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Abstract: The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture,
is an important application of matrix concave functions. Recently, the Thompson–Golden theorem,
a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is
worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick
function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials,
and some corollaries associated with exterior algebra are obtained.
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1. Introduction

Matrix theory is widely used in statistics [1], physics [2], computer science [3] and so
on. For convenience, M(n,C) is denoted as the set of all n× n complex matrices (C is the
set of complex numbers) [4]. A is called a Hermitian matrix when A ∈ M(n,C) satisfies
A∗ = A (A∗ denotes conjugate transposition of A). The Hermitian matrix is frequently
used in quadratic forms and their correlation theory [5]. Let Hn denote the set of n× n
Hermitian matrices and H+

n denote the n× n positive semidefinite Hermitian matrix (Cn is
the n dimensional complex Euclidean space).

Set u1, u2, · · · , un to be any orthonormal basis of Cn, and then the trace operator Tr is
defined as [4]

Tr[A] =
n

∑
i=1

(ui, Aui),

where (·, ·) is the inner product of Cn. It is well known that for any A = (aij) ∈ M(n,C),
the following equalities hold [6]

Tr[A] =
n

∑
j=1

λi =
n

∑
j=1

aii,

where λi is the eigenvalue of A.
From the spectral theorem [5], A ∈ H+

n can be decomposed as

A = P∗ΛAP,
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where P is a unitary matrix and ΛA := diag{λ1, ..., λn} is a diagonal matrix with eigenval-
ues λ1, ..., λn. Then, matrix function f (A) is defined as

f (A) = P∗ f (ΛA)P = ∑
i=1

f (λi)Pi, (1)

where f (ΛA) := diag{ f (λ1), ..., f (λn)} and P2
i = Pi.

Based on the above definition, in 1963, the Wigner–Yanase skew information

IWY(ρ) = −
1
2

Tr
[
[
√

ρ, H]2
]

was introduced by Wigner and Yanase ([7]), where ρ is a density matrix (ρ ≥ 0, tr ρ = 1)
and H is a Hermitian matrix. Then, an open problem was left

Tr[AsKA1−sK∗], (2)

which is concave for any positive semidefinite matrix A.
In 1973, (2) was proven by Lieb for all 0 < s < 1 [8], and a more generalized result

was obtained from the following fact [9]

Tr[AsKB1−sK∗] = 〈K, B1−sK∗As〉L(H)

= 〈K, Ψ−1(B1−s ⊗ As)K∗〉L(H).

where Ψ−1(A) = ∑
j
(Aej) ⊗ e∗j . In fact, the Lieb concavity theorem is equivalent to the

concavity of B1−s ⊗ As.
A more elegant proof of the Lieb concavity theorem appeared in [10] using

Tr[K∗AsKB1−s] = 〈K, (As ⊗ B1−s)K〉L(H),

where
[(A⊗ B)K]i,j = ∑

k,l
Ai,kBj,lKk,l .

In 2009, Effros gave another proof of the Lieb concavity theorem based on the Hansen–
Pedersen–Jensen inequality ([11]). Using

LA(K) = AK, RB(K) = KB,

then one obtains

Tr[K∗AsKB1−s] = 〈K, LAs RB1−s(K)〉L(H)

= 〈K, R
1
2
B(R−

1
2

B LAR−
1
2

B )sR
1
2
B(K)〉L(H).

All the above proof of the Lieb concave theorem is equivalent to the joint concavity of
commutative operators. In addition, Epstein also obtained the Lieb concave theorem using
the theory of Herglotz functions [12].

Recently, Shi and Hansen [13] generalized the Thompson–Golden theorem

Tr[expq(A + B)] ≤ Tr[(expq(A))2−q(A(q− 1) + expq(B))]

As the Thompson–Golden theorem can be regarded as a special form of the Lieb
concave theorem, it is worthwhile to study the Lieb concavity theorem for deformed expo-
nentials. In this paper, we will use the theory of the Pick function to obtain a generalization
of the Lieb concavity theorem and some other corollaries. The rest of the paper is organized
as follows. In Section 2, some general definitions and important conclusions are introduced.
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With these preparations, we obtain some useful results, such as the Lieb concavity theorem,
presented in the final Section 3.

2. Preliminary

In this section, some general definitions and some important properties are introduced.

