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Abstract: We propose a fractional-order shifted Jacobi-Gauss collocation method for variable-order
fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial
conditions. Using the Riemann-Liouville fractional integral and derivative and fractional-order
shifted Jacobi polynomials, the approximate solutions of VO-FIDE-WSK are derived by solving
systems of algebraic equations. The superior accuracy of the method is illustrated through several

numerical examples.

Keywords: variable-order fractional integro-differential equation; fractional-order shifted Jacobi
polynomial; Riemann-Liouville fractional derivative; Riemann-Liouville fractional integral

1. Introduction

Fractional calculus [1-10] generalizes the standard differential and integral operators
to non-integer orders, which, due to their non-local properties, were proven adequate for
modeling and controlling systems with memory. Fractional integro-differential equations with
weakly singular kernel (FIDE-WSK) are effective for modeling physical phenomena in science
and engineering fields (see [11] and references therein). However, often their solutions cannot
be obtained analytically and, thus, numerical techniques were developed. Nemati et al. [12]
adopted a procedure based on second kind Chebyshev polynomials and operational matrix.
Wang and Zhu [13] used second kind Chebyshev wavelets (SCW) and operational matrix
of fractional order integration, and Zhao et al. [14] proposed collocation methods. Recently,
Mokhtary [15] applied the operational Jacobi Tau method, while others developed improved
distinct techniques [16-20].

Variable-order fractional integro-differential equations (V-O-FIDE) generalize the
standard FIDE and obtaining their solutions is more challenging. Xu and Ertuark [21]
used the finite differences method, Chen et al. [22] adopted Legendre wavelets and Sun
and Zhu [23] proposed Chebyshev polynomials. We can also cite Chen et al. [24], who
derived a solution for the variable-order fractional linear cable equation using polynomials
of Bernstein type, and Bhrawy and Zaky [25], who used a collocation method for the
two-dimensional variable-order fractional nonlinear cable equation. Tavares et al. [26]
proposed to use the Caputo derivative, while other numerical techniques can be found in
the literature [27-38].

Spectral methods [39-50] have been widely adopted for solving different types of
equations [51-54]. Their main goal is to approximate the solution by a finite sum of basis
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D*Wy(t) =

functions, where the coefficients are selected in order to minimize the error between the
exact and approximate solutions. For spectral collocation methods, the approximation
must satisfy the exact solution at the collocation points, meaning that the residuals must be
zero at those points.

In this paper we extend the shifted Jacobi-Gauss collocation method to solve variable-
order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK).
Using the fractional-order shifted Jacobi—Gauss collocation (FSJ-G-C) method with the
Riemann-Liouville fractional (R-LF) derivative and integral, and fractional-order shifted
Jacobi polynomials (FO-SJP), we reduce the original problem to N algebraic equations
that, together with the initial conditions, yield a system of N + 1 equations. We apply the
technique to solve several examples and prove its efficiency and accuracy.

The structure of the paper is presented in the sequel. Section 2 briefly introduces some
concepts of fractional calculus and FO-SJP. Sections 3 and 4 present the new algorithm for
solving VO-FIDE-WSK subject to initial and to nonlocal boundary conditions, respectively.
Section 5 applies the method to some problems and illustrates its accuracy and effectiveness.
Section 6 discusses the results obtained. Finally, Section 7 outlines the conclusions.

2. Mathematical Preliminaries
2.1. Basic Tools

We recall the Riemann-Liouville definitions of fractional integral and derivative of
constant and variable-order, § > 0 and 6(¢) > 0.

Definition 1. The R-LF integral operator I° is:

ot
Py = g [, 6-0T@AL 650 x>0, Py =pn),
which satisfies:

(e — 1+ S h) — 70 50 Llp+1) 5
IPy(t) = 1709(t),  DIIP(t) = PI¢(),  I°t° = EESEY] e, (2)

where T(8) = [, 2 letdt.
Definition 2. The R-LF derivative operator D° is:

Dy(t) = F(ml&)c(li::” (/Ot (t— s)m51¢(s)ds>, m—1<é6<m, t>0, (3)

where m stands for the ceiling function applied on J.

