49] 4% 79.5 113.5

For second-order poorly damped processes, most fractional order autotuning methods
cannot be applied, except for [47,49]. The direct autotuning method in [47] leads to a FO-PI
in series with a FO-PD controller, of the form given in (20), whereas the method in [49]
produces a simpler FO-PI controller. Similarly to the results in Table 7, a faster settling time
and better disturbance rejection are achieved using the fractional-order controller in [47],
due to the FO-PD component.

4.6. Remarks on Comparative Simulation Results

The simulations results and closed-loop performance analysis shows that some of
these autotuning methods allow for greater flexibility in the design, such as [34,47,49].
A faster settling time is obtained in all case studies using the autotuning method in [40].
The drawback consists in a larger control effort. The simple tuning rules from [32,42]
are generally outperformed by the other autotuning methods reviewed, except for delay
dominant systems, where the performance is close to the best one. For higher order systems
and poorly damped ones, the best closed-loop results are obtained using the autotuning
methods in [36,49] for both reference tracking and disturbance rejection. For FOPDT
delay-dominant processes, the results show that the parameters of the fractional-order
controllers should be estimated using the autotuning methods in [26,36,49]. In this case,
improved reference tracking and disturbance rejection are obtained. For integrating time-
delay processes, the best results in terms of overshoot are obtained using either a FO-PID
determined based on the autotuning method in [47] or in [49]. The best settling time is
obtained using either the autotuning method in [40,47]. However, the FO-PID controller
autotuned according to [47] requires a significant control effort, larger than those in [40,49].
For FOPDT lag-dominant processes, the autotuning methods from [26,27,49] ensure a small
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overshoot, whereas fast settling and disturbance rejection times are achieved using FO-PIDs
determined according to [26,27,40]. However, the control effort required when using the
FO-PIDs tuned based on [27,40] is larger compared to the FO-PID tuned using the approach
in [26].

5. Applications and Self-Tuned FO-PIDs

Autotuning methods have been used to produce fractional-order controllers for dif-
ferent processes. The purpose of this section is to provide some applicative examples
of autotuning methods for fractional-order controllers designed mostly according to the
methods presented in Sections 2 and 3. The autotuning method in [34] is applied to a
multivariable time-delay process to tune the FO-PI controllers for each loop [51]. The
method in [49] is applied for designing fractional-order controller for a multivariable refrig-
eration system using vapor compression [52], a heterogeneous dynamic system [53] and to
a highly coupled multivariable system [54]. A robust autotuning method is described and
implemented for controlling an aerodynamic system in [55]. An experimental validation of
the direct autotuning method in [49] is provided in [55] for controlling an UR10 robot. The
autotuning method in [34] is applied to tune a FO-PD controller for vibration suppression in
a smart beam [56]. An autotuning method designed for poorly damped systems that shapes
the closed-loop system in order to achieve better damping is proposed in [57]. The design
is performed in the frequency domain and requires information regarding the process
magnitude and phase for five frequencies. Experimental results are given to validate the
efficiency of the method.

A “plug and play” solution for a multivariable FO-PI controller is developed in [58]
for controlling a multivariable twin-rotor aerodynamical system. A decentralized approach
is considered and three performance specifications, as in (2)–(4), are used to compute
the parameters of the two FO-PI controllers, one for azimuth and one for pitch angle
control. The design is based on a novel, simplified algorithm using vector theory, where
the proportional z1 =

∣∣kp
∣∣ and integral z2 =

∣∣∣ 1
Ti
(jω)−λ

∣∣∣ terms are defined as vectors.
The vectorial representation of the FO-PI controller as the sum of z1 and z2 is indicated in
Figure 19.
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Then, using classical trigonometric equations based on Figure 1, the proportional
gain and integral time constant of the FO-PI controller are determined as a function of the
fractional order λ, using the gain crossover equation (2) and the phase margin equation in
(3). The procedure is iterative and computes the kp and Ti parameters for small increments
of 0 < λ < 1. Then, the iso-damping property in (4) is evaluated and λ is selected to be
the value that minimizes (4). Finally, kp and Ti are computed using the selected value of
λ. The fractional-order controller is implemented in a self-tuning structure as indicated
in Figure 20, where the “Controller designer” block includes the iterative procedure. The
“System identifier” block is used to estimate the process parameters online which are then
used in the iterative procedure to determine the new values for the FO-PI controller. A
recursive simple least squares algorithm is implemented in the “System identifier” block.
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Figure 20. The self-tuning FO-PI controller.

