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Abstract: The present study focuses on the dynamical aspects of a discrete-time Leslie-Gower
predator-prey model accompanied by a Holling type III functional response. Discretization is
conducted by applying a piecewise constant argument method of differential equations. Moreover,
boundedness, existence, uniqueness, and a local stability analysis of biologically feasible equilibria
were investigated. By implementing the center manifold theorem and bifurcation theory, our study
reveals that the given system undergoes period-doubling and Neimark-Sacker bifurcation around the
interior equilibrium point. By contrast, chaotic attractors ensure chaos. To avoid these unpredictable
situations, we establish a feedback-control strategy to control the chaos created under the influence of
bifurcation. The fractal dimensions of the proposed model are calculated. The maximum Lyapunov
exponents and phase portraits are depicted to further confirm the complexity and chaotic behavior.
Finally, numerical simulations are presented to confirm the theoretical and analytical findings.

Keywords: prey-predator model; boundedness; period-doubling bifurcation; Neimark-Sacker bifur-
cation; hybrid control; fractal dimensions

1. Introduction

predator-prey models have a wide range of applications in ecological and biological
fields. Although various fundamental aspects of the nonlinear dynamics of predator-
prey population models related to continuous dynamical systems have been studied,
the characteristics of discrete dynamical systems remain comparatively unknown. A
discrete dynamical structure possesses a solitary dynamical nature as compared to a
continuous system. There are several critical and practical problems in daily life that can
be characterized with the help of a discrete dynamical system. To consider the analytical
aspects of a solution that is difficult to calculate, various schemes can be implemented to
discretize a continuous system and discuss the numerical solution. Therefore, detailed
critical inspections of discrete-time dynamical systems have contributed immensely to
various fields such as engineering, physics, chemistry, and mathematics. There have been
numerous studies conducted that are related to the dynamics of predator-prey models.

Chen et al. [1] applied the Euler scheme and center manifold theorem to a ratio-
dependent prey-predator model and scrutinized the dynamic characteristics of the model.
Ghaziani et al. [2] studied a prey-predator system with a Holling functional response
and discussed the resonance and bifurcation analyses. Jana [3] found extremely powerful
dynamical conditions through numerical and theoretical investigations of discrete-time
prey-predator models, such as stability conditions, flip, and hopf-bifurcation. Misra et al. [4]
studied a predator-prey model based on age predation and discussed the dynamic behav-
ior of the models. Zhang et al. [5] presented a biological economic system related to
the predator-prey model of a differential algebraic system by applying a new normal
form. Hu and Cao [6] investigated the Holling and Leslie type predator-prey model and
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discussed a chaos and bifurcation analysis. Wang and Li [7] proposed a lemma that is
extremely meaningful for discussing the stability and bifurcation of the systems. The fun-
damental finding in the dynamics of prey-predator species is the classical Lotka-Volterra
prey-predator model, which exhibits unrealistic behavior (see, Murdoch et al. [8]). To
remove such unrealistic behavior, Holling introduced three different types of functional
responses (see, Holling [9]). Rosenzweig and MacArthur [10] implemented a functional
response to modify the predator-prey model. An investigation into population interaction
focused on the continuous dynamical system of two species [11-13]. By contrast, a recent
study led to the discrete dynamical system becoming more suitable than a continuous
version when the population is non-overlapping (e.g., see, Jing et al. [14], Liu et al. [15],
Lopez-Ruiz and Fournier-Prunaret [16], Neubert and Kot [17]). Furthermore, multiple
existing studies related to the dynamics of predator-prey models are described in [18-26].
In [27], the Holling type-III functional response was introduced in both populations (prey
and predator). The stability conditions around biologically suitable equilibria were further
discussed. Diagrams of the phase portraits, bifurcation, and time series were plotted. It was
shown that the system is sensitive to the initial conditions, which means that the system
is chaotic. A two-dimensional continuous model with a Holling-III functional response
in both prey and predator was presented [28]. Furthermore, Euler’s scheme was used to
discretize the model and study the complex behavior of the system. Elettreby et al. [29]
discussed a discrete-time prey-predator model with predator and prey populations having
Holling type I and III functional responses, respectively. Moreover, they described a fasci-
nating dynamical nature of the model, including stability, bifurcation, and chaos, which
ensure the rich dynamics of discrete-time models.

