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1. Introduction

We consider the system of fractional differential equations with r;-Laplacian and
rp-Laplacian operators

Dgl+ @r, Dé{ku(r) :f(’l’,u(’l’),v(’[),Igiu(”[),lgi?}(’l')), T€(0,1), O
D2 (¢n(Dg (1)) ) = &(v,u(x),0(0), [hu(0), I3o(v), T€(0,1),
subject to the uncoupled nonlocal boundary conditions
u(0)=0, i=0,...,p—2, D)L u(0) =0,
1 noorl
on (D3 () = [ n, (DR ut) dHo(n), DYu(1) = Y. [ D uln) druly),
’ =170 @

v@(0)=0, i=0,...,—2, D0(0) =0,
> ! > Po (1B
¢r, (D o(1)) =/0 ¢, (Dgv(n)) dKo(y), Dpio(l) = Z/O Dyl o(n) dKi(17),
k=1

where y1, 72 € (12,01 € (p—1Lpl,peN,p>30h¢c(g—1,q9,9€N,q>3,nmeN,
01,02,G1,G2 > 0, o € R, k=0,...,n,0< <ty < - <oy <ag < 51—1,060 >1,
Br €ERk=0,....m0<B1 <Pa<-<PBu<Po<b—1B0>1 ¢, =y,
(pr_l_l = Qo;s 0i = ri%l,i =12,rn>1i=12 f,9:(0,1) x ]R‘_lIr — R, are continuous
functions, singular at T = 0 and/or T = 1, (R = [0, »)), I, is the Riemann-Liouville
fractional integral of order « (for k = 01, 02,61, ¢2), Dg, is the Riemann-Liouville fractional
derivative of order « (for x = 1,81, 72,02, %0, ..., &, Po, - - ., Bm), and the integrals from the
boundary conditions (2) are Riemann-Stieltjes integrals with #; : [0,1] = R, i =0,...,n
and C;: [0,1] = R, i =0,...,m functions of bounded variation.
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We give in this paper various conditions for the functions f and g such that problems (1)
and (2) have at least one or two positive solutions. From a positive solution of (1) and (2)
we understand a pair of functions (1,v) € (C([0,1],R))? satisfying the system (1) and
the boundary conditions (2), with u(t) > 0 forall T € (0,1] or v(7) > 0 forall T € (0,1].
In the proof of our main results we use the Guo-Krasnosel’skii fixed point theorem of
cone expansion and compression of norm type. We now present some recent results which
are connected with our problem. In [1], the authors studied the existence of multiple
positive solutions for the system of nonlinear fractional differential equations with a p-
Laplacian operator

{ D (9p, (DB x(1))) = F(7,x(7),y(7)), T € (0,1),
D2 (95, (D2 y(7))) = g(t,x(7),y(7)), T€ (0,1),

supplemented with the uncoupled boundary conditions

m—2

x(o) =0, Dgix(l = gliDgix(ﬂli)/
i=1

D} x(0) =0, ¢y, (Dplx(1)) = X2 Cuigp, (Dplx(11i)),
m—2

y(0) =0, DPy(1) =Y

Dgi}/(o) =0, ¢p, Dgiy 1

2Dy (m2i),
) = X% i, (D2 y (72i)),

where a;, B; € (1,2],7; € (0,1], &; + B; € (3, 4], &; > vi + 1,1 = 1,2, 1, 111, C1ir C2is M2is G2i
€ (0,1) fori = 1,...,m —2, and f and g are nonnegative and nonsingular functions.
In the proof of the existence results they use the Leray—Schauder alternative theorem,
the Leggett—Williams fixed point theorem and the Avery-Henderson fixed point theorem.
In [2], the authors investigated the existence and multiplicity of positive solutions for the
system of fractional differential equations with ¢;-Laplacian and ¢,-Laplacian operators