Experimental results are provided to demonstrate the efficiency of the autotuning
method. A step reference change of −1 rad for the azimuth angle and a step change of
0.2 rad for the pitch angle is considered, with the experimental results provided in Figure 21,
demonstrating that reference tracking can be achieved successfully using the proposed
multivariable self-tuned FO-PI control strategy.
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An autotuning approach for FO-PIDs is used to control the air-conditioning fan coil
unit [59]. A basic differential evolution algorithm is modified by varying the mutation
factor and crossover rate and used to tune the five parameters of indoor temperature
FO- PID controller. Numerical simulations are presented that show that the approach is
reliable and the related control performance indexes meet the requirements of comfortable
air-conditioning design and control criteria.

Improvements in FO-PID controller design have been considered in order to determine
algorithms that perform a better tuning in real time. One solution to this issue is the self-
tuned FO-PID controller. The purpose of this last part of the manuscript is to present
some ideas regarding additional solutions to autotuning methods that could facilitate
the industrial acceptance of FO-PID controllers. In what follows, the manuscript covers
an important part of adaptive control algorithms, namely, self-tuning methods, applied
to fractional-order controllers. Only the most recent findings in this area of research
are reviewed.

Fuzzy logic is usually used to achieve the self-tuning property, such a FO-PI self-
tuned controller is presented in [60], in a differential mobile robot. Three different types
of controllers are evaluated and compared to a classical controller, with its parameters
being acquired through traditional methods. A similar self-tuned fuzzy FO-PI controller
for a steam distillation process is evaluated in [61]. The numerical results show that this



Fractal Fract. 2022, 6, 37 20 of 25

controller leads to better closed-loop performance in comparison to the integer order PI,
the FO-PI and self-tuning fuzzy PI. The control of the horizontal motion of a dual-axis
photo voltaic sun-tracker is presented in [62]. A new technique for online self-tuning of a
FO-PID controller based on both a type-1 fuzzy and a Takaji-Sugeno Fuzzy is developed.
Satisfactory results were obtained in numerical simulations. Takagi-Sugeno (TS) fuzzy
technique combined with interval type-2 fuzzy sets is used in [63] to design a new adaptive
self-tuning FO-PID controller. A modified FO-PID controller is obtained using TS, while the
interval type-2 fuzzy sets are used as a tuner to update the gains of the FO-PID. Three types
of interval type-2 fuzzy sets tuning methods are used and applied to load-frequency control
as a case study of a power system comprising a single area. Comparative studies with type-
1 fuzzy sets are carried. The simulation results show that the proposed approach works
well considering disturbance changes and parameter uncertainties. A fuzzy FO-PID is used
in [64] to control the position of a robotic manipulator. A fuzzy system combined with
the particle swarm optimization method is used to determine the parameters of a FO-PID
controller. Numerical simulations and comparisons with a fuzzy PID are performed. The
simulation results show that the FO-PID is able to reduce the overshoot and the oscillatory
dynamics, compared to the fuzzy PID. Three self-tuned fuzzy controllers are implemented
in [65], namely, a FO-PD, a FO-PI and a FO-PID. The controllers are then evaluated in a
servo-regulatory mechanism. The simulation results show that the self-tuned fuzzy FO-PID
leads to the best closed-loop performance. The control of a mover position of a direct drive
linear voice coil motor (VCM) is performed in [66] using a self-tuning FO-PID. The five
FO-PID control parameters are optimized dynamically and concurrently using an adaptive
differential evolution algorithm. Experimental results are provided and demonstrate that
the proposed self-tuning FO-PID achieves better performance compared to PID and FOPID
controllers, under both nominal and payload conditions.