Definition 3. The R-LF integral operator of variable order 1°(") is:

POy = r<61(t>) /ot (t =) (s)ds. @)

Definition 4. The R-LF derivative operator of variable order [55,56] D°®) is:

1"(m—1(5(t)) l;{:n ./0‘T (t— s)m_‘s(t)_lt/)(s)ds] , m—1<6(t)<m, t>0. (5)

=t
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2.2. The Shifted Jacobi Polynomials
Considering the properties of the Jacobi polynomials, P}Ea,p ) (t), we can write [57,58]:

,Plgilf)(t) _ (al((fT/P)t _ b}({”rﬂ))rp}E‘T/P)(t) _ (UP)PIEUP)( ), k >1,

PO () =1, Pﬁmay:%w+p+zﬁ+%w—px

@)\ _ (_1ykp(@o) @) 1y _ (D T(k+p+1)
where the parameters o, p > —1, x € [—1,1] and
) _ 2k+o+p+1)2k+0+p+2)
e 2+ 1) (k+o+p+1) ’
plow) (0~ )@k +otp+1)
2(k+1)(k+0o+p+1)(2k+0+p)’
oo _ (k+0)(k+p)(2k+ 0+ p+2)
k (k+1)(k+o+p+1)2k+0+p)
The derivative of order r € N of Pj(o,p) (t) is:
)y _ LU+ o+ 0+q+1) Hietnpen)
DR = 2T(j+o+p+1) "7 (®) @)

For the shifted Jacobi polynomial 79( -~ )( t) = P,Eg’p)(% —1), £ > 0, we have the
analytic expression:

P(a,p)(ﬂzz(_l)k,j Ik+p+1)I(+k+oc+p+1) i

Lk = FGj+p+)I(k+0o+p+1) (k=)L ©
:i Tk+o+)l(k+j+o+p+1) (t— L)
Sk =T +o+1)I(k+o+p+1)L0
and, therefore, it yields:
@0 gy — (_p Lk tp+D)
Peic O =V 50y )
P(”'P)(E)ZM
Lk [(c+1)k!’
s (@0) i (FDFT(k+p+1)(k+0+p+1),
DPri(0) = LTk—r+1DI(r+p+1) ' (10
rpep) oy Lk+o+D)(k+o+p+1),
DPri(£) = LT(k—r+1)T(r+oc+1) "’ (1)
D,ngm(t): Ir+k+o+p+1) (4r047) () (12)

LT(k+o+p+1) Lk

Taking w( p)( t) = (L — t)7t?, the inner product and norm in the weighted space
L* [0, L] are:
wL

L
1
o) /u (W (t)dt, ||U||w(£fw) = (U'U)zwp) (13)
wr
0



Fractal Fract. 2022, 6, 19 4 0f 19

A complete Li o) [0, L]-orthogonal system is made of a set of shifted Jacobi polynomi-

als, where:

k 2
Let the nodes and Christoffel numbers of the standard Jacobi-Gauss interpolation in
the interval [—1, 1] be denoted by t%]p) and L’Dj(\(;f ), 0 < j < N, respectively. For the shifted
Jacobi-Gauss interpolation in the interval [0, £] we have:

[: ¢7+p+l
H’PgT/p)Hi(Emp) = <> h]((UrP) = h,(/v'a,lrcp)‘ (14)

L
R = S + ),

o+p+1
of). - (g) o\, 0<j<N.