2.1. The q-Logarithm Function and q-Exponential Function

It is well known that the q-logarithm function lnq(x) is defined as [13]

lnq(x) =

{
xq−1−1

q−1 , q 6= 1
ln x, q = 1

}

for any x > 0. The deformed exponential function or the q−exponential expq(x) is the
inverse function of the q−logarithm and is defined as

expq(x) =





[(q− 1)x + 1]
1

q−1 , x > 1
q−1 , q > 1

[(q− 1)x + 1]
1

q−1 , x < 1
q−1 , q < 1

exp(x), x ∈ R, q = 1





2.2. Tensor Product and Exterior Algebra

The tensor product, denoted by “⊗ ”, is also called the Kronecker product. It is a
generalization of the outer product from vectors to matrices, and the tensor product of
matrices is also referred to as the outer product in certain contexts ([9]). For an m× n matrix
A and a p× q matrix B, the tensor product of A and B is defined by

A⊗ B :=




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


,

where A =
(
aij
)

1≤i≤m,1≤j≤n.
The tensor product is different from matrix multiplication, and one of the differences

is commutativity
(I ⊗ B)(A⊗ I) = (A⊗ I)(I ⊗ B) = A⊗ B.

From the above equations, we obtain

AC⊗ BD = (AC⊗ I)(I ⊗ BD)

= (A⊗ I)(C⊗ I)(I ⊗ B)(I ⊗ D)

= (A⊗ I)(I ⊗ B)(C⊗ I)(I ⊗ D)

= (A⊗ B)(C⊗ D).

For convenience, we denote

⊗k A = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
k

.

In addition to the tensor product, there is another common product called exterior
algebra [6]. Exterior algebra, denoted by “∧”, is a binary operation for any Ai ∈ H+

n , and
the definition is

(A1 ∧ A2 ∧ · · · ∧ Ak︸ ︷︷ ︸
k

)(ξi1 ∧ ξi2 · · · ∧ ξik )1≤i1<···<ik≤n

= (A1ξi1 ∧ A2ξi2 · · · ∧ Akξik )1≤i1<···<ik≤n,
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where {ξ j}n
j=1 is an orthonormal basis of Cn, and

ξi1 ∧ ξi2 · · · ∧ ξik =
1√
n!

∑
π∈σn

(−1)πξπ(i1) ⊗ ξπ(i2) · · · ⊗ ξπ(ik),

σn is the family of all permutations on {1, 2, · · · , n}.
Let

∧k Cn be the span of the {ξi1 ∧ ξi2 · · · ∧ ξik}1≤i1<···<ik≤n, and then a simple calcula-
tion shows that

∧n A = (A ∧ A ∧ · · · ∧ A︸ ︷︷ ︸
k

) = det(A)

2.3. Pick Function

Let z = x + iy be a complex number where i is the imaginary unit and f (z) =
U(z) + iV(z) is analytic where U(z), V(z) are all real functions. Re z = x denotes the real
part of z, and Im z = y is the imaginary part of z. If Im f (z) > 0 for any Im z > 0, then we
call the analytic function f (z) a Pick function [14]. It is equivalent that f (z) is analytic in
the upper half-plane with the positive imaginary part.

The Pick functions evidently form a convex cone—for instance, if α and β are positive
numbers and f (z) and g(z) are two Pick functions, then the function α f (z) + βg(z) is also
a Pick function. A simple example is that tan(z) is a Pick function.

tan(x + iy) =
tan(x) + tan(iy)

1− tan(x) tan(iy)

=
tan(x) + i tanh(y)

1− i tan(x) tanh(y)
.

Hence, Im tan(z) = (1+tan2(x)) tanh(y)
1+tan2(x) tanh2(y)

, and this implies that Im tan(z) > 0 when y > 0.

It is well known that the Pick function has a integral representation, such as the
following lemma [14].

Lemma 1. Let f (z) be a Pick function. Then, f (z) has a unique canonical representation of
the form

f (z) = α + βz +
∫

R

(
1

λ− z
− λ

1 + λ2

)
d µ(λ),

where α is real, β ≥ 0 and d µ(λ) is a positive Borel measure on the real λ−axis that
∫
R
(1 +

λ2)−1 d µ(λ) is finite. Conversely, any function of this form is also a Pick function.

Lemma 1 is frequently used for functions that are positive and harmonic in the half-
plane.