In this study, we evaluate the specific prey —predator model discussed by Murray [30]:

dx x axy

dt _x{r(l B E) B b2+x2}'

dy hy

(i),
where x(t) and y(t) denote the densities of prey and predator species at any time ¢, respec-
tively; the carrying capacity of prey in the absence of predatoris k,andr, b, a, s, and h
are positive constants. Moreover, the carrying capacity is proportional to the prey pop-
ulation size and population of prey attacked by predators, as specified by the Holling
type III functional response. He and Lai [31] examined the bifurcation and chaos control
of the discrete-time version of model (1) by implementing Euler’s forward scheme with
step size h as the bifurcation parameter. The numerical results in [31] show that period-
doubling bifurcation occurs when a large step size is considered in Euler’s method; this
fact contravenes the precision of the numerical method for discretization. To overcome this
deficiency, the following discretization method was implemented. Considering the regular
time interval for the average growth rate in both populations, by resorting to piecewise

constant arguments for solving nonlinear differential equations, system (1) can then be
rewritten as follows:

M

L Hl_x[t])_ ax[fylt]

k) a?]

1 dy(y (1%zy§1)

x[t]

@
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where the integer part of t is given by [t] within the interval 0 < ¢t < 1. In addition, by
integrating system (1) fort € [n:n+1],(n =0,1,2,...), we have the following system:

x(t) =xy exp({r(l — %) — m] (t— n)),

, ®)
y(t) :ynexp<[s(l - y")} (t— n)>
Xn
Applying t — n + 1, we obtain the following prey-predator system:
x ax
Xp+1 =Xp €Xp (r(l - ?") - bz_:}inz)'
n

@)

hyn
Ynt1 :ynexp<s<l— s )>
Xn

The key contributions and findings of the current study are as follows for model (4):

e The existence and uniqueness of biologically feasible equilibria and their stability
analysis are discussed.
e  Our findings indicate that model (4) undergoes periodic doubling as well as a Neimark-

Sacker bifurcation at its unique positive equilibrium.

e  The direction and existance criteria for both types of bifurcation are examined under
interior equilibrium.
e A hybrid control strategy is applied to control the chaos in model (4).

The remainder of this paper is organized as follows. After presenting some related
preliminaries in Section 2, the boundedness of the steady state is analyzed in Section 3. In
Section 4, the dynamics of system (4), including the existence of equilibria and local stability,
are presented. Section 5 describes an investigation of the birfurcation analysis at the interior
fixed point of system (4). In Section 6, we study a hybrid control method to control the
chaos. The fractal dimensions are calculated in Section 7. Finally, numerical simulations
are provided in Section 8 to verify our analytical approach. Conclusions related to these
results are presented in Section 9 and the future directions are providing in Section 10.

Furthermore, a detailed investigation of some charismatic population models and their
qualitative behavior are provided (see, Din and Din et al. [18-26] and the references therein).

2. Preliminaries

Definition 1. ([32]) A point x*is said to be a fixed point of the map for an equilibrium point if
flxr) = xm.

Theorem 1. ([32]) Let f : I — I bea continuous map, where I = [a, b] is a closed interval inR.
Then, f has a fixed point.

Theorem 2. ([32]) Let f : I = [a, b] — R bea continuous map such that f(I) D I. Then, f
has a fixed point in I.

Definition 2. ([32]) Let f : I — I bea map and x* be a fixed point of f, where I is an interval
in the set of real numbers R. Then, the following conditions hold true:

1. x* is said to be stable if for any € > 0, there exists 6 > 0 such that for all xy € I with
|xo — x*| < 6 we have |f"(xg) — x*| < eforalln € Z*. Otherwise, the fixed point x* is
unstable.

x* is said to be attractive if 17 > 0 exists, such that |xg — x*| < n implies nli_r>r010f”(xo) = x".

3. x*is asymptotically stable if it is both stable and attractive. If in (2), 5 = oo, then x* is said
to be globally asymptotically stable.
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Definition 3. ([32]) A fixed point x* of a map f is said to be hyperbolic if |f'(x*)| = 1. Otherwise,
it is non-hyperbolic.

Theorem 3. ([32]) Let x* be a hyperbolic fixed point of a map f, where f is continuously differen-
tiable at x*. The following statements hold true:

1. If |[f'(x*)| <1, then x* is asymptotically stable.
2. If|f'(x*)| > 1, then x* is unstable.

3. Boundedness

The boundedness of system (4) is based on the following Remark.