For N > 0, ¢ € Synr41[0, £] and the Jacobi-Gauss quadrature property, we obtain:

L

/ — () (§>g+p+1_/11(1 - t)”(1+t)9¢<§(t+1)>dt

0
o+p+1 N
(g) P zwap ( (ap)+1)> (15)

j=0

o e (8-

I
Mz

0

-
Il

2.3. Fractional-Order Shifted Jacobi Polynomials
We present some results related with FO-SJP.

Definition 5. The FO-S]P are given by:

A
P#’f’“(t) - 73]?"4” (2(,}) 1), 0<A<1,j=01--,0<t<T. (16)

Theorem 1. For W;f}p’/\)( ) = AMTY =t A1 the set of FO-SJP forms a complete
LWf” [0, T]-orthogonal system:

;
[PV @ PEED 0y WP (1) dxe = iF Y, (17)
0

(pn) (zA)"*P“h(a,py

where h 7 ;

Proof. The orthogonality of the Jacobi polynomials allows to write:

1

[P ) PR ) W) () de = bl 18)

-1

If we let x = 2(%)/\ — 1, then we obtain:
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/TtA 17D(Up)< (T>A - 1) P <2<;>A ) WJEUP>< <T>A - 1) dt .

7'/\
— 617,
yielding:
T o(oM) 1y (o) o) TN )
O/PTZ (1) PPN () Wit (t)dx—éi](z) h o0
=ohiy
O

Corollary 1. Let the (finite-dimensional fractional-polynomial space be denoted by
FN = span{Pr; led) g < i < N}. The orthogonality property (20), allows to express
g( ) € Lf/vfa,p//\ [O 7-] as:

Z’Ylp Up)\ /

o

Theorem 2. The §-order derivative of the FO-SJP, D? P(Up A)( t), can be expressed in terms of the
FO-SJP as:

D(SP((TP/\ Zgn]apAngA)( ), a2
where
(n,j,0,0.0)
gnine
i‘ Z E,Emp,/\,]') Ega,p,)\,n) kAT (kA)T (o + 1)F(k +s+p— % + 1) TMo+p+k+s+1)—5
=25 h%q,f)‘) r(k)\—5+1)r(k+s+(r+p—%+2>

Proof. The analytical expression of P(Up A) (t) is:

j .
(pA) 1y (T.0,M]) Ak
Pr (t) = l;) E, Ak

where , ' '
oo - & KT +p+ DI +k+o+p+1))
K(Gj—k)T(k+p+1D)I(j+o+p+1)TH
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By means of Equation (3), we have:
DS () kAT (kA)£EA =0
f T(kA—5+1)
and, thus, if follows:
A ) A
DY (PPN (1)) =PEo#M (1)
Z EWM)M
T(kA—641)
Using the Corollary 1, we can write:
A0 2 b PN (1), (22)
where
| T+ 1)r(k tstp— S+ 1) L
bin = Ty 5 Eq .
e T(k+s+o+p—$+2)
Thence, we conclude that:
N
Dt( ap/\ 2 n]ap)\ Up/\)(t>l (23)
where
elriopA) _ y plepd) kAT (kA)
2 T(kA —6+ 1)
O
3. Algorithm for Solving VO-FIDE-WSK
The VO-FIDE-WSK to be solved are:
t 1
DOy (£) = ,71/0 (tX_(SS))ads + ;72/0 k(t,s)x(s)ds +h(t), O0<a<1,  (24)
with initial condition:
x(0) =4, (25)

where D°() denotes the 4(t) variable-order fractional derivative, x(t) is an unknown

function and h(t) is given.
The approximate solution of Equation (24) is given by:

Z ,Pap)\

(26)

and the variable-order fractional derivative D°(*) of the approximate solution yy/(t) is

estimated as:

i O (P ).