2.4. The Matrix-Monotone Function

A matrix function f is said to be matrix-monotonic if it satisfies

f (A) ≥ f (B) for all A ≥ B > 0. (3)

where A ≥ B > is equivalent to A− B is a positive semidefinite Hermitian matrix.
Since the matrix-monotone function is a special kind of operator monotone function,

we have the following general conclusions [14].

Lemma 2. The following statements for a real valued continuous function f on (0,+∞) are equiv-
alent:

(1) f (z) is matrix-monotone;
(2) f (z) admits an analytic continuation to the whole domain Im z 6= 0 and Im(z) Im f (z) ≥ 0.
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(3) f admits an integral representation:

f (λ) = α + βλ +

0∫

−∞

(1 + λt)(t− λ)−1dµ(t), for any
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(3) f admits an integral representation:

f (λ) = α + βλ +

0∫

−∞

(1 + λt)(t− λ)−1 d µ(t), for any ˘ > 0, (4)

where α is a real number, β is non-negative and µ is a finite positive measure on (−∞, 0).

From Lemmas 1 and 2, we know that a Pick function must be a matrix-monotone
function.

2.5. Convexity of Matrix

Suppose that X is a convex set in Rn and f is a function defined on X. Then, we call f
a convex function if

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2), ∀x1, x2 ∈ X, ∀t ∈ [0, 1],

for all x1, x2 ∈ X and t ∈ [0, 1].
A matrix function f is called convex if [15–17]

f (tA + (1− t)B) ≤ t f (A) + (1− t) f (B), (5)

for any A, B ∈ H+
n and any t ∈ [0, 1]. Replacing ≤ by < in (5), this gives the definition of

a strictly matrix convex function. A matrix function f is called (strictly) concave if − f is
(strictly) convex. More details can be found in [18].

A matrix convex function must be a convex function; however, the inverse claim is
not always true. For instance, the function f : [0,+∞)→ R given by f (x) = x3 is a convex
function. However, the matrix function f (A) = A3 for any A ∈ H+

n is not convex.
Let f (·, ·) be a bivariate function defined on H+

n × H+
n . We call f (·, ·) jointly convex if

f (tA1 + (1− t)A2, tB1 + (1− t)B2) ≤ t f (A1, B1) + (1− t) f (A2, B2),

for all A1, A2, B1, B2 ∈ H+
n and all t ∈ [0, 1].

2.6. Brunn–Minkowski Inequality

Finally, let us review the Brunn–Minkowski inequality [19].

Lemma 3. for any A, B > 0, and then

{Tr[∧k(A + B)]} 1
k ≥ {Tr

[
∧k A

]
} 1

k + {Tr
[
∧kB

]
} 1

k .

Proof. Let {ξi}n
i=1 be the eigenvectors of A + B with the eigenvalue {λi}n

i=1, then

{Tr[∧k(A + B)]} 1
k =


 ∑

1≤ξi1
<···<ξik

≤n
λi1 · · · λik




1
k

=


 ∑

1≤ξi1
<···<ξik

≤n

(
det
∣∣∣P∗i1,··· ,ik (A + B)Pi1,··· ,ik

∣∣∣
)



1
k

≥

 ∑

1≤ξi1
<···<ξik

≤n

(
det
∣∣∣P∗i1,··· ,ik APi1,··· ,ik

∣∣∣+ det
∣∣∣P∗i1,··· ,ik BPi1,··· ,ik

∣∣∣
)



1
k

where Pi1,··· ,ik = (ξi1 , · · · , ξik ) and ≥ holds due to det(A + B) ≥ det(A) + det(B).

> 0, (4)

where α is a real number, β is non-negative and µ is a finite positive measure on (−∞, 0).

From Lemmas 1 and 2, we know that a Pick function must be a matrix-monotone
function.

2.5. Convexity of Matrix

Suppose that X is a convex set in Rn and f is a function defined on X. Then, we call f
a convex function if

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2), ∀x1, x2 ∈ X, ∀t ∈ [0, 1],

for all x1, x2 ∈ X and t ∈ [0, 1].
A matrix function f is called convex if [15–17]

f (tA + (1− t)B) ≤ t f (A) + (1− t) f (B), (5)

for any A, B ∈ H+
n and any t ∈ [0, 1]. Replacing ≤ by < in (5), this gives the definition of

a strictly matrix convex function. A matrix function f is called (strictly) concave if − f is
(strictly) convex. More details can be found in [18].