Remark 1. ([25]) Assuming that xo > 0 for every x; and x;11 < xiexp(A[l — Bx]) for every
t € [ty,00], where B > 0 is constant. Then,

. 1
lim Supx; < B exp(A—1)

Using Remark 1, we state the following theorem for the uniform boundedness of
system (4).

Theorem 4. Any positive solution (X, yn) of model (4) is uniformly bounded.

Proof. Assuming that (x,, y,) is any positive solution of system (4), we then have

Xpp1 < xnexp(r(l — %)), forallm =0,1,2,....

Let xg > 0. Using Remark 1, we obtain the following result.

lim Supx, < éexp(r -1)=1h. (5)

n—oo

Furthermore, from the second part of system (4), we obtain the following:

h
)]

Let yo > 0. Applying Remark 1, we obtain the following result:

, I
limSupy, < (s 1) =12 ©)

Thus, it follows that lim,_,eSup (x4, yx) < I, where | = max{l,l}. The proof is
completed. [J

4. Existence of a Positive Fixed Point and Local Stability

To explore the existence of a fixed point of model (4), suppose that (x, y) is any arbitrary
fixed point of (4). Then, (x,y) must satisfy the following algebraic system of equations:

X =Xx exp <r(1 — %) - bza_T_yxZ)

ovenls(-1)

Then, (7) has a boundary equilibrium point (k,0). In addition, we also explore the
existence and uniqueness of the solution of system (4) because the positive fixed points

@)
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are not in a closed form. For this purpose, the following computation, using Theorem 4,
exhibits the existence and uniqueness of the solution to model (4).

Theorem 5. There exists a unique positive steady-state(x., y«) € [0, I1] x [0, I1] of system (4).

Proof. To attain the fixed point by solving system (7), we have

r(l-¢) = xZthZ’ 8)
x = yh.
Suppose that

2
ax
x ar

Fo=r(1-3) - 2l

forall x € [0, I1]. Then, we can see that F(0) = r > 0 and

7 aexp(2(r —1))k? exp(r—1)
Fh) =~ 2 expr=1))k*\ 2 A 7 <0

foralla, b, s, r, k, and h > 0. Hence, there exists at least one root of F(x) = 0, for
x € [0, I1]. In addition,
2
Flx)= -1 - L’CZ
ko h(b2+22)

for all x € [0, I;]. Therefore, the system (4) has a unique positive fixed point (x«, y«) €
[O/ ll] X [0/ 12]

Initially, we explored the stability analysis of the boundary equilibrium (k,0). The
Jacobian matrix Fj evaluated at (k, 0), is expressed as

1_p _ _Ka_
Fy(k,0) = " TR |,
0  exp(s)

and the characteristic equation computed at (k,0) is given by

F(y) =% = (1= r+exp(s))y + (1 - 1) exp(s)

Hence, F(7) = 0 has two roots, namely, 71 = exp(s) and 7, = 1 — r. In addition, (k,0)
is the source if > 2, and is the saddle point if 0 < r < 2. Next, we explored the stability
analysis of the fixed points. To investigate the stability of the equilibria, we calculated the
Jacobian Fj of system (4) at any point (x, y) as follows:

bi1 b2 }

F](x'y) = [ by by

The characteristic polynomial of Fy at (x,y) is given by

R(y7) = n*—Tin + Dy, )

where
Ty = (b1 + bx),

and
Dy = b11ba — b1aby

The following Lemma is extremely useful to examine the stability of the equilibria. [J
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Lemma 1. Let () = 5> — Tyyy + Dy and R(1) > 0. Moreover, 111,112 are the roots of equation
R(n) = 0, and thus

(i) |m|<1&|p|<1leR(-1) >0and D; < 1;

(ii) |m| <1& || >1or(jy1| > land || <1) < R(-1) <0;

(iii) |m1| >1& |2 > 1 R(—1) > 0and D > 1;

(i) m=—-1&|mp|#1 e R(-1)=0and Ty #0,2;

(v) 1 and 1y, are complex and || = 1and || = 1< T1> —4D; < Oand Dy = 1.

Because 771 and 7, are the eigenvalues of (9), the following topological results are
obtained.

