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Abstract: This research paper deals with the passivity and synchronization problem of fractional-
order memristor-based competitive neural networks (FOMBCNNs) for the first time. Since the
FOMBCNNs’ parameters are state-dependent, FOMBCNNs may exhibit unexpected parameter mis-
match when different initial conditions are chosen. Therefore, the conventional robust control scheme
cannot guarantee the synchronization of FOMBCNNs. Under the framework of the Filippov solution,
the drive and response FOMBCNNs are first transformed into systems with interval parameters.
Then, the new sufficient criteria are obtained by linear matrix inequalities (LMIs) to ensure the pas-
sivity in finite-time criteria for FOMBCNNs with mismatched switching jumps. Further, a feedback
control law is designed to ensure the finite-time synchronization of FOMBCNNs. Finally, three
numerical cases are given to illustrate the usefulness of our passivity and synchronization results.

Keywords: memristor; fractional-order competitive neural networks; finite-time passivity; finite-time
boundedness; finite-time synchronization

1. Introduction

In recent years, the research on competitive-type neural networks (CNNs) has attracted
expanding consideration from mathematicians, engineers, physicists and scholars. There
are two forms of state variables: short-term memory and long-term memory. They make a
good application background in convex optimization, cybernetics, image recognition and
associative memory. Recently, many significant results on the dynamics of different kinds of
neural networks, especially recurrent neural networks [1], cellular neural networks [2], T-S
fuzzy neural networks [3], BAM neural networks [4] and competitive neural networks [5–8]
have been obtained, but these results are mainly discussed in integer-order cases. However,
there are few results focused on CNNs with fractional-order cases, see [9–13].

As the fourth circuit component along with resistor, capacitor and inductor, memristor
was firstly postulated by Professor Chua in 1971 [14]. A resistor describes the voltage–
current relationship, a capacitor depicts the charge–voltage relationship and an inductor
displays the flux–current relationship. Chua showed the missing flux–charge relationship,
which he named memristance and is the value of a memristor. The Hewlett-Packard
laboratory fabricated a practically working memristor device in 2008 [15]. Good features
of memristors such as nanometer size, nonvolatility and nonlinearity make them more
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suitable for simulating synapses resistors in network models. If the resistor of self-feedback
connections weights is instead modeled by a memristor in conventional neural networks
model, then memristor-based neural networks (MNNs) can be reached. Many interesting
results on the dynamics of memristor-based neural networks have recently been proposed
and studied [16–19]. Currently, many researchers also claim that MNNs provide more
memory storage than conventional neural networks [20]. Undoubtedly, memristor-based
competitive neural networks will advantage the associative memory capability of neural
networks. It is very significant to analyze the memristor-based competitive neural networks’
dynamical behaviors.

As far back as the 1695s, the idea of fractional calculus [21] was discussed by Gottfried
Wilhelm Leibniz. Comparing with traditional integer-order calculus, fractional calculus
has unlimited memory property. Recently, fractional calculus has played a vital role in the
science and engineering fields [22,23], and lots of scientific results have been reported on
this topic, see [24–28]. At present, there is a trend to utilize fractional differential techniques
to study the dynamics of networks, especially neural networks [29–32]. It should be
mentioned that the memristance of the memristor has a fractional order. Therefore, it has
been very common and precise to utilize fractional differential techniques for studying
the dynamics of memristor-based neural network systems. Recently, an ever-increasing
number of specialists have talked about memristor-based neural network systems with
fractional order (MNNWFO) and some significant outcomes have been accounted for on
stability [33,34], stabilization [35,36] and state estimation [37,38].

Passivity can keep a system internally stable, which helps to understand the stability
of different dynamical systems and their properties. Recently, the research on passivity
analysis has become a hot research subject and it has been effectively applied to different
fields such as control systems, power systems and robot systems. In view of the energy
theory, the systems have been described as well as their Lyapunov-related input/output
information. In light of the Lyapunov theory, there have been numerous scientific results in
the literature, see [39–46]. On the other hand, synchronization has already emerged as a hot
research theme and some meaningful scientific results on MNNWFO have been obtained,
see [47,48].

Since the life spans of machines and human beings are finite, asymptotic synchroniza-
tion is inapplicable in practice. In this regard, the finite-time synchronization of nonlinear
systems has been comprehensively investigated in the literature [49–52]. For example,
the authors in [53] have analyzed the Mittag–Leffler synchronization in finite-time criteria
Caputo fractional-order memristor-based BAM neural networks with fractional orders
0 < ξ < 1 and 1 < ξ < 2, by means of a linear feedback control law, and the gen-
eralized Gronwall inequality. On the other hand, the finite-time passivity theory can
provide a powerful tool to analyze the dynamics of fractional-order neural networks. Mean-
while, to our knowledge, few published research works exist concerning this problem.
To mention a few, the authors in [54] have established the robust passivity criterion of
interval-parameter-based neural networks with a Caputo fractional-order derivative via
passivity theory, Lyapunov theory and LMI techniques. Unfortunately, the passivity and
synchronization of FOMCNNS have not been investigated yet and this situation motivates
further investigation of FOMBCNNs.

Motivated by the aforementioned issues, this paper aims at analyzing the finite-time
passivity and finite-time synchronization criterion of FOMBCNNs. The novelty of this
manuscript is summarized as follows. (1) As far as we know, this paper is the first attempt to
address the finite-time passivity and finite-synchronization for fractional-order competitive
neural networks. (2) The problem addressed in this paper is described by a class of robust
analytical techniques. (3) To obtain our main results, finite-time boundedness, finite-time
passivity and finite-time synchronization definitions are presented. (4) In light of these
definitions, several results are established theoretically. (5) These theoretical results and
techniques are improved compared to the existing passivity and synchronization results of
fractional-order neural networks. The remaining structure of this research work is outlined
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as follows: basic results on fractional-order calculus and a description of FOMBCNN
systems are formally introduced in the next section. Sections 3 and 4 describe the main
results of this research paper. Section 5 yields numerical results and their simulations.
Finally, Section 6 ends with conclusions.

2. System Description and Preliminaries

For a real matrix U, Λmin(U) and Λmax(U) signify the maximal and the minimal
eigenvalue of U, respectively. The superscript T indicates the matrix transposition. For all
u 6= 0, the matrix H is positive definite if uTHu > 0. H > H means H−H > 0. I is the
identity matrix. The symmetric term in a matrix is displayed by ?. K(U) stands for the
closure of the convex hull of U. For β(t) = (β1(t), ..., βn(t))T ∈ Rn, we denote

‖β(t)‖2 =

√√√√ n

∑
j=1

β2
j (t).

2.1. Preliminaries

This section comprises the rudimentary definitions and lemmas, which are further
employed in the subsequent section.

Definition 1. The fractional-order integral of function β(t) is [21]:

0D
−ξ
t β(t) =

1
Γ(ξ)

∫ t

t0

(t− `)ξ−1β(`)d`,

where Γ(·) is the gamma function.

Definition 2. The Caputo fractional-order derivative of function β(t) is [21]:

C
0 D

ξ
t β(t) =

1
Γ(n− ξ)

∫ t

t0

β(n)(`)

(t− `)ξ−n+1 d`,

where t ≥ t0 and n− 1 < ξ < n ∈ Z+.

Definition 3. The Mittag–Leffler function with two parameter is described as [21]:

Eξ1,ξ2(`) =
+∞

∑
i=0

`i

Γ(ξ1i + ξ2)
,

where ξ1, ξ2 ∈ R+ and ` ∈ C. For ξ2 = 1, its Mittag–Leffler function with one parameter is
displayed as

Eξ1,1(`) =
+∞

∑
i=0

`i

Γ(ξ1i + 1)
= Eξ1(`).

Lemma 1. If β(t) ∈ Cn[0,+∞) and n− 1 < ξ < n, (n ∈ Z+, n ≥ 1), then [21]

0D
−ξ
t

(C

0
D

ξ
t β(t)

)
= β(t)−

n−1

∑
u=0

tu

u!
βu(t0).

In particular, if 0 < ξ < 1, then 0D
−ξ
t

(C

0
D

ξ
t β(t)

)
= β(t)− β(t0).
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Lemma 2. For 0 < ξ < 1, function p(t) is continuous and is defined on [0,+∞), then there exist
constants $1 > 0 and $2 ≥ 0 such that [31]

C
0 D

ξ
t p(t) ≤ −$1 p(t) + $2, t ≥ t0,

then

p(t) ≤ p(0)Eξ

(
− $1tξ

)
+ $2tξ Eξ,ξ+1

(
− $1tξ

)
, t ≥ t0.