(27)
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Since we have:
DO Ak i / _ 0T+ Ak (28)
T(1-6(t) |t J T(1+Ak—46(t))"
—
Then,
5 0, 0
X]l f"l’<1+p+1) L+k+o+p+1) o
S Tk+o+1)T(j+0+p+1) (j—k)! k! Lk (29)
_ i (-1 FTA+ AT (j+p+ D) T(j+k+o+p+1) Ak=6()
e—f5ty Tk +p+ DTG +0 +p+1)(j — )R (Ak —8(£) + 1) LK '
Accordingly,
ZeD‘“”( P () = Ze] N (30)
Comparing the term fot (tX—(zg“ ds in Equations (1) and (24) we may write:
t
X(S) _ 1-a
| e = T K0, (31)
with the approximation of I'~*x(t) as:
! o o [l (PPN
I xn(t) = Z(;)ejl H(PL). (32)
]:
Given that:
1 P
[k = / zds
LA (1 4 k)
T+ Ak—a)
then
—a 0N 0\
p P = Y )
i DTG +p+ )IG+k+o+p+1) g
= T(k+p+1)T(j+o+p+1) (j—k)! k! L (34)
_ i () TA+ AT +p+ DT +k+o+p+1)  aia
k=301 Tk+p+D)I(j+o+p+1)(j—k)kT(2+ Ak —a) Lk
Accordingly,
N
a (o,0,A o,0,A
zeﬂ () = L en M (1) (35)

0

]
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and we rewrite Equation (24) by using Equations (30) and (35) as

23 O’p/\ )
(36)
t) +ml(a Ze] UPA +’72/0 tSZeJPLUpA)()dS'

The FSJ-G-C technique requires that the residual of (36) be zero at the N 4 1 shifted
Jacobi Gauss points. Therefore, using (26) and (36), we can rewrite (24) as:

Z A U’p/\ tlT )1)
(37)
(rfp tfp A ,p) ! (0,0,4) A
= h(t; §,;) +mT(a ZE’] )+’72/ LNl’ Zeﬂ? ds
and
N 1
0, p A , s
Y (AP ) —mE@ sl D) e [ K s P (5)ds] = (K. (38)
=0
Joining Equations (25) and (26), we can write:
N .
‘Tp)‘ _ -1 jwe.:d. 39
Z] ];)( ) F(P+1)j! ] ( )
Finally, from Equations (38) and (39) we get a system of N + 1 algebraic equations:
N
_1y LG+t ,
EO( Ui =4
NG o) (00.) (4(0) (c,00) (c,0) 40
'ZO ej [A ( ) mT (« )AL,]' (tL — 12 fo S)PL] (S)ds] (tL Nz)
j=

to compute xn ().

4. Algorithm for Solving VO-FIDE-WSK with Nonlocal Boundary Conditions
In this section, we present a modified spectral algorithm for solving the VO-FIDE-WSK

t
5 x(F) = /
D°Wx(t) = h(t) + A (t—s)”‘ds' (41)
with the nonlocal boundary conditions:
b
X(O) +7x() +2 [ p(s)x(s)ds = dh. )
a

Following the information included in the previous subsections, we obtain the system
of algebraic equations:

N b

Lo [P © £ Pl 1) £ M oePl N 9)| = a

N ’ (43)
N

Lo [ AP0 —mr a6 | = neltg)

]:
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After the coefficients e; are determined, it is straightforward to compute the approximate
solution xn(f) at any value of ¢ in the given domain.

5. Illustrative Examples

The proposed method is compared with alternative approaches to solve VO-FIDE-
WSK equations. Its accuracy and effectiveness is illustrated. We must note that in all
examples given below we take L = 1.

Example 1. We consider the VO-FIDE-WSK:

1t x(s) 1 1 21279 (5(¢) — 3t — 3)
D"y (t :f/ X ds+f/ t—s)x(s)ds — -
L si2 _7h 3
1058(6t+7)t 3% T 20
with supplementary condition:
x(0) = 0. (45)

The exact solution [13,19] is x(t) = t> + 3, when 6(t) = sin(t) and A =

NI—

Table 1 summarizes and compares the absolute error, E(t), at t = {0, %, %, %, %,% ,

between the exact and approximate solutions of the proposed method (for N = 6) with
those reported in references [13] (for k = 4) and [19] (for N = 24).