The equilibrium (x,y) is known as a sink if |#1| < 1 and |72| < 1, which is locally
asymptotically stable, and as a source if |#7;| > 1 and |#2| > 1; thus, the nature of the source
is always unstable. Moreover, the equilibrium point (x, y) is always known as the saddle
pointif 71| < 1and |72| > 1 or (|71] > 1 and |72| < 1). In the case of a non-hyperbolic
equilibrium (x,y), either || =1 or || = 1.

Our next aim is to discuss the local stability of the unique positive equilibrium (x., y«)
of system (4). Let (9) be the characteristic polynomial of the variational matrix evaluated at
(x4, Y«), such that

X B X s
T = (2— : —Q—s)) and D; = (1— ; —Q)(l—s)+7
_ ax*y*(bzfxi) _ ax? . .
where () 7(b2+ 2 and ¢ Eal Thus, by applying Lemma 1, we discuss the local
x4 [

stability of system (4) around (x, y«) by stating the following proposition.

Proposition 1. The interior equilibrium point (x, Yy« ) of system (4) satisfies the following results:

(i) The interior equilibrium(x.,y ) is stable iff:

‘Z—Yi* —Q—s’ < ‘1+(1—ri* —Q)(l—s)+%,
and sd TXs
7+(1—s)(1— ; —Q)’>1

(ii)  The positive fixed point (x.,ys) is a saddle point if and only if

[2—”;*—0—sr>4[(1—s)(1—”£*—Q)+Sﬂ,

and
(iii)  The interior fixed point (x«,y) is non-hyperbolic if and only if

‘2—”;*—Q—s]=‘1+(1—ri*—Q)(1—s)+s;p’ (10)
i (1—”;*—0)(1—s)+§:1 and ‘z—ri*—a—s]<2. (11)

To explore the local stability criteria for (x,y+) of model (4), we have the following
theorem:

Theorem 6. If neither (10) nor (11) is satisfied, then the positive steady-state (x., Yy« ) of system (4)
is locally asymptotically stable if and only if the following condition is satisfied.
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X«

k

X%

2- k

—Q—s‘ <1+ (1- —Q)(l—s)+£ <2

h
5. Bifurcation Analysis

In this section, we discuss the period-doubling and Neimark-Sacker bifurcations of
system (4) around the interior equilibrium. Initially, we explored the period-doubling

bifurcation at a positive fixed point (x,y.) of system (4). To study the period-doubling
bifurcation, assume that le > 4Dq, that is,

(2—”2*—0—5)>4{(1—”§*—Q)(1—s)+f] (12)

and Ty + D1 + 1 = 0. It then follows that

o 2h(rxe — (2—-Q)k)
S Okt o) k(@ —2h) 13

Then, 71 = —land 1, # 1if

X sd
(1— . —Q)(l—s)+77éil. (14)

Consider the map Tpg = {(a,b,k,7,5) € Ri for which (12)-(14) are thus satisfied.
Then, the equilibrium (x, y«) of system (4) sustains period-doubling bifurcation whenever
the parameters deviate within the small neighborhood of Tpp. Thus, system (4) along with
parameters (a,b,k,r,s1) € Tpp, can be written as follows:

- Ay
( x ) L b2+ (15)
]/ yesl (17 Ty)
The following perturbation of system (15) can be obtained by taking s as a bifurcation
parameter:
1)
(x)_> xe ! bh; (16)
Yy yel1+9)(1-%)

where [5| << 1 denotes the least perturbation parameter. Assuming that N = x — x,,
P =y —y,, system (16) is reduced to the following form:

(ﬁ)%(% $>(§>+<ﬁﬁ?3> 17)

Here,

fi(N, P,5) = bizN? + byyNP + bysP? + a; N3 4 a;N2P + asNP? + a,P% + O ((|N| +|P| + |§|)4),

f2(N, P,3) = bpsN? + byy NP + bpsP? + dy N3 + dyN?P + d3NP? + d, P>

+¢18N + 7P + 372 + c47NP + c57N? + cg7P2 + c77°N + cgs2P + co7 + O((|N| + |P| + |§|)4>

Whereas the descriptions and computations of the involved coefficients are given in
Appendix A.
The canonical form of (17) at s; = 0 can be obtained by assuming the following map:

N . blZ blZ u
(P)_<—1—bn ’72—511>(v>' 18)
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The normal form of system (17) under translation (18) can be expressed as

u -1 0 u f(u,0,3)
) Yy i 1
(0)= () () (5ees) &
the descriptions and computations of the involved functions and parameters leading to the
following expression are provided in Appendix B.