Lemma 3. Let p(t) ∈ Rn be a continuously differentiable vector-valued function, then for any
t ≥ t0 [32]

C
0 D

ξ
t {pT(t)Hp(t)} ≤ 2pT(t)H{D ξ

t p(t)}, ξ ∈ (0, 1),

whereH ∈ Rn×n is a positive definite symmetric matrix.

2.2. Model Description

We consider a fractional-order memristor-based competitive neural network (FOM-
BCNN) in this manuscript:{

C
0 D

ξ
t uj(t) = −pjuj(t) + ∑n

k=1 qjk
(
uj(t)

)
gk
(
uk(t)

)
+ sj ∑m

i=1 δji(t)ζi + π f xj(t)
C
0 D

ξ
t δji(t) = −ajδji(t) + ζibjgj

(
uj(t)

)
+ θ f yj(t), f = 1, 2, ..., d,

(1)

where C
0 D

ξ
t signifies the Caputo derivative with order 0 < ξ < 1, uj(t) represents the state

variables; the current activity level is represented by pj; aj and bj signifies the disposable
scaling positive scalars; gk(·) represents the neuron activations; δji signifies the synaptic
efficiency; the weights of the external stimulus is denoted by sj; ζ = (ζ1, ..., ζn)T represents
the constant external stimulus; xj(t) and yj(t) are disturbing input vectors; π f and θ f are
known scalars; the synaptic memristor-based connection weights satisfy

qjk
(
uj(t)

)
=

{
q̂jk, |uj(t)| ≤ Ij

q̆jk, |uj(t)| > Ij,

in which Ij > 0 are switching jumps and q̂jk > 0, q̆jk > 0 are constants.
Define wj(t) = ∑m

i=1 δji(t)ζi = ζδT
j (t), j = 1, 2, ..., n, where δj(·) = [δj1(·), ..., δjm(·)]T .

Then, the transformation system (1) can be written as{
C
0 D

ξ
t uj(t) = −pjuj(t) + ∑n

k=1 qjk
(
uj(t)

)
gk
(
uk(t)

)
+ sjwj(t) + π f xj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + |ζi|2bjgj

(
uj(t)

)
+ θ f yj(t), f = 1, 2, ..., d,

(2)

where |ζi|2 = ζ2
1 + ... + ζ2

m is scalar. Without loss of generality, the input stimulus vector is
supposed to be normalized with unit magnitude |ζi|2 = 1. Then, the above equation can be
written as{

C
0 D

ξ
t uj(t) = −pjuj(t) + ∑n

k=1 qjk
(
uj(t)

)
gk
(
uk(t)

)
+ sjwj(t) + π f xj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
+ θ f yj(t), f = 1, 2, ..., d.

(3)

Remark 1. The memristor-based connection weights of the system are changed based on the system
state. Therefore, FOMBCNN (1) can be regarded as a state-dependent switching system, which is a
special case of the dynamics of competitive neural networks.
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Define q+jk = max
{

q̂jk, q̆jk
}

, q−jk = min
{

q̂jk, q̆jk
}

, q̀jk = 1
2
(
q+jk + q−jk

)
and

q́jk =
1
2
(
q+jk − q−jk

)
. Then, FOMBCNN (1) can be written in the following form:C

0 D
ξ
t uj(t) = −pjuj(t) + ∑n

k=1

(
q̀jk + ∆jk

(
uj(t)

))
gk
(
uk(t)

)
+ sjwj(t) + π f xj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
+ θ f yj(t), f = 1, 2, ..., d,

(4)

where

∆jk
(
uj(t)

)
=

{
q́jk, qjk

(
uj(t)

)
= q+jk

−q́jk, qjk
(
uj(t)

)
= q−jk .

Based on Filippov’s theory [55] and some transformation techniques, it can be obtained
from (4) thatC

0 D
ξ
t uj(t) ∈ −pjuj(t) + ∑n

k=1

(
q̀jk +K

[
− q́jk, q́jk

])
gk
(
uk(t)

)
+ sjwj(t) + π f xj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
+ θ f yj(t), f = 1, 2, ..., d,

(5)

According to the measurable selection theorem [56], there exists a measurable function
χjk(t) ∈ K[−1, 1] such thatC

0 D
ξ
t uj(t) = −pjuj(t) + ∑n

k=1

[
q̀jk + q́jkχjk(t)

]
gk
(
uk(t)

)
+ sjwj(t) + π f xj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
+ θ f yj(t), f = 1, 2, ..., d.

(6)

Throughout this manuscript, we make the following assumptions.
(A1). The nonlinear feedback function gk is bounded and satisfies:

0 ≤ gk(γ1)− gk(γ2)

γ1 − γ2
≤ lk, k = 1, 2, ..., n, ∀ γ1 6= γ2 ∈ R,

where lk > 0 (k = 1, 2, ..., n) are scalars.
(A2). The disturbance input x(t) = [x1(t), ..., xn(t)]T , y(t) = [x1(t), ..., xn(t)]T ∈ Rn are
time varying, and there exist constants λ1 > 0 and λ2 > 0 such that the disturbance input
vectors fulfills the following relationships:

xT(t)x(t) ≤ λ1, yT(t)y(t) ≤ λ2.

In the development of the main results, the following lemmas are significant.

Lemma 4. [57] Let ζ1 > 0, ζ2 > 0, ζ3 > 1, ζ4 > 1 and ζ−1
3 + ζ−1

4 = 1, then the following
inequality is fulfilled:

ζ1ζ2 ≤
(ηζ1)

ζ3

ζ3
+

(η−1ζ2)
ζ4

ζ4

where η > 0 is a constant.

Lemma 5. [58] Given matrices H = H T , E , G and M = M T > 0 of appropriate dimension,

H + EΦG + GTΦTGT < 0,

for all ΦTΦ ≤M , if and only if there exists some β > 0 such that

H + βEET + β−1GTMG < 0.
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Lemma 6. [59] Let α > 0, for any <1, <2 ∈ Rn and n× n matrix H ,

<T
1 H <2 ≤ α−1

2
<T

1 H H T<1 +
α

2
<T

2<2.

3. Finite-Time Passivity

In this section, we demonstrate the finite-time passivity criterion of FOMBCNN (1),
which is equivalent to the FOMBCNN system (6).

First, we define the following notations:

E =
(√

q́11η1, ....,
√

q́1nη1, ....,
√

q́n1ηn, ....,
√

q́nnηn

)
n×n2

G =
(√

q́11η1, ....,
√

q́1nηn, ....,
√

q́n1η1, ....,
√

q́nnηn

)T

n2×n
, (7)

ηj ∈ Rn, the j-th element of ηj is one and all others are zero. From (7), one has

Q1 = EET = diag
{ n

∑
k=1

q́1k, ...,
n

∑
k=1

q́nk

}
,

Q2 = GGT = diag
{ n

∑
k=1

q́k1, ...,
n

∑
k=1

q́kn

}
. (8)

Let us also denote

[
N (t)

]
n2×n2

=

{
diag

{
χ11(t), ...., χ1n(t), ..., χn1(t), ...., χnn(t)

}
,
∣∣χjk

∣∣ ≤ 1, 1 ≤ j, k ≤ n

}
.

Obviously, N T(t)N (t) ≤ 1. The vector form of FOMBCNN (6) can be written as:{
C
0 D

ξ
t u(t) = −Pu(t) +

(
Q+ EN (t)G

)
g
(
u(t)

)
+ Sw(t) +Fx(t)

C
0 D

ξ
t w(t) = −Aw(t) + Bg

(
u(t)

)
+Hy(t),

(9)

where P = diag{p1, ..., pn} ∈ Rn, Q =
(
q̀jk
)
∈ Rn×n, S = diag{s1, ..., sn} ∈ Rn,

A = diag{a1, ..., an} ∈ Rn, B = diag{b1, ..., bn} ∈ Rn, F = diag{π1, ..., πd} ∈ Rd and
H = diag{θ1, ..., θd} ∈ Rd. The measured output vector of model (9) is assumed to be:{

qu(t) = Ruu(t)
qw(t) = Rww(t),

(10)

where qu(t) ∈ Rd, qw(t) ∈ Rd andRu, Rw ∈ Rd×n.
The following definitions are much needed to establish the finite-time passivity criteria

of system (9).