A matrix convex function must be a convex function; however, the inverse claim is
not always true. For instance, the function f : [0,+∞)→ R given by f (x) = x3 is a convex
function. However, the matrix function f (A) = A3 for any A ∈ H+

n is not convex.
Let f (·, ·) be a bivariate function defined on H+

n × H+
n . We call f (·, ·) jointly convex if

f (tA1 + (1− t)A2, tB1 + (1− t)B2) ≤ t f (A1, B1) + (1− t) f (A2, B2),

for all A1, A2, B1, B2 ∈ H+
n and all t ∈ [0, 1].

2.6. Brunn–Minkowski Inequality

Finally, let us review the Brunn–Minkowski inequality [19].

Lemma 3. for any A, B > 0, and then

{Tr[∧k(A + B)]} 1
k ≥ {Tr

[
∧k A

]
} 1

k + {Tr
[
∧kB

]
} 1

k .

Proof. Let {ξi}n
i=1 be the eigenvectors of A + B with the eigenvalue {λi}n

i=1, then

{Tr[∧k(A + B)]} 1
k =


 ∑

1≤ξi1
<···<ξik

≤n
λi1 · · · λik




1
k

=


 ∑

1≤ξi1
<···<ξik

≤n

(
det
∣∣∣P∗i1,··· ,ik (A + B)Pi1,··· ,ik

∣∣∣
)



1
k

≥

 ∑

1≤ξi1
<···<ξik

≤n

(
det
∣∣∣P∗i1,··· ,ik APi1,··· ,ik

∣∣∣+ det
∣∣∣P∗i1,··· ,ik BPi1,··· ,ik

∣∣∣
)



1
k

where Pi1,··· ,ik = (ξi1 , · · · , ξik ) and ≥ holds due to det(A + B) ≥ det(A) + det(B).
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As Sk =

[
∑

1≤ξi1
<···<ξik

≤n
xi1 · · · xik

] 1
k

is concave [20], we have

{Tr[∧k(A + B)]} 1
k ≥


 ∑

1≤ξi1
<···<ξik

≤n
det
∣∣∣P∗i1,··· ,ik APi1,··· ,ik

∣∣∣




1
k

+


 ∑

1≤ξi1
<···<ξik

≤n
det
∣∣∣P∗i1,··· ,ik BPi1,··· ,ik

∣∣∣




1
k

=


 ∑

1≤ξi1
<···<ξik

≤n

(
ξi1 ∧ · · · ∧ ξik , Aξi1 ∧ · · · ∧ Aξik

)



1
k

+


 ∑

1≤ξi1
<···<ξik

≤n

(
ξi1 ∧ · · · ∧ ξik , Bξi1 ∧ · · · ∧ Bξik

)



1
k

= {Tr[∧k A]} 1
k + {Tr[∧kB]} 1

k .

3. Lieb Concavity Theorem for Deformed Exponential

In this section, we obtain some useful conclusions, and some simple and straightfor-
ward computations are omitted. Recently, by using the Young inequality,

Tr[Y] = max
X≥0
{Tr[X]− Tr[X2−q(lnq X− lnq Y)]},

Shi and Hansen obtained that F(A) = Tr
[

exp
1
p
q (K∗ lnq(Ap)K)

]
is concave for any

1 ≤ q ≤ 2 where K∗K ≤ I (I is the identity matrix of M(n,C)) [13], namely, the following
theorem.

Theorem 1. For 0 < p ≤ 1, 1 < q ≤ 2 and K∗K ≤ I, the function

F(A) = Tr
[

exp
1
p
q (K∗ lnq(Ap)K)

]
(6)

is concave for the strictly positive A ∈ H+
n .

Proof. (The first proof of Theorem 1)
Since [21]

D f (A)(B) = ∑
i

∑
j

f (λi)− f (λj)

λi − λi
PiBPj,

we obtain

d(Tr[ f (A + tB)− f (A)])

d t
= Tr

[
∑

i
∑

j

f (λi)− f (λj)

λi − λi
PiBPj

]

= Tr

[
∑

i
Pj ∑

j

f (λi)− f (λj)

λi − λi
PiB

]

= Tr

[
∑

i
f ′(λi)PiB

]
= Tr[ f ′(A)B],
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where λi are eigenvalues of A. When f (x) is a convex function, we obtain

Tr[ f (A + tB)− f (A)] ≥ Tr[ f ′(A)tB]

for any t. This implies that

Tr[ f (C)] = max{Tr[ f (D) + f ′(D)(C− D)] : D > 0}.