Il
MR

—

{ DI (9o, (DY, x(1))) + f(T,x(7),4(7)) =0, T € (0,1), @)
D2 (o, (DR y(T))) + g(T, x(1),y(1)) =0, T€ (0,1),

subject to the uncoupled nonlocal boundary conditions

4 nooel
() =0, j=0,...,p—2 D\ x(0) =0, DX x(1) = 2/0 DR x(t) dH; (1),
i=1
. . m 1 .
y(0) =0, j=0,...,g—2; DZy(0) =0, DL y(1) = 2/0 Dy () dKi(),
i=1

where 71, 72 € (0,1],01 € (p—1Lp], 02 € (g—1,9,p,9€ N, p,g >3, n,me N, a; € R
foralli =0,1,...,n,0 <) <ap < -+ <ap < g <—1,09 >1, 8 € Rforall
i=01,...m0< By <Pa< < PBu<Po<br—1,B0>1,01, 02 > 1, the functions f
and g are nonnegative and continuous, and they may be singular at 7 = 0and/ort =1,
and H;,i=1,...,nand ICj, j =1,...,m are functions of bounded variation. In the proof
of the main existence results they applied the Guo—Krasnosel’skii fixed point theorem.
In [3], the authors studied the existence and nonexistence of positive solutions for the
system (3) with two positive parameters A and yu, supplemented with the coupled nonlocal
boundary conditions

. . Yy lx n 1 .
¥0(0) =0, j=0,...,p—2 DI x(0) =0, Dix(1) = Z;/O DRy () dHy(T),
| g @
y(0) =0, j=0,...,g—2; DZy(0) =0, DL y(1) = Z/O D x(t) dKi(T),
i=1
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wheren,m € N,a; € Rforalli =0,...,n,0< 0 <ay <--- <oy, <Pp<dp—1,6>1,
Bi€Rforalli=0,...,m 0 <) <P < < B < ag < —1, a9 > 1, the functions
f,.g € C([0,1] x Ry x Ry, Ry), and the functions H;, i = 1,...,n and Kij=1,...,m
are bounded variation functions. They presented sufficient conditions on the functions
f and g, and intervals for the parameters A and y such that the problem (3) with these
parameters and (4) has positive solutions. In [4], by using the Guo—Krasnosel’skii fixed
point theorem, the authors investigated the existence and multiplicity of positive solutions
for the nonlinear singular fractional differential equation

D§, w(t) + f(t,w(t), Dot w(t),...,Dy" *w(t)) =0, T € (0,1),

with the nonlocal boundary conditions

w(0) = DL w(0) = - -+ = Dy’ *w(0) =0,
B1 _ [ B2 ! B3
DE! w(1) /O n()DE w() dA(T)+/O a(1)DE w(t) dA(T),

whereaw € (n—1,n],n >3, a, v € (k—1,k], k = L...,n=2a—7€ m—j—1,n-—jl,
j=1...n=2a—wa, 2—1¢€ (L,2], yn2 > ay2, f1 > B2, p1 > B3, a > Bi +1,
Bi > way,—2+1,i=1,2,3, 81 < n—1,the function f : (0,1) x Ri‘l — R is continuous,
a,h € C((0,1),R), and A is a function of bounded variation. In [5], the authors studied
the existence of a unique positive solution for a system of three Caputo fractional equations
with (p, g, r)-Laplacian operators subject to two-point boundary conditions, by using an
n-fixed point theorem of ternary operators in partially ordered complete metric spaces.
By relying on the properties of the Kuratowski noncompactness measure and the Sadovskii
fixed point theorem; in [6], the authors obtained new existence results for the solutions
of a Riemann-Liouville fractional differential equation with a p-Laplacian operator in a
Banach space, supplemented with multi-point boundary conditions with fractional deriva-
tives. In [7], the authors investigated the existence of solutions for a mixed fractional
differential equation with p(t)-Laplacian operator and two-point boundary conditions at
resonance, by applying the continuation theorem of coincidence degree theory. By using
the Leggett-Williams fixed-point theorem, the authors studied in [8] the multiplicity of pos-
itive solutions for a Riemann-Liouville fractional differential equation with a p-Laplacian
operator, subject to four-point boundary conditions. In [9], the authors established suitable
criteria for the existence of positive solutions for a Riemann-Liouville fractional equation
with a p-Laplacian operator and infinite-point boundary value conditions, by using the
Krasnosel’skii fixed point theorem and Avery-Peterson fixed point theorem. By applying
the Guo—Krasnosel’skii fixed point theorem the authors investigated in [10] the existence,
multiplicity and the nonexistence of positive solutions for a mixed fractional differential
equation with a generalized p-Laplacian operator and a positive parameter, supplemented
with two-point boundary conditions. We also mention some recent monographs devoted
to the investigation of boundary value problems for fractional differential equations and
systems with many examples and applications, namely [11-15].