Definition 4. FOMBCNN (9) with measured output qu(t) = qw(t) = 0 is finite-time bounded
with respect to

(
σ1, σ2, Tσ, H1, H2, λ1, λ2

)
, where H1, H2 are symmetric positive definite

matrices, if

uT(t0)H1u(t0) + wT(t0)H2w(t0) ≤ σ1

implies that

uT(t)H1u(t) + wT(t)H2w(t) ≤ σ2, ∀ t ∈ [t0, Tσ],

and for all x(t) ∈ Rn and y(t) ∈ Rn Assumption (A2) is held.
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Definition 5. FOMBCNN (9) is finite-time passive with respect to
(
σ1, σ2, Tσ, H1, H2, λ1, λ2

)
,

where H1, H2 are symmetric positive definite matrices, if the following relationship holds:

1. When measured output qu(t) = qw(t) = 0, FOMBCNN (9) is finite-time bounded with
respect to

(
σ1, σ2, Tσ, H1, H2, λ1, λ2

)
.

2. Under the zero initial values, there exists a constant υ > 0 such that

2 C
0 D
−ξ
t

[
qu(t)x(t) + qw(t)y(t)

]
≥ −υ C

0 D
−ξ
t

[
xT(t)x(t) + yT(t)y(t)

]
, ∀ t ∈ [t0, Tσ].

Theorem 1. Suppose that Assumptions (A1) and (A2) hold. FOMBCNN (1) with measured
output qu(t) = qw(t) = 0 is finite-time bounded with respect to

(
σ1, σ2, Tσ, H1, H2, λ1, λ2

)
,

if there exist symmetric positive definite matricesH1, a positive diagonal matrixH2 and positive
constants αi, i = 1, 2, 3, 4, 5 and β > 0 such that

Φ =


Φ1 H1Q H1S H1F H1

√
Q1

? −α1 I + βQ2 0 0 0
? ? −α2 I 0 0
? ? ? −α3 I 0
? ? ? ? −βI

 < 0 (11)

Ψ =

−H2A−ATH2 + α2 I H2B H2H
? −α4 I 0
? ? −α5 I

 < 0 (12)

ϑσ2 > ϑσ1 +
α(λ1 + λ2)

Γ(ξ + 1)
Tξ

σ , (13)

where Φ1 = −H1P − PTH1 + [α1 + α4]LTL, H1 = H
− 1

2
1 H1H

− 1
2

1 , H2 = H
− 1

2
2 H2H

− 1
2

2 ,
ϑ = min{Λmin(H1), Λmin(H2)}, ϑ = max{Λmax(H1), Λmax(H2)} and α = max{α1, α2}.

Proof. Define the following functional for FOMBCNN (9) as

W(u(t), w(t)) = uT(t)H1u(t) + wT(t)H2w(t). (14)

According to Lemma 3, we have

C
0 D

ξ
t W(u(t), w(t)) ≤ 2uT(t)H1{C

0 D
ξ
t u(t)}+ 2wT(t)H2{C

0 D
ξ
t w(t)}

= 2uT(t)H1

[
−Pu(t) +Qg

(
u(t)

)
+ Sw(t) +Fx(t)

]

+2wT(t)H2

[
−Aw(t) + Bg

(
u(t)

)
+Hy(t)

]
= uT(t)

[
−H1P −PTH1

]
u(t) + 2uT(t)H1Qg

(
u(t)

)
+2uT(t)H1Sw(t) + 2uT(t)H1Fx(t)

+wT(t)
[
−H2A−ATH2

]
w(t)

+2wT(t)H2Bg
(
u(t)

)
+ 2wT(t)H2Hy(t), (15)
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where Q = Q+ EN (t)G. Based on Lemma 6, we obtain

C
0 D

ξ
t W(u(t), w(t)) ≤ uT(t)

[
−H1P −PTH1

]
u(t)

+α−1
1 uT(t)(H1Q)(H1Q)Tu(t) + α1uT(t)LTLu(t)

+α−1
2 uT(t)(H1S)(H1S)Tu(t) + α2wT(t)w(t)

+α−1
3 uT(t)(H1F )(H1F )Tu(t) + α3xT(t)x(t)

+wT(t)
[
−H2A−ATH2

]
w(t) + α−1

4 wT(t)(H2B)(H2B)Tw(t)

+α4uT(t)LTLu(t) + α−1
5 wT(t)(H2H)(H2H)Tw(t) + α5yT(t)y(t)

≤ uT(t)Φu(t) + wT(t)Ψw(t) + α3xT(t)x(t) + α5yT(t)y(t), (16)

where L = diag{l1, ..., ln} and

Φ = −H1P −PTH1 + α−1
1 (H1Q)(H1Q)T + [α1 + α4]LTL+ α−1

2 (H1S)(H1S)T

+α−1
3 (H1F )(H1F )T < 0 (17)

Ψ = −H2A−ATH2 + α−1
4 (H2B)(H2B)T + α−1

5 (H2H)(H2H)T + α2 I < 0. (18)

According to the Schur complement Lemma, (18) is equivalent to LMIs (12) and (17)
is equivalent to the following LMIs (19)

Φ =


Φ1 H1Q H1S H1F
? −α1 I 0 0
? ? −α2 I 0
? ? ? −α3 I

 (19)

with Φ1 = −H1P −PTH1 + [α1 + α4]LTL.

Replacing Q in (19) by Q+ EN (t)G. From (19), Φ is equivalent to

Φ =


Φ1 H1Q H1S H1F
? −α1 I 0 0
? ? −α2 I 0
? ? ? −α3 I

+


H1E

0
0
0

N (t)
[
0 G 0 0

]

+


0
GT

0
0

N T(t)
[
ETH1 0 0 0

]
< 0. (20)

Based on Lemma 5 in (20), there exists β > 0 such that Φ < 0 is equivalent to

Π =


Φ1 H1Q H1S H1F
? −α1 I 0 0
? ? −α2 I 0
? ? ? −α3 I

+ β−1


H1E

0
0
0

[ETH1 0 0 0
]

+β


0
GT

0
0

[0 G 0 0
]
< 0 (21)
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which can be rewritten as

Φ =


Φ1 + β−1H1EETH1 H1Q H1S H1F

? −α1 I + βGGT 0 0
? ? −α2 I 0
? ? ? −α3 I

 < 0. (22)

Based on the Schur Complement Lemma, expression (22) can be rearranged as condi-
tion (11). Therefore, from conditions (11) and (12), we have

C
0 D

ξ
t W(u(t), w(t)) ≤ α[xT(t)x + yT(t)y(t)]. (23)

Taking the fractional integration of (23) from t0 to t (t0 ≤ t ≤ Tσ) and based on
Lemma 1, one can obtain

uT(t)H1u(t) + wT(t)H2w(t) ≤ uT(t0)H1u(t0) + wT(t0)H2w(t0)

+
α

Γ(ξ)

∫ t

t0

(t− `)ξ−1
[

xT(`)x(`) + yT(`)y(`)
]
d`

≤ uT(t0)H1u(t0) + wT(t0)H2w(t0) +
Tξ

σ α(λ1 + λ2)

Γ(ξ + 1)
. (24)

On the other hand,

uT(t)H1u(t) + wT(t)H2w(t) = uT(t)H
1
2

1 H1H
1
2

1 u(t) + wT(t)H
1
2

2 H2H
1
2

2 w(t)

≥ Λmin(H1)uT(t)H1u(t) + Λmin(H2)wT(t)H2w(t)

= ϑ
[
uT(t)H1u(t) + wT(t)H2w(t)

]
, (25)

and

uT(t0)H1u(t0) + wT(t0)H2w(t0) = uT(t0)H
1
2

1 H1H
1
2

1 u(t0) + wT(t0)H
1
2

2 H2H
1
2

2 w(t0)

≤ Λmax(H1)uT(t0)H1u(t0) + Λmax(H2)wT(t0)H2w(t0)

= ϑ
[
uT(t0)H1u(t0) + wT(t0)H2w(t0)

]
,

≤ ϑσ1. (26)

Combining (24)–(26), one obtains

υ
[
uT(t)H1u(t) + wT(t)H2w(t)

]
≤ W(u(t), w(t))

= uT(t)H1u(t) + wT(t)H2w(t)

≤ ϑσ1 +
α(λ1 + λ2)

Γ(ξ + 1)
Tξ

σ .