F. = PF + 19F &°F _ co(l4bn) _ by
1-= \ Quds " 207 ou 00) T mtl n2+17

Hence, we arrive at the following conclusions based on the aforementioned calculations.

Theorem 7. There exists a period-doubling bifurcation at (x.,yx) of system (4), whenever Fy # 0
and r deviates within a small neighboring point of sy. In addition, if F» > 0, (Fo < 0), the orbit is
period-2 stable (unstable).

Next, we investigated the Neimark-Sacker bifurcation around (x4, y+) of system (4).
For identical results, we referred to the studies by Din [24,25], Shabbir et al. [20], and Jing
et al. [14]. Furthermore, the equilibrium point moves around the close invariant curve,
owing to the Neimark-Sacker bifurcation. To explore the Neimark-Sacker bifurcation, we
find the conditions for which (x,y.) is a non-hyperbolic point with a complex conjugate
root of the characteristic equation of the unit modulus. Thus, if the following results hold
true, then #(77) = 0 has two complex conjugate roots with a unit modulus.

e (Qk+rx)h
T h(Qk+rxy) + k(P —h)
and .
2— k*—Q—s <2
Consider
B 5 (Qk+rx:)h X
TNS{(a,b,k,r,s)eR+. = Ak e M 2o s’<2.
(Q ktrxy)h

Assuming that s, = i

O k) k(@) the fixed point (x.,y«) ensures the Neimark-

Sacker bifurcation when the parameters fluctuate in the least neighborhood of Txrs. Thus,
system (4) along with parameters (a,b, k, 3, s) can be expressed as follows:

=)= 2
(x)% o L) (20)
]/ ye52 (1 T x
The following perturbation of system (20) can be obtained by taking s as the bifurcation
parameter, i.e.,
=)=
( y > e " (21)
y ye(sl""g)(l_Y)

where |s| << 1 denotes the least perturbation. Assuming that N = x —x,, P =y —y,,
then system (21) takes the following modified form:

(%)= (o o) (5 )+ (B ) @)
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where
_ 2 2 3 2 2 3 =4
gl(N,P)—blgN +b14NP+b15P +H1N +ayN P+Q3NP +a4P +O((|N‘+|P|+‘I’|) ),
§2(N, P) = bysN? + byyNP + bpsP? + d; N3 + d,N2P + dsNP? 4 dy P8 + o((|N| +|P| + |?|)4).

Here/ bll/ blZI b21/ b22/ b13/ bl4/ b15/ ay, dp, az, a4, b23/ b24/ b25/ dl/ d2/ d3/ and d4/ are
defined in (17) by replacing s1 by s + 5. Let

n* = Ti(3)n + D1(5) =0, (23)
be the characteristic equation of the variational matrix of (22) evaluated at (0,0), where

Th(s) = (2— ri* —Q—(Sz+§)> and D;(3) = (1— ri* —Q>(1_(52+§))+@

where 0 = @2 3) L g o — o8 Because (a,b,k,1,52) € Tns, |71| = |12] such that
(b2+x%)2 h2+x§' y U, R, 1,52 NS, [H1 2

171 and 7, are the complex conjugate roots of (23), it follows that

Ty (s i
mom =" 11 /ap e - 1@

We then obtain

ml=ln2l = /Di@), (WF) _ (Qh+® — h)k + hrx Lo

2/((Q—1Dk+rx)(s—1)h+ D ks

Moreover, T1 (0) = (2 — 5 — Q —s5) # 0, —1. Because (a,b,k,1,5,) € Tys, it follows
that =2 < T;(0) = (2 — B — Q —s7) < 2. Thus, we have ", 73" # 1forallm =1, 2, 3, 4
ats = 0, for T1(0) # 0,—1,+2. Hence, for s = 0, zeros of (23) do not belong to the
intersection of the unit circle with coordinate axes if the following condition is satisfied:

2—0—527&%,3—07527&”;* (24)
The canonical form of (22) at § = 0 can be obtained by taking v = le(o),

8 = 1,/4D1(0) — T?(0) and assuming

(7 )= (52 26)(3) &

Using transformation (25), we obtain the following canonical form of system (22):