Table 1. The E(t) of Example 1 for (o, p) = (0, %), A= %

SCW [13] CAS [19] New Method
t k=4 N=24 N=6
0 1.4395 x 104 6.3491 x 1073 1.3878 x 1017
i 2.2617 x 1074 1.1460 x 1072 1.0408 x 1016
z 5.9826 x 10~ 9.6982 x 1073 8.3267 x 10~V
3 11274 x 1073 2.9504 x 1073 2.7756 x 10~V
2 1.4961 x 1073 9.6733 x 1073 1.8041 x 1016
2 2.2056 x 103 2.9484 x 1072 1.9429 x 10716

Figures 1 and 2 depict E(t) and the exact and approximate solutions, respectively,
obtained by the proposed method for N = 6. The results show good accuracy with a

limited number of nodes.

2.x1075 L ]
1.5x107° b E
= 1.x1075 \ “ R
\ J
5.x10 f(),‘L‘ | "1 B
Pl | /| [
1 N \_ !‘MA : LJL ] \ ‘
07\ \‘\ | . . \ | . . | . | T/ 1]
0.0 0.2 0.4 0.6 0.8 1.0

g
-
a9
c
=
[}
=
3
™
—~
—
~—
o
-
s3]
X
E
o
—
¢}
—_
S
=
Z
|
&
—
3
e
~
Il
—~
&
NI—
—
>
Il
NI—
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2.0FT T
L x® ]
r xn (©
1.5+ =
= S
< . y
T Lof 1
= 'o’
0.5F ]
00 R A 1 L 1 1
0.0 0.6 0.8 1.0

Figure 2. The approximate and exact solutions, xn () and x(t), of Example 1 for N = 6 (¢, p) = (0, 3),

1

Example 2. We solve the VO-FIDE-WSK:

£ (5(t) + 2t —2)
r3-s(t)

1/t 1 /1

Dy (1) =1 /0 (tX(s))}lds+7 /0 e+ x(s)ds +
Jo (4_g .
4

1
= _ 7/4 _ L, _ t
231 (11 — 8i)t 7(6 3)e’,

with condition:

x(0) =0.

The exact solution of the equation is x(t) = t* —t for A = } and (t) = 0.15t.

(46)

(47)

Table 2 lists the values of E(t) obtained with N = 4 for (¢, p) = (0,—3), (¢,p) = (0,0)
and A = % Figures 3 and 4 illustrate the E(t) dynamics and compare the exact and
approximate solutions, respectively. We can conclude that the method leads to very accurate

solutions.

Table 2. The E(t) of Example 2 obtained with N = 4 for (¢, p) = (0, —%), (¢,p) = (0,0) and A = }.

New Method at N = 4

t c=0p=-1 c=p=0

0 5.2042 x 10~18 2.0817 x 10~
0.1 1.3488 x 10715 9.2548 x 1016
0.2 5.8287 x 1016 45103 x 10716
0.3 3.3307 x 10716 1.2490 x 1016
04 2.7756 x 10~16 5.5511 x 10~/
0.5 5.2736 x 10~16 8.3267 x 10~17
0.6 8.3961 x 10716 2.4980 x 1016
0.7 1.2438 x 10~ 15 1.4572 x 1016
0.8 1.2906 x 1015 6.3144 x 1016

0.9

1.1657 x 10~15

8.0491 x 1016
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1.5%x107

1.x1075

E[t]

5.x10716

0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 3. The E(t) of Example 2 for N = 4, (¢,p) = (0,0) and A = J.

0.00 i — — — ——7
[ x(t) o
Lo - (@ S
-005F s
= —0.10F " g ]
S . | s
9 [ . /
=] F . /
< L \‘ "
< 015} | g 1
~0.20 F 1
—0.25F treepentt N
0.0 02 04 0.6 0.8 1.0

Figure 4. The approximate and the exact solutions, xn(f) and x(t), of Example 2 for N = 4,

(0,0) = (0,0) and A = 3.