Condition (14) implies that uT(t)H1u(t) + wT(t)H2w(t) < σ2. Thus, FOMBCNN
(1) with measured output qu(t) = qw(t) = 0 is finite-time bounded with respect to(

σ1, σ2, Tσ, H1, H2, λ1, λ2
)
.

Theorem 2. FOMBCNN (1) is finite-time passive with respect to
(
σ1, σ2, Tσ, H1, H2, λ1, λ2

)
and the conditions (13) of Theorem 3 hold if Assumptions (A1) and (A2) are satisfied, and there
exist a symmetric positive definite matrix H1, positive diagonal matrix H2 and scalars αi > 0,
i = 1, 2, 3, 4, 5 and β, ρ, κ > 0 such that
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Π =



Π1 H1Q H1S H1F H1
√
Q1 Ru

? −α1 I + βQ2 0 0 0 0
? ? −α2 I 0 0 0
? ? ? −α3 I 0 0
? ? ? ? −βI 0
? ? ? ? ? −ρI

 < 0, (27)

Σ =


−H2A−ATH2 + α2 I H2B H2H Rw

? −α4 I 0 0
? ? −α5 I 0
? ? ? −κ I

 < 0, (28)

and

0 >
(

α3 + ρ− υ
)

I, 0 >
(

α5 + κ − υ
)

I,

where Π1 = H1P −PTH1 + [α1 + α4]LTL.

Proof. Based on previous Theorem 3, one can easily obtain

C
0 D

ξ
t W(u(t), w(t))− 2qu(t)x(t)− 2qw(t)y(t)− υxT(t)x(t)− υyT(t)y(t)

≤ uT
1 (t) Φ u1(t) + wT

1 (t) Ψ w2(t) +
[
α3 − υ

]
xT(t)x(t)

+
[
α5 − υ

]
yT(t)y(t)2qu(t)x(t)− 2qw(t)y(t). (29)

In view of Lemma 6, there exists ρ > 0 such that

−2qu(t)x(t) ≤ ρ−1qT
u (t)qu(t) + ρxT(t)x(t)

= ρ−1uT(t)RT
uRuu(t) + ρxT(t)x(t) (30)

−2qw(t)y(t) ≤ κ−1qT
w(t)qw(t) + κyT(t)y(t)

= κ−1wT(t)RT
wRww(t) + κyT(t)y(t) (31)

C
0 D

ξ
t W(u(t), w(t))− 2qu(t)x(t)− 2qw(t)y(t)− υxT(t)x(t)− υyT(t)y(t)

≤ uT(t) Π u(t) + wT(t) Σ w(t) +
[
α3 + ρ− υ]xT(t)x(t)

+
[
α5 + κ − υ

]
βT(t)β(t). (32)

Then, from (29)–(32), we have

C
0 D

ξ
t W(u(t), w(t))− 2qu(t)x(t)− 2qw(t)y(t)− υxT(t)x(t)− υyT(t)y(t) ≤ 0. (33)

Now, we set

Λ = C
0 D
−ξ
t

[
− 2qu(t)x(t)− 2qw(t)y(t)− υxT(t)x(t)− υyT(t)y(t)

]
=

1
Γ(ξ)

∫ t

t0

(t− `)ξ−1
[
− 2qu(`)x(`)− 2qw(`)y(`)

−υxT(`)x(`)− υyT(`)y(`)
]
d`, t ∈ [t0, Th]. (34)
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In view of Lemma 1, we have

Λ = C
0 D
−ξ
t

[
− 2qu(t)x(t)− 2qw(t)y(t)− υxT(t)x(t)− υyT(t)y(t)

]
= −W(u(t), w(t)) +C

0 D
−ξ
t

[C

0
D

ξ
t W(u(t), w(t))

−2qu(t)x(t)− 2qw(t)y(t)− υxT(t)x(t)− υyT(t)y(t)
]

due to W(u(t), w(t)) ≥ 0. Combining (34) and (35), we obtain Λ < 0. Hence,

2 C
0 D
−ξ
t

[
qu(t)x(t) + qw(t)y(t)

]
≥ −ϑ C

0 D
−ξ
t

[
xT(t)x(t) + yT(t)y(t)

]
, ∀ t ∈ [t0, Tσ],

which means that the main FOMBCNN system (1) is passive in finite time with respect to(
σ1, σ2, Tσ, H1, H2, λ1, λ2

)
.

Remark 2. When xj(t) = yj(t) = qu(t) = qw(t) = 0, the asymptotic stability of the FOMBCNN
model (1) can directly be obtained from Theorem 3. As a result, the passivity investigation is a high
impact level of stability for FOMBCNNs.

Remark 3. We now discuss a special case of system (1). Especially, when y(t) = 0, qw(t) = 0
and F = I, then model (9) is reduced to the FOMBCNN discussed in [60]

C
0 D

ξ
t u(t) = −Pu(t) +

(
Q+ EN (t)G

)
g
(
u(t)

)
+ Sw(t) + x(t)

C
0 D

ξ
t w(t) = −Aw(t) + Bg

(
u(t)

)
qu(t) = Ruu(t)

(35)

Based on Theorem 1, the following corollary can be obtained for the system model (35).

Corollary 1. Suppose that Assumptions (A1) hold, if there exist symmetric positive definite matrix
H1, positive diagonal matrixH2 and scalars αi > 0, i = 1, 2, 3, 4 and β, ρ > 0 such that

Π =



Π1 H1Q H1S H1 H1
√
Q1 Ru

? −α1 I + βQ2 0 0 0 0
? ? −α2 I 0 0 0
? ? ? −α3 I 0 0
? ? ? ? −βI 0
? ? ? ? ? −ρI

 < 0, (36)

Σ =

[
−H2A−ATH2 + α2 I H2B

? −α4 I

]
< 0, (37)

and

0 >
(

α3 + ρ− υ
)

I,

where Π1 = H1P −PTH1 + [α1 + α4]LTL. Then, FOMBCNN (35) is passive.

Remark 4. Generally, the maximum absolute value method is an effective tool to study the dynamics
of FOMBCNNs. Because the obtained sufficient conditions are all considered in the form of the max-
imum absolute value of the memristor-based synaptic connection strengths, i.e., max{|q̂jk|, |q̆jk|},
when we choose these kinds of conditions (max{|q̂jk|, |q̆jk|}), we lose half of the information.
However, in this paper, the proposed system is changed from a fractional-order memristor-based
competitive neural network into an interval parameter system. To overcome this issue, in this present
work, we have transformed the memristor-based connection weights into interval parameters, which
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reduce more information losses. Therefore, the interval parameter approach is more effective than the
maximum absolute value method.

4. Finite-Time Synchronization

Let xj(t) = yj(t) = 0 in FOMBCNN (1), then we have{
C
0 D

ξ
t uj(t) = −pjuj(t) + ∑n

k=1 qjk
(
uj(t)

)
gk
(
uk(t)

)
+ sjwj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
.

(38)

Here, all the parameters are similar to the FOMBCNN system (1). Similar to FOM-
BCNN (4), the above system can be written as follows:C

0 D
ξ
t uj(t) = −pjuj(t) + ∑n

k=1

(
q̀jk + ∆jk

(
uj(t)

))
gk
(
uk(t)

)
+ sjwj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
,

(39)

where q̀jk, ∆jk
(
uj(t)

)
are already defined in (4). Based on Filippov’s theory [55] and some

transformation techniques, it can be obtained from (39) thatC
0 D

ξ
t uj(t) ∈ −pjuj(t) + ∑n

k=1

(
q̀jk +K

[
− q́jk, q́jk

])
gk
(
uk(t)

)
+ sjwj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
.

Based on the measurable selection theorem [56], there exists a measurable function
χjk(t) ∈ K[−1, 1] such thatC

0 D
ξ
t uj(t) = −pjuj(t) + ∑n

k=1

[
q̀jk + q́jkχjk(t)

]
gk
(
uk(t)

)
+ sjwj(t)

C
0 D

ξ
t wj(t) = −ajwj(t) + bjgj

(
uj(t)

)
.