The control of an inverted pendulum system is described in [67], where two self-
tuned FO-PD controllers are designed to vertically balance the pendulum and for accurate
positioning. The proportional and derivative gains of the two controllers are dynamically
adjusted using particle swarm optimization after each sampling interval using piecewise
nonlinear functions of their respective state-variations. Hardware-in-the-loop experiments
are performed and the proposed approach is compared to fixed gain dual-PD and dual-FO-
PD control schemes.

A direct autotuning method for a FO-PI controller is used in [68] to control the speed
of a permanent magnet synchronous motor. Only the measured input-output data of the
closed-loop servo system is required to tune the FO-PI controller. The FO-PI parameters
are determined using a virtual reference feedback tuning with an incorporated Bode ideal
transfer function, which allows the properties of the resulting system to be approximated
to the desired fractional-order reference model. Optimal performance constraints, such as
sensitivity criteria, frequency-domain and time-domain characteristics are considered in the
autotuning. Experimental results are provided to illustrate the efficiency of the proposed
model-free FO-PI control method for the servo system. The extremum seeking approach is
used as a non-model-based method that searches online for the FO-PID parameters that
minimizes a cost function related to the performance of the controller [69]. Simulation
examples are provided to demonstrate the effectiveness of the proposed algorithm.

A novel self-tuning FO-PID controller using the optimal model reference adaptive
control (MRAC) is applied to power system load-frequency control [70]. The requirements
for the control systems are embedded in the model reference, mathematically described as a
first- or second-order system. A harmony search optimization method is used to determine
the parameters of MRAC. Three methods for self-tuning FO-PID control are presented.
The first two methods assume some of the FO-PID parameters to be fixed and adjust the
remaining ones, while the third method was developed to adjust all five parameters of the
FO-PID controller, at the same time. The simulation results show that the latter method
achieves better disturbance rejection, as well as improved handling of system uncertainty.
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The control of coupled and non-linear 2-link rigid robot is tackled in [71] using a
novel non-linear FO-PID that includes a non-linear hyperbolic function cascaded with a
FO-PID. The fractional orders allow for greater flexibility in the controller design, while
the adaptive feature is incorporated in the non-linear function. The parameters of the
FO-PID are determined according to the multi-objective non-dominated sorting genetic
algorithm II (NSGA-II) for small variations in control and error signal. Comparisons with a
non-linear PID, FO-PID, non-linear hyperbolic function cascaded with an integer order PID
or traditional PID are performed. The simulation results demonstrate that the proposed
method provides robust and efficient control of the robotic arm.

A fractional fuzzy controller is designed in [72], without using an actual model of
the robot and only well-known structural properties of mechanical systems. The entire
implementation is model-free and tackles the control of robotic manipulators. To ensure
improved disturbance rejection, a fuzzy logic formulation is used with an online adaptation
of the outputs to achieve a better closed-loop response. To demonstrate the efficiency of
the approach, simulations and experimental results are presented. An innovative design
method, suitable for many industrial applications is presented in [73]. A self-tuning
fractional-order controller is designed using fractional order pole placement and indirect
adaptation profiles. Simulation results are provided for an air-lubricated capstan drive
for precision positioning. The results show that, indeed, better closed-loop performance
is possible using the proposed method instead of a similar one based on integer order
pole placement.

A fractional-order self-tuned fuzzy PID controller is designed for a three-link rigid
robotic manipulator system in [74]. The controller is tuned using a cuckoo search algorithm
to minimize the weighted sum of the integral of absolute error and the integral of absolute
change in controller output. The same tuning procedure is used to tune a fractional-
order fuzzy PID and an integer-order self-tuning fuzzy PID. Comparative simulation
results are provided and demonstrate better trajectory tracking, disturbance rejection, noise
suppression and robustness to model uncertainty in the case of the proposed fractional-
order self-tuned fuzzy PID controller.

In [75], an online identification of the parameters of a fractional order process is
performed based on a particle swarm optimization algorithm. Then, a fractional order
self-tuning regulator is designed using differential evolution algorithms. Simulation results
show that the proposed method is robust and leads to good closed-loop results.