(5)=(7 7))+ (L) -

where
~ m N3  ayN?P  b;3N?  a3NP?2 byuNP  a,P3  by5P? 4
u,v) = + + + + + O (|u] + |v
f(u,0) bio bio bin bin bip bio bip ((‘ [+ |))
= _((y=bi)a  di\ 3, ((y—bu)ax d2\
g<”’v)_( b1d 5 )N T e 5 JNP

(r—=bi)bis bas\ o ((y—bu)as  dsz\ 2
+( bpad A s )NP
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+ (r=bi)bra by NP + (y—bi)as dy p3
b0 6

(v —=bi)bis b5\ 2 4
- (blz(s 2 )P+ 0((Jul +[e)*)

N =apuand < P = (y—Dby1)u— v
Owing to the aforementioned computation, we state a nonzero real number

_ 2
L:= ( —Re (Wgzogn) - %|§11 2—[Goal* + Re(nzézl)] )

Ut

c=0

where,
gll = le {ﬁtu +]?vv + i(guu +§vv)}/
602 = % {fuu - ﬁzv - Zguv + i(guu - gvv + zﬁw)}
CZO = % []?uu - ]71)11 +2§uv + i(guu - gvv - 2]?uv)}/

En = 11—6 [P + Fuvo + Fuww + Fovw + i (Fusss + Fuvw — o — Fouo ) |-

Ultimately, we deduced the following conclusions for the direction and existence of
the Neimark-Sacker bifurcation, based on the aforementioned calculation:

Theorem 8. There exists a Neimark-Sacker bifurcation around (x«,y. ) whenever s deviates wtihin

a ]((?r’;:)rﬁ)(’;_h). In addition, if L < 0 (L > 0), then an attracting (or

repelling) invariant closed curve fluctuates in the range (x+,yx) fors > sp (or s < sp).

the neighborhood of sy = i

6. Chaos Control

In this section, we implement the hybrid control method for controlling the chaos
caused by the period-doubling bifurcation and for controlling the Neimark-Sacker bifur-
cation in (4). Such strategies have been discussed elsewhere in [21,33-37]. We assume the
following controlled system corresponding to model (4):

B Xn aAXnYn
Xp+1 —=€Xn €Xp (7’(1 — ?) — W) + (1 — €)xn,

h
Ynt+1 =€Yn exp (s (1 - xy”>> + (1 —€)yn,

where 0 < € < 1. Furthermore, both types of bifurcations can be controlled by choosing
an appropriate value of parameter €. The controlled system (27) and the original system
(4) have the same equilibrium point; the Jacobian matrix of the controlled system (27) at
(x4, Yy+) is expressed by

(27)

{1—5]3“—60 —e®d ]

€S

7 1—e€s

Consequently, the necessary and sulfficient condition for local stability around (x+, y«)
of the controlled system (27) yields the following result.

Theorem 9. The interior fixed point (x«,yx) of (27) is locally asymptotically stable if

Xy

k

Xy
2

—sQ—ss‘<1+(1— —EQ)(1—85)+$<2.
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7. Fractal Dimension

The fractal dimension that describes the strange attractors of discrete-time models is
defined as follows [38,39]:

;?il’&m
[#ml

where %1 %2, ., #m are Lyapunov exponents, and m is the largest integer such that
Xk 20 and Y7

®g=m+

M <0 For the discrete-time model (4), the fractal dimension takes
the following form:

#4
[,

Furthermore, for the values of parameters a, b, v, k, h, and s, the two Lyapunov expo-
nents F; and F, are computed numerically. If b = 3.3, 2 =08, r =13, h=2.7, and k=18,
then F; and F; corresponding to the values of the bifurcation (period-doubling) parameter
s from the chaotic region, with the help of Mathematica software, are shown in Table 1.

D, =1+ by >0> 4,

Table 1. Fractal dimension of model (4).