(40)

The response FOMBCNN with control inputs is denoted by:{
C
0 D

ξ
t ũj(t) = −pjũj(t) + ∑n

k=1 qjk
(
ũj(t)

)
gk
(
ũk(t)

)
+ sjw̃j(t) + h1j(t)

C
0 D

ξ
t w̃j(t) = −ajw̃j(t) + bjgj

(
ũj(t)

)
+ h2j(t)

(41)

where the memristor-based connection weights qjk
(
ũj(t)

)
are already defined in Section 2,

h1j(t), h2j(t) are suitable controllers to be designed. Similar to FOMBCNN (38), the above
response system (41) can be written as follows:C

0 D
ξ
t ũj(t) = −pjũj(t) + ∑n

k=1

(
q̀jk + ∆jk

(
ũj(t)

))
gk
(
ũk(t)

)
+ sjw̃j(t) + h1j(t)

C
0 D

ξ
t w̃j(t) = −ajw̃j(t) + bjgj

(
ũj(t)

)
+ h2j(t),

(42)

where

∆jk
(
ũj(t)

)
=

{
q́jk, qjk

(
ũj(t)

)
= q+jk

−q́jk, qjk
(
ũj(t)

)
= q−jk .

Based on Filippov’s theory [55] and some transformation techniques, it can be obtained
from (42) thatC

0 D
ξ
t ũj(t) ∈ −pjũj(t) + ∑n

k=1

(
q̀jk +K

[
− q́jk, q́jk

])
gk
(
ũk(t)

)
+ sjw̃j(t) + h1j(t)

C
0 D

ξ
t w̃j(t) = −ajw̃j(t) + bjgj

(
ũj(t)

)
+ h2j(t).
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Based on the measurable selection theorem [56], there exists a measurable function
χ̃jk(t) ∈ K[−1, 1] such thatC

0 D
ξ
t ũj(t) = −pjũj(t) + ∑n

k=1

[
q̀jk + q́jkχ̃jk(t)

]
gk
(
ũk(t)

)
+ sjw̃j(t) + h1j(t)

C
0 D

ξ
t w̃j(t) = −ajw̃j(t) + bjgj

(
ũj(t)

)
+ h2j(t).

(43)

The following finite-time synchronization definition is very important role to achieve
the finite time synchronization criteria.

Definition 6. FOMBCNN (38) is said to be finite-time synchronized with system (41) by suitable
control inputs if there exists a settling time T > 0, which is a real number, if

lim
t→T

[
‖ũj(t)− uj(t)‖+ ‖w̃j(t)− wj(t)‖

]
= 0

and [
‖ũ(t)− u(t)‖+ ‖w̃(t)− w(t)‖

]
≡ 0 for t > T ,

where j = 1, 2, ..., n.

Denote ej(t) = ũj(t)− uj(t) and zj(t) = w̃j(t)−wj(t). One has from (40) and (43) that
C
0 D

ξ
t ej(t) = −pjej(t) + ∑n

k=1

[
q̀jk + q́jkχ̃jk(t)

]
ζk
(
ek(t)

)
+ ∑n

k=1 q́jk

[
χ̃jk(t)− χjk(t)

]
×gk

(
uk(t)

)
+ sjzj(t) + h1j(t)

C
0 D

ξ
t zj(t) = −ajzj(t) + bjζ j

(
ej(t)

)
+ h2j(t), j = 1, 2, ..., n

(44)

where ζk
(
ek(t)

)
= gk

(
ũk(t)

)
− gk

(
uk(t)

)
.

Inspired by [61,62], we define the following feedback controller

h1j(t) =

−ωjej(t)− ϑjsign(ej(t))− ηj
sign(ej(t))
|ej(t))|

, |ej(t) 6= 0

0, |ej(t)| = 0,

h2j(t) =

−vjzj(t)− θj
sign(zj(t))
|zj(t)|

, |zj(t)| 6= 0

0, |zj(t)| = 0,
(45)

where j = 1, 2, ..., n. Based on controller (45), we can generate

C
0 D

ξ
t ej(t) = −pjej(t) + ∑n

k=1

[
q̀jk + q́jkχ̃jk(t)

]
ζk
(
ek(t)

)
+∑n

k=1 q́jk

[
χ̃jk(t)− χjk(t)

]
gk
(
uk(t)

)
+ sjzj(t)

−ωjej(t)− ϑjsign(ej(t))− ηj
sign(ej(t))
|ej(t))|

, |ej(t) 6= 0

C
0 D

ξ
t ej(t) = −pjej(t) + ∑n

k=1

[
q̀jk + q́jkχ̃jk(t)

]
ζk
(
ek(t)

)
+∑n

k=1 q́jk

[
χ̃jk(t)− χjk(t)

]
gk
(
uk(t)

)
+ sjzj(t), |ej(t)| = 0,

C
0 D

ξ
t zj(t) = −ajzj(t) + bjζ j

(
ej(t)

)
−vjzj(t)− θj

sign(zj(t))
|zj(t)|

, |zj(t)| 6= 0
C
0 D

ξ
t zj(t) = −ajzj(t) + bjζ j

(
ej(t)

)
, |zj(t)| = 0.

(46)

Next, with the help of controller (45) and error system (44), we derive the finite-time
synchronization criteria.
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Theorem 3. Suppose (A1) holds. FOMBCNN (38) and FOMBCNN (41) can achieve synchro-
nization in finite time under controller (45) if there exist positive constants λj, µj, ωj, ϑj, ηj, vj
and θj, j ∈ N such that

0 <
[
2λj

(
ωj + pj −

1
2

sj

)
− µjbjlj −

n

∑
k=1

(
λj|q?|jklj + λk|q?|kjlk

)]
(47)

0 <
[
2µj

(
vj + aj −

1
2

bjlj

)
− λjsj

]
(48)

0 ≥
n

∑
k=1
|q+jk − q−jk |δk − ϑj (49)

where |q?|jk = max{|q̂|jk, |q̆|jk}. Furthermore, the settling time is evaluated by

t ≤ ξ

√√√√√Γ(ξ + 1)∑n
j=1
(
λje2

j (t0) + µjz2
j (t0)

)
∑n

j=1 2
(

λjηj + µjθj

) . (50)

Proof. Consider the following Lyapunov function:

W(e(t), z(t)) =
n

∑
j=1

λje2
j (t) +

n

∑
j=1

µjz2
j (t). (51)

When |ej(t)| 6= 0 and |zj(t)| 6= 0, from (46) and (51), it generates,

C
0 D ξ

t W(e(t), z(t)) ≤
n

∑
j=1

2λjej(t){C
0 D ξ

t ej(t)}+
n

∑
j=1

2µjzj(t){C
0 D ξ

t zj(t)}

=
n

∑
j=1

2λjej(t)

[
− pjej(t) +

n

∑
k=1

q̃jkζk
(
ek(t)

)
+

n

∑
k=1

q́jk

[
χ̃jk(t)− χjk(t)

]

×gk
(
uk(t)

)
+ sjzj(t)−ωj[ej(t)]− ϑjsign(ej(t))−

ηjsign(ej(t))
|ej(t)|

]

+
n

∑
j=1

2µjzj(t)

[
− ajzj(t) + bjζ j

(
ej(t)

)
−vj[zj(t)]−

θjsign(zj(t))
|zj(t)|

]
,

(52)

where q̃jk =
[
q̀jk + q́jkχ̃jk(t)

]
and using Lemma 3. Based on Assumption (A1), we have

C
0 D

ξ
t W(e(t), z(t)) ≤ −

n

∑
j=1

2λj
(
ωj + pj

)
e2

j (t) +
n

∑
j=1

n

∑
k=1

2λj|q̃jk| |ej(t)||ζk
(
ek(t)

)
|

+
n

∑
j=1

n

∑
k=1

2λj|ej(t)| |q́jkχ̃jk(t)− q́jkχjk(t)||gk(uk(t))|

+
n

∑
j=1

n

∑
k=1

2λjsj|ej(t)||zj(t)| −
n

∑
j=1

2λj|ej(t)|ϑj −
n

∑
j=1

2λjηj

−
n

∑
j=1

2µj
(
vj + aj

)
z2

j (t) +
n

∑
j=1

2µjbj|zj(t)||ζ j
(
ej(t)

)
| −

n

∑
j=1

2µjθj.