Therefore, we obtain

Tr[(K∗Apq−pK + I − K∗K)
1

pq−p ]

= max{Tr[D
1

pq−p +
D

1
pq−p−1

(K∗Apq−pK + I − K∗K− D)

pq− p
] : D > 0}

= max{Tr[C +
C1−pq+p(K∗Apq−pK + I − K∗K− Cpq−p)

pq− p
] : C = D

1
pq−p > 0}

= max{Tr[C(1− 1
pq− p

) +
C1−pq+pK∗Apq−pK

pq− p
+ C1−pq+p(I − K∗K)] : C > 0}

Thus, the concavity of F(A) is equivalent to the jointly concavity of Tr[C1−pq+pK∗Apq−pK
pq−p ]

for the strictly positive A and C, which is the Lieb concavity theorem [22,23].

Unfortunately, Theorem 1 cannot be obtained using Epstein’s theorem. Hence, we
require a more general generalization of Epstein’s theorem. First, for any Im(z) > 0, we
know that A + zB is invertible and x∗(A + zB)x is a Pick function for any x ∈ Cn [14]. For
any A ∈ M(n,C), we know f (A) is defined as [12]

f (A) =
1

2π

∮

C

f (z)
z− A

d z,

where f (z) is a complex holomorphic function in an open set of the complex plane contain-
ing Sp(A) (the set of all eigenvalues of A). Then, we have the following lemma.

Lemma 4. Let A, B ∈ H+
n and 0 < α ≤ 1, then

x∗(A + zB)αx

is a Pick function for any x ∈ Cn and 0 < arg(x∗(A + zB)αx) < απ if 0 < arg(z) = θ < π,
such as Sp((A + zB)α) ⊆ (Sp(A + zB)α). Generally, we can find that

x∗ f (A + zB)x

is a Pick function when f is a Pick function.

Proof. Setting z = ρeiθ , we have

(A + zB)α =

+∞∫

0

(
A + zB

t + A + zB
)d µ(t)

=

+∞∫

0

(
1

t
A+zB + 1

)d µ(t),

where d µ(t) = tα−1π
sin απ .
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Since Im z > 0, we see that A + zB is invertible. Hence, we have

x∗(A + zB)αx =

+∞∫

0

x∗(
1

t
A+zB + 1

)x d µ(t)

=

+∞∫

0

y∗(
t

A + z∗B
+ 1)y d µ(t), y = ( t

A+zB + 1)−1x

=

+∞∫

0

y∗y + tw∗(A + zB)w d µ(t), w = (A + z∗B)−1y

=

+∞∫

0

y∗y + tw∗Aw d µ(t) + z
+∞∫

0

tw∗Bw d µ(t).

This implies that

Im x∗(A + zB)αx = Im(z) ·
+∞∫

0

tw∗Bw d µ(t) > 0;

hence, 0 < arg(x∗(A + zB)αx) when 0 < arg(z) = θ < π.
In the same way, we can obtain

Im w∗[(−A− z∗B)−α]w = Im(e−iαπz∗) ·
+∞∫

0

tv∗Bv d µ(t) < 0, v = (t(A + z∗B) + 1)−1w.

In particular, letting w = (A + z∗B)αx, we have

Im(e−iαπx∗(A + zB)αx) < 0.

This is equivalent to arg(x∗(A + zB)αx) < απ.
To prove Sp((A + zB)α) ⊆ (Sp(A + zB)α), let (A + zB)ξ = λξ, we find

ξ∗(A + zB)αξ = [ξ∗(A + zB)ξ]α = [ξ∗Aξ + zξ∗Bξ]α = ραeiαθ ,

where tan θ = ξ∗Bξ Im(z)
ξ∗Aξ+ξ∗Bξ Re(z) ≤ tan arg(z).

When f (z) is a Pick function, using the integral represented of f (z), in a similar way,
we can obtain that

x∗ f (A + zB)x

is a Pick function for any x ∈ Cn.