Example 3. We solve the VO-FIDE-WSK:

DO (t) = t L)lds + /Ol(t‘2 + cos(s))x(s)ds — 11—5 (16\ﬁ+ 5) 2+

0 (t—s)2 (48)
22—tsin(t) )
m + Sln(l) — 2 COS(l),
with initial condition:
x(0) =0. (49)

. . _ 2 o l
The exact solution is x(t) = t°, when A = 3.

The solution of (48) is obtained by applying the new technique. The E(t) is shown in
Table 3 when N = 4 and for (¢, p) = (0,0) and (o, p) = (},0). Figures 5 and 6 depict the
E(t) dynamics and compare the approximate and exact solutions, respectively. As before,

we verify the good accuracy provided by the method.
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Table 3. The E(t) of Example 3 obtained with N = 4 for (¢, p) = (0,0) and (o, p) = (%,O), and A = %

New Method at N = 4

t c=p=0 o= %, p=0
0 0 0

i 2.7756 x 10717 7.6328 x 10~V
z 2.7756 x 10717 1.9429 x 10~16
3 6.9389 x 10~ 17 4.4409 x 10716
2 1.2837 x 1016 5.2736 x 10716
2 1.3878 x 10716 6.8001 x 1016

E[t]

x and xy

1.5%107"3
1.x1075

5.x10716

1.0 FT

X(t)

X (1)

0.6 -

02

0.0 tr

-”
-
-
s

Figure 6. The approximate and exact solutions, xn (t) and x(t), of Example 3 for N = 4, (¢, p) = (3,0)
and A = 1.
2

Example 4. We solve the VO-FIDE-WSK:

t

x(s) ds+it“/6 2

35y (3)

NCUE r(%) (50)
® t4/3r(%) N 613
r(Z—o)  TE-o0) )
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with supplementary condition:
x(0) =0. (51)

The exact solution of the equation [12,15] is x(t) = > + £ for 5(t) = sin(t), A = %, and
22,1
l/l - —ﬁtz

To assess the rate of convergence, we list maximum absolute errors (M AE) in Table 4.
The results show that at different values of N the method has superior accuracy than those
addressed in references [12,15]. Figures 7 and 8 depict E(t) for N =20 and A = % and A = %
Figures 9 and 10 show the M AE at various values of N, and A = % and A = % The results
reveal good accuracy and exponential convergence of the method.

Table 4. The MAE of Example 4 for various values of N, A = %, A= % and (o,p) = (0, %), and their
comparison with those obtained in [12,15].

Operational Operational Tau

Matrix [12] Method [15] New Method
1 _ 2
N A=1 A=3

2 1.34 x 1072 1.34 x 1072 254 x 101 1.11 x 1071

4 514 x 1074 514 x 1074 8.67 x 1073 1.14 x 1073

6 1.56 x 1074 1.56 x 1074 2.76 x 107> 8.28 x 10~

8 6.46 x 107° 6.46 x 10~° 593 x 107° 3.99 x 10~7

16 - 7.38 x 1070 491 x 108 554 x 10710

18 - 462 %107 3.69 x 10~8 1.37 x 10710

20 — 2.85x%x 107 1.16 x 1078 7.63 x 10711
5.x10°8 FT =
4.x1078 — -
3.x1078 * ]

o i
2.x1078 B s
1.x1078 } _
[ AW\ SN TN ]
or VARV VNV VY
L L L L L L L L L L L L L L L L L L
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t

Figure 7. The E(t) of Example 4 for N = 20, A = } and (¢, p) = (0, }).
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Figure 8. The E(t) of Example 4 for N = 20, A = % and (¢, p) = (0, 3).
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Figure 10. The MAE for Example 4, with A = % and (0, p) = (0, }).
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Example 5. In this example, we address the VO-FIDE-WSK

t 7
35 (24\/mtz 90
D) 5 (¢ :/ x(t) ds+ — [ E2V2° g4, 50
with the nonlocal condition:
1 7
X(0) +x(1) =3 [ x(e)ds = . 53)
0

The exact solution is a non-smooth x(t) = t3° with 6(t) = %.