A self-tuning controller is designed in [76] using fuzzy logic for the control of micro-
grid systems. A fractional-order controller is developed in combination with a fuzzy logic
algorithm for load-frequency control of the off-grid microgrid. An optimal way to estimate
the input and output scale coefficients of the fuzzy controller and fractional orders of the
fractional-order controller is developed based on a novel meta-heuristic whale algorithm. The
case study consists in a microgrid containing a diesel generator, wind turbine, photovoltaic
systems and energy storage devices. Simulation results show that the proposed optimized
fractional-order self-tuning fuzzy controller manages to outperform the classical PID controller
in terms of operation characteristics, settling time and load-disturbance attenuation.

The active suspension system of a quarter car is considered as the case study in [77],
where a self-tuned robust fractional-order fuzzy proportional-derivative controller is devel-
oped. The design of the controller attempts to minimize the root mean square of vertical
vibration acceleration of car body. Tracking force, ratio between tire dynamics and static
loads and suspension travel are considered as design constraints. Genetic algorithms are
used to optimize the parameters online for a sinusoidal road surface. However, simulations
were performed for random road surfaces and bumps. The proposed self-tuned fractional-
order fuzzy proportional-derivative controller achieved better results compared to passive
solutions, as well as to its integer order counterpart.

The cuckoo search algorithm is also proposed in [78] in the design of a self-tuned
fractional-order fuzzy PID controller. The optimization algorithm is based on the minimiza-
tion of an objective function defined as the sum of integral of squared error and integral of
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the squared deviation of controller output. The final controller consists in a Takagi-Sugeno
model-based fuzzy adaptive controller containing non-integer-order differ-integral oper-
ators. For comparative purposes, the integer order counterpart of this controller is also
designed. Simulation results indicate the increased robustness of the self-tuned fractional-
order fuzzy PID controller when applied to the control of an integrated power system.

6. Conclusions

Fractional-order controllers have emerged as a generalization of the standard PID,
allowing for greater flexibility and improved performance and robustness. The tuning
of these FO-PIDs is not an easy task, since the complexity of the design increases along
with the number of tuning parameters. Several tuning methods have been developed,
but the majority of them require a process transfer function. In some cases, obtaining an
accurate mathematical model of the process is time consuming and tedious, especially
in the industrial sector. To cope with this issue, autotuning methods for FO-PIDs have
emerged. In this paper, a survey of the existing autotuning methods for FO-PIDs is
presented. Several autotuning approaches are compared for lag-dominant and delay-
dominant FOPDT processes, for higher order systems, for integrative time-delay processes
or poorly damped ones.

For each type of process, the autotuning methods are compared in terms of closed-loop
performance regarding reference tracking and disturbance rejection. Robustness was not
considered as a means for comparison, since some of the reviewed methods do not address
directly this issue, while others do. This aspect would have led to unfair comparisons and
possibly different remarks on the opportunity of using one autotuning method, instead
of another.

Some of these autotuning methods have also been validated experimentally. Research
in this area is still under way and the current autotuning methods stand as the premises for
further innovation in this area. Further research regarding the robustness of the autotuning
methods will be considered.
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Machado, J.A., Eds.; Springer: Berlin, Germany, 2018; Volume 24, pp. 245–256.

57. Birs, I.; Folea, S.; Prodan, O.; Dulf, E.; Muresan, C. An experimental tuning approach of fractional order controllers in the
frequency domain. Appl. Sci. 2021, 10, 2379. [CrossRef]

58. Dulf, E.H.; Muresan, C.I.; Both-Rusu, R.; Dulf, F.V. Robust Auto-tuning Fractional Order Control of an Aerodynamical System. In
Proceedings of the 2016 International Conference on Mechatronics, Control and Automation Engineering, Bangkok, Thailand,
24–25 July 2016; Volume 58, pp. 42–45. [CrossRef]

59. Li, S.; Wang, D.; Han, X.; Cheng, K.; Zhao, C. Auto-Tuning Parameters of Fractional PID Controller Design for Air-Conditioning
Fan Coil Unit. J. Shanghai Jiao Tong Univ. (Sci.) 2021, 26, 186–192. [CrossRef]