Using Lemma 4, another proof of Theorem 1 can be obtained.

Theorem 2. For 0 < p ≤ 1, 1 < q ≤ 2 and K∗K ≤ I, the function

F(A) = Tr
[

exp
1
p
q (K∗ lnq(Ap)K)

]

is concave for the strictly positive A ∈ H+
n .

Proof. (The second proof of Theorem 1)
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First, setting f (z) = Tr[(A(z) + iB(z))
1

pq−p ] where A(z) = Re(K∗(A + zB)pq−pK + I −
K∗K) and B(z) = Im(K∗(A + zB)pq−pK + I − K∗K) ∈ H+

n . As

Im
[

Tr[(A(z) + iB(z))
1

pq−p ]

]
= Im


Tr[

+∞∫

0

(
A(z) + iB(z)

t + A(z) + iB(z)
)d µ(t)]




= Im




+∞∫

0

Tr[(
ΛA(z)+iB(z)

t + ΛA(z)+iB(z)
)d µ(t)]




= Im




+∞∫

0

n

∑
i=1

[(
λi(A(z) + iB(z))

t + λi(A(z) + iB(z))
)d µ(t)]




= Im

[
n

∑
i=1

[(λi(A(z) + iB(z))
1

pq−p ]

]
,

when arg(z) ∈ (0, π) and K∗K ≤ I, then

arg(λi(A(z) + iB(z)))

= arg(x∗i (A(z) + iB(z))xi)

= arg(x∗i K∗(A + zB)pq−pKxi + x∗i (I − K∗K)xi) ∈ (0, (pq− p)π),

where xi ∈ Cn are the eigenvectors of K∗(A + zB)pq−pK + I − K∗K.
Hence,

Im
[

Tr[(A(z) + iB(z))
1

pq−p ]

]
= Im

[
n

∑
i=1

zi

]
,

where zi is the i eigenvalue of (A(z) + iB(z))
1

pq−p and arg(zi) ∈ (0, π).

Thus, f (z) = Tr[(A(z) + iB(z))
1

pq−p ] is a Pick function, and this implies that F(A) is
concave.

Using a similar method, we can obtain the following corollary.

Corollary 1. For 0 < p ≤ 1 and 1 < q ≤ 2, the function

E(A) = Tr
[

exp
1
p
q [B + lnq(Ap)]

]
(7)

is concave for the strictly positive A ∈ H+
n .

Since the Thompson–Golden theorem can be seen as a corollary of the Lieb concav-
ity theorem, we discuss the Lieb concavity theorem for deformed exponentials. Setting
SP(A) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < α} and SP(B) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < β}, then for
any A1, B1 ∈ Hn ,A2, B2 ∈ H+

n and A = A1 + iA2, B = B1 + iB2, we have [12]

SP(AB) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < α + β}. (8)

and then the following theorem can be obtained.

Theorem 3. For 0 < p ≤ 1, 1 < q ≤ 2 and P∗P ≤ I, the following function

L(A) = Tr[expq(P∗ lnq(K∗ApK)P) expq(P∗ lnq A1−pP)] (9)

is concave for any A ∈ H+
n .

Proof. Set LA,B(z) = Tr[expq(P∗ lnq(K∗(A + zB)pK)P) expq(P∗ lnq(A + zB)1−pP)].
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When xi ∈ Cn is a eigenvector of P∗(A + zB)pq−pP + I − P∗P and P∗P ≤ I,

arg(x∗i P∗K∗(A + zB)pq−pKPxi + x∗i (I − P∗P)xi) ∈ (0, (pq− p)π),

if arg(z) ∈ (0, π). This implies

SP(P∗K∗(A + zB)pq−pKP + I − P∗P) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < (pq− p)π},

such as

SP(expq(P∗ lnq(K∗(A + zB)pK)P)) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < pπ}.

Similarly, we can also obtain

SP(expq(P∗ lnq(A + zB)1−pP)) ⊂ {z = ρeiθ : 0 < ρ, 0 < θ < (1− p)π}.

Hence, using (8), we see that

SP[expq(P∗ lnq(K∗(A + zB)pK)P) expq(P∗ lnq(A + zB)1−pP)]

⊂ {z = ρeiθ : 0 < ρ, 0 < θ < π}.

Thus, we know arg(LA,B(z)) ∈ (0, π), which implies thatLA,B(z) is a Pick function.
Hence, L(A) is concave.