(53)
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According to Assumption (A1), the neuron activations are bounded, i.e., there exist
scalars δ̃k > 0, (k = 1, 2, ..., n) such that |gk(uk(t))| ≤ δ̃k, then

C
0 D

ξ
t W(e(t), z(t)) ≤ −

n

∑
j=1

2λj
(
ωj + pj

)
e2

j (t) +
n

∑
j=1

n

∑
k=1

2λj|q?|jklk |ej(t)||ek(t)|

+
n

∑
j=1

n

∑
k=1

2λj|ej(t)| |q+jk − q−jk |δ̃k +
n

∑
j=1

n

∑
k=1

2λjsj|ej(t)||zj(t)|

−
n

∑
j=1

2λj|ej(t)|ϑj −
n

∑
j=1

2µj
(
vj + aj

)
z2

j (t) +
n

∑
j=1

2µjbjlj|zj(t)||ej(t)|

−
n

∑
j=1

2
(

λjηj + µjθj

)
. (54)

In view of Lemma 4, we have

n

∑
j=1

n

∑
k=1

2λj|q?|jklk |ej(t)||ek(t)| ≤
n

∑
j=1

n

∑
k=1

λj|q?|jklj

(
e2

j (t) + e2
k(t)

)
=

n

∑
j=1

n

∑
k=1

[
λj|q?|jklj + λk|q?|kjlk

]
e2

j (t) (55)

n

∑
j=1

2λjsj|ej(t)||zj(t)| ≤
n

∑
j=1

n

∑
k=1

λjsj

(
e2

j (t) + z2
j (t)

)
=

n

∑
j=1

λjsje2
j (t) +

n

∑
j=1

λjsjz2
j (t) (56)

and

n

∑
j=1

2µjbjlj|zj(t)||ej(t)| ≤
n

∑
j=1

µjbjlj

(
z2

j (t) + e2
j (t)

)
=

n

∑
j=1

µjbjljz2
j (t) +

n

∑
j=1

µjbjlje2
j (t) (57)

Substituting Equations (55)–(57) into Equation (54) yields:

C
0 D ξ

t W(e(t), z(t)) ≤
n

∑
j=1

[
2λj

(
ωj + pj −

1
2

sj

)
− µjbj lj −

n

∑
k=1

(
λj|q?|jk lj + λk |q?|kj lk

)]
e2

j (t)

−
n

∑
j=1

2
(

λjηj + µjθj

)
+

n

∑
j=1

[
2µj

(
vj + aj −

1
2

bj lj

)
− λjsj

]
z2

j (t)

+
n

∑
j=1

[ n

∑
k=1
|q+jk − q−jk |δ̃k − ϑj

]
|ej(t)|. (58)

From (49) and (58), one has

C
0 D

ξ
t W(e(t), z(t)) ≤

n

∑
j=1

[
2λj

(
ωj + pj −

1
2

sj

)
− µjbjlj −

n

∑
k=1

(
λj|q?|jklj + λk|q?|kjlk

)]
e2

j (t)

+
n

∑
j=1

[
2µj

(
vj + aj −

1
2

bjlj

)
− λjsj

]
z2

j (t)−
n

∑
j=1

2
(

λjηj + µjθj

)
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≤
n

∑
j=1

[
2λj

(
ωj + pj −

1
2

sj

)
− µjbjlj −

n

∑
k=1

(
λj|q?|jklj + λk|q?|kjlk

)]
e2

j (t)

+
n

∑
j=1

[
2µj

(
vj + aj −

1
2

bjlj

)
− λjsj

]
z2

j (t). (59)

According to Equations (47) and (48), we can choose an appropriate scalar γ > 0
that fulfills

min

{
min

1≤j≤n

{
2λj

(
ωj + pj −

1
2

sj

)
− µjbjlj −

n

∑
k=1

(
λj|q?|jklj + λk|q?|kjlk

)}
,

min
1≤j≤n

{
2µj

(
vj + aj −

1
2

bjlj

)
− λjsj

}}
≥ γ > 0. (60)

From (59) and (60), one obtains

C
0 D

ξ
t W(e(t), z(t)) ≤ −γ

n

∑
j=1

(
e2

j (t) + z2
j (t)

)
≤ − γ

γmax
1

n

∑
j=1

λje2
j (t)−

γ

γmax
2

n

∑
j=1

µjz2
j (t)

≤ −min{ γ

γmax
1

,
γ

γmax
2
}W(e(t), z(t)) (61)

where γmax
1 = max1≤j≤n{λj}, γmax

2 = max1≤j≤n{µj}. Let $ = min{ γ
γmax

1
, γ

γmax
2
}, then $ > 0

and

C
0 D

ξ
t W(e(t), z(t)) ≤ −$W(e(t), z(t)). (62)

From Lemma 2, one can obtain

W(e(t), z(t)) ≤ −$W(e(t0), z(t0))Eξ(−$(t− t0)
ξ). (63)

From (63), we can simply get

lim
t→+∞

W(e(t), z(t)) = 0,

which implies that

lim
t→+∞

[ n

∑
j=1

λje2
j (t) +

n

∑
j=1

µjz2
j (t)

]
= 0.

Thus, the FOMBCNN system (38) is asymptotically synchronized with the FOM-
BCNN system (41). Next, we demonstrate that the FOMBCNN system (38) is finite-time
synchronized with the FOMBCNN system (41).

Let v = ∑n
j=1 2

(
λjηj + µjθj

)
, from (47)–(49), it follows that

C
0 D

ξ
t W(e(t), z(t)) ≤ −

n

∑
j=1

2
(

λjηj + µjθj

)
= −v. (64)

Hence, there exists a non-negative function R(t) such that

C
0 D

ξ
t W(e(t), z(t)) + R(t) = −v. (65)
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By using Lemma 1, we take the fractional integral of both sides of (65) from 0 to t, one
can get

W(e(t), z(t))−W(e(t0), z(t0)) +
C
0 D

−ξ
t R(t) = C

0 D
−ξ
t (−v). (66)

From Definition 1, we have

C
0 D
−ξ
t (−v) =

1
Γ(ξ)

∫ t

0
(t− `)ξ−1(−v)d`

=
−v

Γ(ξ)

∫ t

0
(t− `)ξ−1d`

=
−vtξ

Γ(ξ + 1)
. (67)

From (66) and (67), we have

−W(e(t0), z(t0)) ≤ W(e(t), z(t))−W(e(t0), z(t0)) +
C
0 D

−ξ
t R(t) =

−vtξ

Γ(ξ + 1)
. (68)

From (68), we have

t ≤ ξ

√
Γ(ξ + 1)W(e(t0), z(t0))

v

= ξ

√√√√√Γ(ξ + 1)∑n
j=1
(
λje2

j (t0) + µjz2
j (t0)

)
∑n

j=1 2
(

λjηj + µjθj

) . (69)

Thus, the FOMBCNN system (38) is finite-time synchronized with the FOMBCNN
system (41) under the controller designed in (45).

Remark 5. When the memristor-based connection weights q̂kl = q̆kl , which means the connection
weights are implemented only by a resistor, then the presented results are also still valid for the
robust passivity and finite-time synchronization of fractional-order competitive neural networks,
while these conservative results are not yet studied in the literature.

Remark 6. When ξ = 1, the FOMBCNN model (1) degenerates into finite-time passivity and
finite-time synchronization of traditional-order competitive neural networks.

Remark 7. Suppose that δji(t) = 0 in (1), the proposed system model is also still true for finite-
time passivity and finite-time synchronization of fractional-order memristor based neural networks,
and these results have not yet been studied in existing research works.

Remark 8. In the existing literature, there are several results on synchronization analysis of mem-
ristive neural networks with switching jumps mismatch parameters. Specifically, Yang et al. [63]
studied the asymptotic and finite-time synchronization problem of integer-order memristive neu-
ral networks, while the authors in [64] investigated the exponential synchronization problem of
integer-order time-delayed memristive neural networks. Compared with the above-mentioned results,
our criteria guarantee the finite-time passivity and finite-time synchronization of fractional-order
memristive competitive neural networks. Moreover, the systems discussed in [63,64] are special
cases of our stability results when δij(t) = xj(t) = yj(t) = τ(t) = 0 and ς = 1.
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5. Numerical Results

Here, two numerical examples are given to validate the advantages of the obtained results.