Values of s 1st Lyapunov Exponents F; 2nd Lyapunov Exponents F, Fractal Dimension De
2.85 0.08462596943938297 —1.1368798813345231 1.0744370366903186
2.90 0.22741225178613755 —1.2160641186798002 1.187006793714976
3.0 0.31895100399320747 —1.0790255038850196 1.2955917194216706
3.1 0.22493177216760443 —1.244489487648406 1.1807422034497348
3.2 0.4025124673527987 —1.1944261491614452 1.3369923436751492
3.3 0.3894200849244259 —1.2328810276916689 1.3158618521801246
34 0.47745428811163265 —1.2528556268034083 1.3810928233844715
3.5 0.47582043180971084 —1.2925566246939908 1.3681234715131803

The strange attractors for fixed parametric values illustrate that the discrete model (4)
has a complex dynamical behavior as parameter s increases by s > 2.1894756175566834.
Similarly, for the Neimark-Sacker bifurcation, the Lyapunov exponents and fractal di-
mension can be calculated for the values of parameter s from the chaotic region, that is,
s = 1.66, 1.68, 1.89, and so on. The strange attractors corresponding to these values are
also shown in Figure 1. In particular, Figure 1g,h k below, demonstrate that the discrete
time model (4) has a complex dynamical nature when parameter s > 1.3874082082631611.
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X T
(k) )
Figure 1. (a)s = 1.34, (b)s = 1.3811, (c) s = 1.3874082082631611, (d)s = 1.43, (e)s = 1.607,
(f)s = 1625 (g)s = 166, (h)s = 1.68 (i)s = 1735 (j)s = 1.83, (k)s = 1.89,
(I)s = 1.99. (a)-(1) Phase portraits of system (4) for different values of s € [1,2] with
b =17a = 226,r=2.4,h=1.8,and k = 1.4 under the initial conditions xy = 1.0219,yy = 0.567721.

8. Numerical Simulation

This section verifies the aforementioned theoretical discussion. The first example is
related to the existence and direction of the Neimark-Sacker bifurcation. The second exam-
ple shows that for a suitable choice of parameters, system (4) undergoes period-doubling
bifurcation. Moreover, to confirm the control of flip and Neimark-Sacker bifurcation, we
provide two examples for different choices of parameters defined in Tpp and Tys.

Example 1. Let b = 1.7, a =2.26, r =24, h =18, k = 14, s € [1,1.8], and initial conditions
(x0,y0) = (1.0219,0.567721). Then, both species undergo a Neimark-Sacker bifurcation, as shown
in Figure 2. To confirm the chaotic behavior of model (4) MLE is shown in Figure 2c.
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Figure 2. Bifurcation diagrams and maximum Lypunov exponents (MLE) for system (4) with para-
metric values b = 1.7, a = 2.26, r =24, h = 1.8, k = 1.4, and s € [1,1.8] and initial conditions
(x0,y0) = (1.0219,0.567721): (a) bifurcation for x,, (b) bifurcation for y,, and (¢) MLE.

Furthermore, Figure 1a—-1 shows the interesting behavior of system (4). Figure 1f-1
shows the chaotic behavior of system (4). Assuming that b = 1.7, we have a positive
fixed point (x4, y«) = (1.165750001, 0.6476388892), which loses stability and undergoes
a Neimark-Sacker bifurcation. Thus, for the aforementioned parameters, we have the
following control system:

2.4-1.714285714 x,,—2.26 —¥n
Xp+1 =€ Xpé€ ! w1289 4 (1 —€)xy,

_ Yn
Yur1 =€ yne™ 270 % 4 (1 — )y

(28)

It can be clearly observed that the controlled system (28) has a unique positive equilib-
rium point (x4, y«) = (1.165750001, 0.6476388892), which is similar to the original system
(4). In addition, the Jacobian at equilibrium (x., y.) = (1.165750001, 0.6476388892) has the
following form:

—2.143126283 e +1  —0.7228285706 €
0.8333333325 € —1.500000000€ +1 |

Example 2. Assuming the parameters b = 3.3,a = 0.8,r = 1.3,h = 2.7,k = 1.8, and
s € [2, 3.5], and the initial conditions (xg,yo) = (1.74693,0.647013), both species then undergo
period-doubling bifurcation when the bifurcation parameter passes through s = 2.1894756175566834,
as shown in Figure 3. In particular this fact is obvious in Figure 3a,b. Moreover, to confirm the
chaotic behavior of model (4) MLLE is shown in Figure 3c.
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Figure 3. Bifurcation diagrams and MLE for system (4) with parameters

b = 33,a = 08 r = 13, h = 27, k=185 € [2, 3], and (xo,v0) = (1.74693,0.647013):
(a) period-doubling bifurcation for x;, (b) period-doubling bifurcation for y,, and (c) MLE.