60. Bernardes, N.D.; Castro, F.A.; Cuadros, M.A.; Salarolli, P.F.; Almeida, G.M.; Munaro, C.J. Fuzzy Logic in Auto-tuning of Fractional
PID and Backstepping Tracking Control of a Differential Mobile Robot. J. Intell. Fuzzy Syst. 2019, 37, 4951–4964. [CrossRef]

61. Tajjudin, M.; Ishak, N.; Fazalul Rahiman, M.H.; Mohd Arshad, N.; Adnan, R. Self-tuning fuzzy fractional-order PI controller:
Design and application in steam distillation process. In Proceedings of the 2014 IEEE International Conference on Control System,
Computing and Engineering (ICCSCE 2014), Penang, Malaysia, 28–30 November 2014; pp. 316–321. [CrossRef]

62. Gaballa, M.S.; Bahgat, M.; Abdel-Ghany, A.-G.M. A novel technique for online self-tuning of fractional order PID, based on
takaji-sugeno fuzzy. In Proceedings of the Nineteenth International Middle East Power Systems Conference, Cairo, Egypt,
19–21 December 2017; pp. 1362–1368. [CrossRef]

63. Ghany, M.A.A.; Bahgat, M.E.; Refaey, W.M.; Sharaf, S. Type-2 fuzzy self-tuning of modified fractional-order PID based on
Takagi-Sugeno method. J. Electr. Syst. Inf. Technol. 2020, 7, 2. [CrossRef]

http://doi.org/10.1109/ICSGRC.2013.6653288
http://doi.org/10.1016/j.isatra.2018.09.017
http://doi.org/10.3182/20060719-3-PT-4902.00004
http://doi.org/10.1016/j.conengprac.2007.08.006
http://doi.org/10.1109/TSMCB.2004.837950
http://www.ncbi.nlm.nih.gov/pubmed/15719930
http://doi.org/10.1109/ETFA.2009.5347104
http://doi.org/10.1016/j.ifacol.2018.11.181
http://doi.org/10.1016/j.isatra.2018.01.026
http://doi.org/10.1109/ECC.2016.7810311
http://doi.org/10.1016/j.ifacol.2018.06.021
http://doi.org/10.1016/j.ifacol.2018.06.120
http://doi.org/10.1016/j.heliyon.2019.e02154
http://www.ncbi.nlm.nih.gov/pubmed/31388585
http://doi.org/10.3390/a11070095
http://doi.org/10.3390/app10072379
http://doi.org/10.2991/mcae-16.2016.11
http://doi.org/10.1007/s12204-020-2245-5
http://doi.org/10.3233/JIFS-181431
http://doi.org/10.1109/ICCSCE.2014.7072737
http://doi.org/10.1109/MEPCON.2017.830136
http://doi.org/10.1186/s43067-019-0009-9


Fractal Fract. 2022, 6, 37 25 of 25

64. Ardeshiri, R.R.; Kashani, H.N.; Reza-Ahrabi, A. Design and simulation of self-tuning fractional order fuzzy PID controller for
robotic manipulator. Int. J. Autom. Control 2019, 13, 595–618. [CrossRef]

65. Agrawal, A. Analytical Study of the Robustness of the Different Variants of Fractional-Order Self-Tuned Fuzzy Logic Con-
trollers. In Proceedings of the 1st International Conference on Computational Research and Data Analytics, Rajpura, India,
24 October 2020; IOP Conference Series: Materials Science and Engineering. IOP: Bristol, UK, 2020; Volume 1022.

66. Chen, S.Y.; Chia, C.S. Precision Position Control of a Voice Coil Motor Using Self-Tuning Fractional Order Proportional-Integral-
Derivative Control. Micromachines 2016, 7, 207. [CrossRef] [PubMed]

67. Saleem, O.; Mahmood-ul-Hasan, K. Robust stabilisation of rotary inverted pendulum using intelligently optimised nonlinear
self-adaptive dual fractional-order PD controllers. Int. J. Syst. Sci. 2019, 50, 1399–1414. [CrossRef]

68. Xie, Y.; Tang, X.; Song, B.; Zhou, X.; Guo, Y. Model-free tuning strategy of fractional-order PI controller for speed regulation of
permanent magnet synchronous motor. Trans. Inst. Meas. Control 2019, 41, 23–35. [CrossRef]