In fact, Theorem 3 is a generalization of the Lieb concavity theorem setting P = I,

K =

(
0 0
H 0

)
and A =

(
Z 0
0 B

)
. Moreover, we can obtain the following theorem.

Theorem 4. For 0 < p, s ≤ 1, 1 < q ≤ 2 and P∗P ≤ I, the functions

Tr
[[

expq(P∗ lnq A
ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)

] 1
s
]

(10)

and [
Tr expq(P∗ lnq A

ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)

] 1
s (11)

are jointly concave for any A ∈ H+
n .

The proof of Theorem 4 is similar to Theorem 3; here, we do not repeat the proof.
In [19], Huang used exterior algebra to find that

[
Tr∧k[exp(K∗ ln(A)K)]

] 1
k

is a concave function for any A ∈ H+
n , K∗K ≤ I and k ≤ n. Associated with Theorem 1, we

can obtain a generalization as the following theorem.

Theorem 5. For 0 < p ≤ 1, 1 < q ≤ 2 and K∗K ≤ I, the function

[
Tr∧k

[
exp

1
p
q (K∗ lnq(Ap)K)

]] 1
k

(12)

is concave for the strictly positive A ∈ H+
n and k ≤ n.

Proof. In fact, we can prove that

[
Tr∧k

[
(H∗AsH + B)

1
s

]] 1
k
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is a concave function for any A ∈ H+
n where 0 < s ≤ 1 and B ∈ H+

n .
Using Theorem 1, we know that

Tr
[
(H∗Ap H + C)

1
p

]
(13)

is a concave function for any A ∈ H+
n where 0 < p ≤ 1 and C ∈ H+

n .
Then, for any A1, A2 ∈ H+

n , we have

[
Tr∧k

[
(H∗(

A1 + A2

2
)sH + B)

1
s

]] 1
k

=

[
Tr

[
(H̄∗(

A1 ∧k−1 I + A2 ∧k I
2

)sH̄ + B̄)
1
s

]] 1
k

≥
[

Tr

[
(H̄∗(A1 ∧k−1 I)sH̄ + B̄)

1
s + (H̄∗(A2 ∧k−1 I)sH̄ + B̄)

1
s

2

]] 1
k

=

[
Tr

[(
(H∗As

1H + B)
1
s + (H∗As

2H + B)
1
s

2

)
∧k−1 (H∗(

A1 + A2

2
)s H + B)

1
s

]] 1
k

,

where H̄ = H ∧k−1 (H∗( A1+A2
2 )sH + B)

1
s and B̄ = B ∧k−1 (H∗( A1+A2

2 )sH + B)
1
s . Analo-

gously, we can obtain

[
Tr∧k

[
(H∗(

A1 + A2

2
)s H + B)

1
s

]] 1
k

≥
[

Tr

[
∧k

(
(H∗As

1H + B)
1
s + (H∗As

2H + B)
1
s

2

)]] 1
k

.

Using lemma 3, we obtain

[
Tr∧k

[
(H∗(

A1 + A2

2
)sH + B)

1
s

]] 1
k

≥

[
Tr
[
∧k
(
(H∗As

1H + B)
1
s

)]] 1
k
+
[
Tr
[
∧k
(
(H∗As

2H + B)
1
s

)]] 1
k

2
.

Clearly, the proof of Theorem 5 is in the application of exterior algebra and the Brunn–
Minkowski inequality. Hence, other theorems, such as the Thompson–Golden theorem in a
deformed exponential, can be generalized to a more general form, but we do not discuss
this here.

4. Conclusions

In this paper, we used the Pick function to obtain a generalization of the Lieb concavity
theorem and some corollaries. The advantage of using the Pick function is that it avoids
discussing the commutativity of the matrix and variational method. Generally, we obtain
that the following two functions are concave for 0 < p, s ≤ 1, 1 < q ≤ 2 and P∗P ≤ I

[
Tr∧k

[
expq(P∗ lnq A

ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)

] 1
s
] 1

k
(14)
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and

[
Tr∧k[expq(P∗ lnq A

ps
2 P) expq(P∗ lnq(K∗As−spK)P) expq(P∗ lnq A

ps
2 P)]

] 1
ks , (15)

where A ∈ H+
n and k ≤ n, and this provides work for the future.
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