Furthermore, if s = 2.4, then the equilibrium point (xy, y«) = (1.712924751,0.6344165743)
loses its stability and undergoes periodic doubling (see Figure 4).
Thus, for the aforementioned parameters, we present the following control system:
_ _ Xnyn
N et d 0T 08 [ (1— e)x,

_ yn
Ypi1 =€ yn62.4 6.48 - + (1 . e)yn/

(29)

The fixed point (x4, y.) = (1.712924751, 0.6344165743) was preserved in the case
of a controlled system (29). Furthermore, the variational matrix of the aforementioned
controlled system computed at a fixed point (x,,y.) = (1.712924751, 0.6344165743) is
given by

—1.273304693 € +1 —0.1697967362 €
(0.8888888882 ¢ —2.399999999 € + 1
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Figure 4. (a) Bifurcation diagrams of x, for controlled system (28), (b) bifurcation diagrams of y, for
controlled system (28), (c) bifurcation diagrams of x,, for controlled system (30), and (d) bifurcation
diagrams of v, for controlled system (30).

The characteristic polynomial of the aforementioned Jacobian matrix is given by
7% + (3.673304692 € — 2)17 + 3.206861694 € — 3.673304692 € + 1 = 0.

According to Lemma 1, the control system is locally asymptotically stable, if 0 < € <
0.8910230450195268 and bifurcation is controlled for 0 < e < 0.8910230450195268 (see
Figure 4c,d).

Finally, some local implications of the MLE diagrams, shown in Figures 1c and 2c¢ for
the Neimark-Sacker bifurcation and period-doubling bifurcation, respectively, are plotted
in Figure 5a,b, respectively. It has also been verified that the system undergoes Neimark-
Sacker bifurcation at s = 1.3874082082631611, where the phase portrait at this point shows
a closed invariant curve, as already shown in Figure 4c.
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Figure 5. (a) Local implication for the Neimark-Sacker bifurcation and (b) local implication for
period-doubling bifurcation.

9. Concluding Remarks

In this study, we examined the qualitative and dynamical analyses of a discrete-time
predator-prey model. Piecewise constant arguments have been applied to achieve the
discrete-time counterpart of a continuous model. Thus, a comprehensive analysis of model
(4) was presented. In particular, we investigated the boundedness, local stability of the
boundary, and positive equilibrium points, which seem to present more challenging cases
of Euler’s discretization scheme in [31]. Moreover, it was proved that the population
sustains both period-doubling bifurcation and Neimark-Sacker bifurcation near the interior
equilibrium. The parametric conditions were obtained for the direction and existence of
both types of bifurcations using the theory of bifurcation and center manifold theorem.
Moreover, the chaotic attractors shown in Figure 5 ensures chaos in the system. To control
the chaotic behavior of system (4), a hybrid control method was implemented. Hence, by
applying a control strategy, both types of bifurcations can be controlled for a maximum
range of control parameters. We also presented the fractal dimension of model (4), which
characterizes the strange attractors provided in Figure 5 thereby illustrating the complexity
and rich dynamics of discrete model (4). Finally, numerical simulations were conducted to
verify the analytical and theoretical approaches.

10. Future Direction

Our future research will include the Leslie-Gower predator-prey model with the
functional response of Holling type-II. In this case, we aim to conduct stability, bifurcation,
and chaos-control analyses of the model. A comparison of both functional responses will
be conducted in a future study.
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Thus, the approximation of the center manifold W¢(0,0,0) of (19) within the neighbor-
hood of 5 = 0 evaluated at the origin can be expressed as

W¢(0,0,0) = {(u,v,sl € R3) = M3s® + Mpsu + myu® + (Olul, |51|)4},

where
2 ( by (L+b1g)by3 byy  (1+D7)byg 2( bys | (14by1)bys
= b12<1+”2+ bp(14m) ) i G N + S A (Y
1 1-1 b 1*772b 1-12 ’
M, = 2liylabe, v, —o.

Consequently, the restricted map to center manifold W€ (0,0, 0) is expressed as follows:
2 2 2 3 4
F:u— —u+tyu” + tous + tau”s + tgus” + tsu° + (Olu|, |s1])

where

2 (b bulbn-m)) 2( by bis(bu—rp)
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