69. Neçaibia, A.; Ladaci, S. Self-tuning fractional order PIλDµ controller based on extremum seeking approach. Int. J. Autom. Control
2014, 8, 99–121. [CrossRef]

70. Shamseldin, M.A.; Sallam, M.; Abdel Halim, B.; Abdel Ghany, A.M. A novel self-tuning fractional order PID control based on
optimal model reference adaptive system. Int. J. Power Electron. Drive Syst. 2019, 10, 230–241. [CrossRef]

71. Mohan, V.; Chhabra, H.; Rani, A.; Singh, V. Robust Self-tuning Fractional Order PID Controller Dedicated to Non-linear Dynamic
System. J. Intell. Fuzzy Syst. 2018, 34, 1467–1478. [CrossRef]

72. Muñoz-Vázquez, A.J.; Treesatayapun, C. Model-free discrete-time fractional fuzzy control of robotic manipulators. J. Frankl.
Inst. 2021. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0016003221007365 (accessed on
1 December 2021).

73. Ladaci, S.; Bensafia, Y. Fractional order self-tuning control. In Proceedings of the IEEE 13th International Conference on Industrial
Informatics, Cambridge, UK, 22–24 July 2015; pp. 544–549. [CrossRef]

74. Kumar, J.; Kumar, V.; Rana, K.P.S. Fractional-order self-tuned fuzzy PID controller for three-link robotic manipulator system.
Neural Comput. Applic 2020, 32, 7235–7257. [CrossRef]

75. Maiti, D.; Chakraborty, M.; Acharya, A.; Konar, A. Design of a fractional-order self-tuning regulator using optimization algorithms.
In Proceedings of the 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 24–27
December 2008; pp. 470–475. [CrossRef]

76. Naderipour, A.; Abdul-Malek, Z.; Davoodkhani, I.F.; Kamyab, H.; Ali, R.R. Load-frequency control in an islanded microgrid
PV/WT/FC/ESS using an optimal self-tuning fractional-order fuzzy controller. Environ. Sci. Pollut. Res. Int. 2021, 28, 1–12.
[CrossRef] [PubMed]

77. Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra, P. Self-tuned robust fractional order fuzzy PD controller for uncertain and nonlinear
active suspension system. Neural Comput. Appl. 2016, 30, 1827–1843. [CrossRef]

78. Nithilasaravanan, K.; Thakwani, N.; Mishra, P.; Kumar, V.; Rana, K.P.S. Efficient control of integrated power system using self
tuned fractional order fuzzy PID controller. Neural Comput. Appl. 2018, 31, 4137–4155. [CrossRef]

http://doi.org/10.1504/IJAAC.2019.101912
http://doi.org/10.3390/mi7110207
http://www.ncbi.nlm.nih.gov/pubmed/30404379
http://doi.org/10.1080/00207721.2019.1615575
http://doi.org/10.1177/0142331217751040
http://doi.org/10.1504/IJAAC.2014.063361
http://doi.org/10.11591/ijpeds.v10.i1.pp230-241
http://doi.org/10.3233/JIFS-169442
https://www.sciencedirect.com/science/article/abs/pii/S0016003221007365
http://doi.org/10.1109/INDIN.2015.7281792
http://doi.org/10.1007/s00521-019-04215-8
http://doi.org/10.1109/ICCITECHN.2008.4803098
http://doi.org/10.1007/s11356-021-14799-1
http://www.ncbi.nlm.nih.gov/pubmed/34241794
http://doi.org/10.1007/s00521-016-2774-x
http://doi.org/10.1007/s00521-017-3309-9

	Introduction 
	Indirect Fractional Order Autotuning Methods 
	Direct Fractional Order Autotuning Methods 
	Numerical Examples 
	The FOPDT Lag-Dominant Process 
	The Higher Order Process 
	The Integrating Time-Delay Process 
	The FOPDT Delay-Dominant Process 
	The Poorly Damped Process 
	Remarks on Comparative Simulation Results 

	Applications and Self-Tuned FO-PIDs 
	Conclusions 
	References