Example 1. Considering the following three-dimensional FOMBCNN:

C
0 D0.98

t u1(t) = −4u1(t) + q11
(
u1(t)

)
tan(u1(t)) + q12

(
u1(t)

)
tan(u2(t))

+q13
(
u1(t)

)
tan(u3(t)) + 0.25w1(t) + 0.6(1 + sin t), t ≥ 0

C
0 D0.98

t u2(t) = −4u2(t) + q21
(
u2(t)

)
tan(u1(t)) + q22

(
u2(t)

)
tan(u2(t))

+q23
(
u2(t)

)
tan(u3(t)) + 0.3w2(t) + 0.6(1 + cos t), t ≥ 0

C
0 D0.98

t u3(t) = −4u3(t) + q31
(
u3(t)

)
tan(u1(t)) + q32

(
u3(t)

)
tan(u2(t))

+q33
(
u3(t)

)
tan(u3(t)) + 0.75w3(t) + 0.6(1 + sin t), t ≥ 0

C
0 D0.98

t w1(t) = −3w1(t) + 0.5 tan(u1(t)) + 0.3(1 + cos t), t ≥ 0
C
0 D0.98

t w2(t) = −3w2(t) + 0.5 tan(u2(t)) + 0.3(1 + sin t), t ≥ 0
C
0 D0.98

t w3(t) = −3w3(t) + 0.5 tan(u3(t)) + 0.3(1 + cos t), t ≥ 0,

(70)

where

q11
(
u1(t)

)
=

{
−0.1, |u1(t)| ≤ 1
−0.35, |u1(t)| > 1,

q12
(
u2(t)

)
=

{
0.2, |u2(t)| ≤ 1
0.45, |u2(t)| > 1,

q13
(
u3(t)

)
=

{
−0.7, |u3(t)| ≤ 1
−0.45, |u3(t)| > 1,

q21
(
u1(t)

)
=

{
0.4, |u1(t)| ≤ 1
0.65, |u1(t)| > 1,

q22
(
u2(t)

)
=

{
0.35, |u2(t)| ≤ 1
0.6, |u2(t)| > 1,

q23
(
u3(t)

)
=

{
−0.3, |u3(t)| ≤ 1
−0.55, |u3(t)| > 1,

q31
(
u1(t)

)
=

{
0.20, |u1(t)| ≤ 1
0.45, |u1(t)| > 1,

q32
(
u2(t)

)
=

{
−0.45, |u2(t)| ≤ 1
−0.2, |u2(t)| > 1,

q33
(
u3(t)

)
=

{
0.50, |u3(t)| ≤ 1
0.75, |u3(t)| > 1.

The measured output vector of model (71) is assumed to be:{
qu(t) = Ruu(t),
qw(t) = Rww(t),

where

Ru =

0.5 0 0
0 0.5 0
0 0 0.5

, Rw =

0.4 0 0
0 0.4 0
0 0 0.4

.

We note that Assumptions (A1) and (A2) satisfy L = diag{1.5, 1.5, 1.5}. By standard
computation, we get

E =


√

0.125
√

0.125
√

0.125 0 0 0 0 0 0
0 0 0

√
0.125

√
0.125

√
0.125 0 0 0

0 0 0 0 0 0
√

0.125
√

0.125
√

0.125

,

G =


√

0.125 0 0
√

0.125 0 0
√

0.125 0 0
0

√
0.125 0 0

√
0.125 0 0

√
0.125 0

0 0
√

0.125 0 0
√

0.125 0 0
√

0.125


T

.
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Let σ1 = 2, σ2 = 10, Tσ = 3 and H1 = H2 = I. Then, it is clear that the given LMIs (14) and
(15) of Theorem 3 are feasible, and these solutions are given as follows:

H1 =

 8.4304 −0.0155 −0.0217
−0.0155 8.4287 0.1362
−0.0217 0.1362 8.2164

, H2 =

7.7009 0 0
0 7.7009 0
0 0 7.7009

,

υ = 50.25, α1 = 29.9694, α2 = 23.1027, α3 = 23.9755, α4 = 23.9755, α5 = 23.9755,
β = 23.9755, κ = 23.9755, ρ = 19.8736. Moreover,

10 = ϑσ2 > ϑσ1 +
α(λ1 + λ2)

Γ(ξ + 1)
Tξ

σ = 8.43016.

Therefore, FOMBCNN (1) is passive in finite time with respect to
(
2, 10, 3, I, I, 0.02, 0.03

)
.

The initial values are selected to be u(0) = (−2,−0.2, 1)T and w(0) = (1,−0.5, 2.6)T. Figures 1 and 2
illustrate the time responses of the states of model (70) with x(t) = [1 + sin t, 1 + cos t, 1 + sin t]T

and y(t) = [1 + cos t, 1 + sin t, 1 + cos t]T . Figures 3 and 4 show the phase trajectories of sys-
tem (70) with inputs x(t) = [1 + sin t, 1 + cos t, 1 + sin t]T and y(t) = [1 + cos t, 1 + sin t,
1 + cos t]T . The state curves of system (70) with inputs x(t) = [0, 0, 0]T and y(t) = [0, 0, 0]T are
shown in Figures 5 and 6.
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(t)

u
3
(t)

Figure 1. The time responses of the states u1(t), u2(t) and u3(t) of system (70) for the external inputs
x(t) = [1 + sin t, 1 + cos t, 1 + sin t]T in Example 1.
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Figure 2. The time responses of the states w1(t), w2(t) and w3(t) of system (70) for the external
inputs y(t) = [1 + cos t, 1 + sin t, 1 + cos t]T in Example 1.

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

u
1
(t)u

2
(t)

u 3(t
)

Figure 3. The phase trajectories of u1(t), u2(t) and u3(t) of system (70) for the external inputs
x(t) = [1 + sin t, 1 + cos t, 1 + sin t]T in Example 1.
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Figure 4. The phase trajectories of w1(t), w2(t) and w3(t) of system (70) for the external inputs
y(t) = [1 + cos t, 1 + sin t, 1 + cos t]T in Example 1.
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Figure 5. The time responses of the states u1(t), u2(t) and u3(t) of system (70) for the external inputs
x(t) = [0, 0, 0]T in Example 1.
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Figure 6. The time responses of the states w1(t), w2(t) and w3(t) of system (70) for the external
inputs y(t) = [0, 0, 0]T in Example 1.

Example 2. Considering the following two-dimensional FOMBCNN:

C
0 D0.98

t u1(t) = −2u1(t) + 0.5 ∗ q11
(
u1(t)

)
tan(u1(t)) + q12

(
u1(t)

)
tan(u2(t))

+0.15w1(t) + 0.6(1 + sin t), t ≥ 0
C
0 D0.98

t u2(t) = −2u2(t) + 0.5 ∗ q21
(
u2(t)

)
tan(u1(t)) + q22

(
u2(t)

)
tan(u2(t))

+0.18w2(t) + 0.6(1 + cos t), t ≥ 0
C
0 D0.98

t w1(t) = −1.5w1(t) + 1.05 tan(u1(t)), t ≥ 0
C
0 D0.98

t w2(t) = −1.5w2(t) + 1.15 tan(u2(t)) t ≥ 0,

(71)

where

q11
(
u1(t)

)
=

{
1
6 , |u1(t)| ≤ 1
− 1

6 , |u1(t)| > 1,
q12
(
u2(t)

)
=

{
1
5 , |u2(t)| ≤ 1
− 1

5 , |u2(t)| > 1,

q21
(
u1(t)

)
=

{
1
5 , |u2(t)| ≤ 1
− 1

5 , |u2(t)| > 1,
, q22

(
u2(t)

)
=

{
1
8 , |u2(t)| ≤ 1
− 1

8 , |u2(t)| > 1.

The measured output vector of model (71) is assumed to be:

qu(t) =
[

0.8 0
0 1

]
u(t),

With a simple calculation, we get

E =

[√
0.166

√
0.2 0 0

0 0
√

0.2
√

0.125

]
, G =

[√
0.166 0

√
0.2 0

0
√

0.2 0
√

0.125

]T

.