The values of the MAE for Example 5 subject to the nonlocal condition (53) are listed
in Table 5. Figures 11 and 12 depict the error E(t) for N =8,A = 1, (¢,p) = (0,3), and
5(t) = £ and 6(t) = tsin(t), respectively. We verify that the method yields accurate results.

Table 5. The MAE of Example 5 for various values of N, A = %, (o,0) = (O, %), and 6(t) =
{4, tsin(t)).

N L tsin(t)
2 3.330 x 1071 3.552 x 1071
4 1.625 x 1072 1.950 x 102
6 1.476 x 10~% 1.553 x 10~4
8 3137 x 10715 27113 x 10~ 15
T
5.x107"° 7
4.x105F .
3.x1015 b
iy i 1
2.x1015 ‘ .
r I 1
1.x1075 F “‘w ]
[ ,, AN
0 ; ‘/T‘w/—/ ﬁpVM‘}//\ ""\/%/\x/& /
Cl L L L L L L L L L L L L L L L L L L L L1
0.0 0.2 0.4 0.6 0.8 1.0

t
Figure 11. The E(t) of Example 5 for N = 8, A = 1, (¢,p) = (0, 1) and ()
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Figure 12. The E(t) of Example 5 for N =8, = 1, (¢,0) = (0, 1), and 6(t) = tsin(¢).

6. Discussion

The examples presented in Section 5 can be summarized as follows:

Case I: Exs. 1, 2,3 and 5 (with N = 8).

In these examples, for A = %, x(t) is a polynomial in t, and N is greater than, or equal
to, twice the degree of the polynomial x(t). Therefore, the exact solution x(t) belongs to
the vector space Fy, meaning that xn(t) = x(t), or, equivalently, E(¢) = 0. The numerical
decimal errors E(t) shown in Tables 1-3 and 5 for these cases are not due to the algorithm
given in Equation (43), but from the decimal approximation of this expression. It must be
mentioned that the algorithm gives the exact solution under the conditions adopted.

Case II: Exs. 4 and 5 (with N = 2,4, 6).

In these examples, we verify that x(t) does not belong to the vector space Fy. Thus,
the errors E(t) given in Tables 4 and 5 (with N = 2, 4, 6) are much larger than the ones of
Case L.

Regarding Ex. 4, we verify that Equation (50), as well as the VO-FIDE-WSK (24),
is linear in the unknown function x(t) with the non-homogeneous term h(t). The exact
solution x(t) = 3+ t3 is a linear combination of two power functions > and t%, and

7 4 7
ha(t) = t*‘s(t)mﬁ;;(t)) and g (t) = 4t11/6 (22 — W) +¢9(0) r(tgi(f(t)))’ respectively.
For A = % and h(t) = hs(t), we have x(t) = > and, with N > 6, it yields xn(t) = x(t)
(this is well illustrated by examples in Case I). Therefore, the function x(t) = t* does
not contribute to the error term for the approximate solution. In this case, it turns out

that x(t) = t5 does not belong to Fy for any N, and the approximate solution xy/(t) for
x(f) = t3 with h(t) = hp(t) is the main concern. For A = 2 and h(t) = hp(t), we get
x(t) = t3 and, with N > 4, it results in xn(t) = x(t). Thus, the function x(t) = £3 does
not contribute to the error term for the approximate solution. In this case, it turns out

that x(t) = t> does not belong to Fy for any N, and the approximate solution x () for
x(t) = £3 with h(t) = h(t) is now the main concern.

7. Conclusions

This paper proposed a new numerical approach based on the FSJ-G-C method and
R-LF operators to solve VO-FIDE-WSK subject to initial conditions. The novel algorithm
reduces the solution of the original problem to a system of algebraic equations that is solved
by any suitable procedure. Four numerical examples revealed that the proposed scheme is
efficient and accurate when compared with alternatives reported in the literature.
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