Then, by solving (36) and (37) of Corollary 1 with the LMI solver in MATLAB, we can get the
following feasible solutions:

H1 =

[
7.7468 −0.0414
−0.0414 7.5224

]
, H2 =

[
9.1107 0

0 8.7665

]
,
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υ = 56.5105, α1 = 27.7489, α2 = 13.4079, α3 = 20.6206, α4 = 20.6206, β = 20.6117,
and ρ = 15.2692. Therefore, FOMBCNN (71) is passive under the initial values u(0) = (−1, 1.2)T

and w(0) = (0.4,−0.5)T . Figures 7 and 8 illustrate the time responses of the states of model (71)
with external inputs [1 + cos(2t), 1− sin(2t)]T .
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Figure 7. The time responses of the states u1(t) and u2(t) of system (71) for the external inputs
x(t) = [1 + cos(2t), 1− sin(2t)]T in Example 2.
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Figure 8. The time responses of the states w1(t) and w2(t) of system (71) for the external inputs
x(t) = [1 + cos(2t), 1− sin(2t)]T in Example 2.

When solving the sufficient conditions in Corollary 1, the minimum passive index is listed in
Table 1.

Table 1. Minimum passive index υ.

Methods [60] Corollary 1 Improvement

υ 60.0412 56.5105 5.8804%

The number of decision variables n2 + 3n + 16 n2 + 3n + 12 –

Compared with the minimum passive index υ in [60], the effective value of the result obtained
in this manuscript is increased by 5.8804%. This Table 1 demonstrates that our method provides
a minimum passive index than existing works [60]. Hence, the proposed method gives fewer
conservative results.
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Example 3. Considering the following three-dimensional FOMBCNN:

C
0 D0.98

t u1(t) = −0.8u1(t) + q11
(
u1(t)

)
tan(u1(t)) + q12

(
u1(t)

)
tan(u2(t))

+q13
(
u1(t)

)
tan(u3(t)) + 1.2w1(t)

C
0 D0.98

t u2(t) = −0.8u2(t) + q21
(
u2(t)

)
tan(u1(t)) + q22

(
u2(t)

)
tan(u2(t))

+q23
(
u2(t)

)
tan(u3(t)) + 1.2w2(t)

C
0 D0.98

t u3(t) = −0.8u3(t) + q31
(
u3(t)

)
tan(u1(t)) + q32

(
u3(t)

)
tan(u2(t))

+q33
(
u3(t)

)
tan(u3(t)) + 1.2w3(t)

C
0 D0.98

t w1(t) = −w1(t) + 2 tan(u1(t))
C
0 D0.98

t w2(t) = −w2(t) + 0.5 tan(u2(t))
C
0 D0.98

t w3(t) = −w3(t) + tan(u3(t))

(72)

where

q11
(
u1(t)

)
=

{
0.3, |u1(t)| ≤ 1
0.6, |u1(t)| > 1,

q12
(
u2(t)

)
=

{
−0.25, |u2(t)| ≤ 1
−0.5, |u2(t)| > 1,

q13
(
u3(t)

)
=

{
−3.35, |u3(t)| ≤ 1
−3.65, |u3(t)| > 1,

q21
(
u1(t)

)
=

{
−0.1, |u1(t)| ≤ 1
−0.4, |u1(t)| > 1,

q22
(
u2(t)

)
=

{
1.1, |u2(t)| ≤ 1
1.4, |u2(t)| > 1,

q23
(
u3(t)

)
=

{
−0.4, |u3(t)| ≤ 1
−0.7, |u3(t)| > 1,

q31
(
u1(t)

)
=

{
1, |u1(t)| ≤ 1
1.3, |u1(t)| > 1,

q32
(
u2(t)

)
=

{
−0.7, |u2(t)| ≤ 1
−6.7, |u2(t)| > 1,

q33
(
u3(t)

)
=

{
0.2, |u3(t)| ≤ 1
0.5, |u3(t)| > 1.

The response FOMBCNN with control inputs is denoted by:

C
0 D0.98

t ũ1(t) = −0.8ũ1(t) + q11
(
ũ1(t)

)
tan(ũ1(t)) + q12

(
ũ1(t)

)
tan(ũ2(t))

+q13
(
ũ1(t)

)
tan(ũ3(t)) + 1.2w̃1(t) + h11(t)

C
0 D0.98

t ũ2(t) = −0.8ũ2(t) + q21
(
ũ2(t)

)
tan(ũ1(t)) + q22

(
ũ2(t)

)
tan(ũ2(t))

+q23
(
ũ2(t)

)
tan(ũ3(t)) + 1.2w̃2(t) + h12(t)

C
0 D0.98

t ũ3(t) = −0.8ũ3(t) + q31
(
ũ3(t)

)
tan(ũ1(t)) + q32

(
ũ3(t)

)
tan(ũ2(t))

+q33
(
ũ3(t)

)
tan(ũ3(t)) + 1.2w̃3(t) + h13(t)

C
0 D0.98

t w̃1(t) = −w̃1(t) + 2 tan(ũ1(t)) + h21(t)
C
0 D0.98

t w̃2(t) = −w̃2(t) + 0.5 tan(ũ2(t)) + h22(t)
C
0 D0.98

t w̃3(t) = −w̃3(t) + tan(ũ3(t)) + h33(t).

(73)

Next, we demonstrate that the drive system (72) and controlled response system (73) achieve
synchronization in finite time under the discontinuous controller (46). Let u1(0) = 0.5,
u2(0) = −0.5, u3(0) = 1, w1(0) = 2, w2(0) = 1, w3(0) = −3, ũ1(0) = 2, ũ2(0) = 1.2,
ũ3(0) = −3, w̃1(0) = 2.5, w̃2(0) = −1.5, w̃3(0) = 0.8, λj = 1.5 and µj = 1.2 for j = 1, 2, 3.
From Assumption(A1), we have l1 = l2 = l3 = 1 and δ̃1 = δ̃2 = δ̃3 = 0.5. In controller
(46), we must choose ω1 = ω2 = ω3 = 8, v1 = v2 = v3 = 5, ϑ1 = ϑ2 = ϑ3 = 0.5,
η1 = η2 = η3 = 1 and θ1 = θ2 = θ3 = 0.8. By a simple calculation, we can obtain

2λj

(
ωj + pj − 1

2 sj

)
− µjbjlj − ∑n

k=1

(
λj|q?|jklj + λk|q?|kjlk

)
> 0, 2µj

(
vj + aj − 1

2 bjlj

)
−

λjsj > 0 and ϑj −∑n
k=1 |q

+
jk − q−jk |δk > 0. Therefore, FOMBCNNs (72) and (73) are synchronized

in finite time based on Theorem 2, and are displayed in Figures 9–11; we get an upper bound of the
settling time t ≤ 2.2871. The synchronization error curves of drive–response systems without and
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with control inputs are displayed in Figures 9 and 10. The chaotic behavior of the synchronization
error curves of drive–response systems with control inputs is shown in Figure 11.

0 5 10 15 20 25 30 35 40 45

step

-15

-10

-5

0

5

10

15

e
1
(t)

e
2
(t)

e
3
(t)

0 5 10 15 20 25 30 35 40 45

step

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
1
(t)

z
2
(t)

z
3
(t)

Figure 9. Time behaviors of error signals e1(t), e2(t), e3(t), z1(t), z2(t) and z3(t) without control
input in Example 2.
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Figure 10. Time behaviors of error signals e1(t), e2(t), e3(t), z1(t), z2(t) and z3(t) with control input
in Example 2.

Figure 11. Chaotic behaviors e1(t), e2(t), e3(t), and z1(t), z2(t), z3(t) of systems (72) and (73) with
control inputs in Example 2.
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6. Conclusions

Based on a robust control method, both the passivity and synchronization criterion of
FOMBCNNs were investigated in this manuscript. Through a key role of fractional order
properties, finite-time stability theory and fractional-order Lyapunov functional, some
novel sufficient criterion was derived to ensure the designed FOMBCNN is finite-time
passive. Furthermore, a finite-time discontinuous feedback control law was designed to
achieve synchronization in finite time for FOMBCNNs and we also evaluated the upper
bound of the settling time. The feasibility and advantages of the obtained finite-time
passivity and finite-time synchronization were illustrated in two numerical computer simu-
lations. In the future, the global Mittag–Leffler synchronization, projective synchronization
and quasi-synchronization problems will be considered for FOMBCNNs via nonfragile
control [63,65], delayed impulsive control [66], quantized control [67], and quantized inter-
mittent control [68].
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