So in comparison with the above papers, the new characteristics of our problem (1)
and (2) consist in a combination between the fractional orders 71,7, € (1,2] with the
arbitrary fractional orders 1, J, the existence of the fractional integral terms in equations
of (1), and the general uncoupled nonlocal boundary conditions with Riemann-Stieltjes
integrals and fractional derivatives. In addition, one of its special feature is the singularity
of the nonlinearities from the system (1), that is f, ¢ become unbounded in the vicinity of 0
and/or 1 in the first variable (see Assumption (I2) in Section 3).

The structure of this paper is as follows. In Section 2, some preliminary results
including the properties of the Green functions associated to our problem (1) and (2) are
presented. In Section 3 we discuss the existence and multiplicity of positive solutions for (1)
and (2). Then two examples to illustrate our obtained theorems are given in Section 4,
and Section 5 contains the conclusions for this paper.



Fractal Fract. 2022, 6, 18 4 0of 20

2. Preliminary Results

We consider the fractional differential equation

DY} (@n (D5 u(0))) = x(x), € (0,1), 5)
where x € C(0,1) N L!(0,1), with the boundary conditions
u('>(0)_0 i=0,...,p—2, DJ\ (0):0,
o0 (D3,0)) = [ O utn) o) D) = 3 [ Dit et ©
We denote by

_ Lo __T() v T 5-ai-1
ar —1_/0 " dHo(n), a = T(6; — o) ;r(él_a / n dti(n). (7)

Lemma 1. If a; # 0and ap # 0, then the unique solution u € C[0, 1] of problem (5) and (6) is

given by
/ g2 T 77 Doy </ gl 77/ dﬁ)d}], TE [() 1} (8)
where
T'Yl*l 1
Gi(t, 1) = m(T,) + /0 a1(8,7) dHo(8), (t,17) € [0,1] x [0,1], ©)
with 1( | 1 ( ) 1
L [ =y = (=), 0<y<t<],
o (1) { ™l 1—pym-l, 0<T<n <, (10)
and
75171 n

Ga(t, 1) = g2, 1) + 2(/Olgzlw,n>d%z-w>), (L) ex01, a1
1

i=
with

1 h-1(1 — 17)51—0(0—1 —(t— ,7)(51—1, 0<y<t<l,
a2(t,1) = m{ (1 —gy)h—%-1, 0<7t<y <1,
1 751*“1'*1(1 _ 17)51*0(0*1 —(t— ;7)‘517“"71, 0<y<t<I1, (12)
oi(T, 1) = m{ 61 —p)h—m-l 0<T <y <1,
i=1,...,n

Proof. We denote by ¢;, (Dgﬂru(T)) = ¢1(1), T € (0,1). Hence problems (5) and (6) are
equivalent to the following two boundary value problems

{ DYia(x) = x(x), 7€ (0,1)

(I) $1(0) =0, ¢1(1) :/0 $1(n) dHo(n),

and

D3 u(T) = @, (¢1(7)), T€(0,1),
(1) ul)(0) =0, j=0,...,p—2, Dgluf 2/ Dot u(1) dHy(n).
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By using Lemma 4.1.5 from [14], the unique solution ¢, € C[0, 1] of problem (I) is
1
_— / Gi(1,8)x(8)dd, T e [0,1], (13)
0

where G is given by (9). By using Lemma 2.4.2 from [12], the unique solution u € CJ0, 1] of
problem (II) is

w0 =~ [ Glemen o), ©<01) )

where G, is given by (11). Combining the relations (13) and (14) we obtain the solution u of
problem (5) and (6) which is given by relation (8). O

We consider now the fractional differential equation

D (9.(DR (1)) = y(x), 7€ (0,1), (15)
where y € C(0,1) N L'(0,1), with the boundary conditions

v<')(0)_o i=0,...,9—2, DPv(0) =0,

Prp(D / ¢r, (D ))dKo(17), D / Dp: (). (16)
We denote by
1 r(s "oT(s 1
b =1 [ g aKo(y) hz—r(éz(_z)ﬁo)—g e [, (7

Similar to Lemma 1 we obtain the next result.

Lemma 2. If by # 0and by # 0, then the unique solution v € C[0, 1] of problem (15) and (16) is

given by
/ Ga(T, 1) P, (/ Gs(n, 0 dﬂ) dn, T€[0,1], (18)
where
T72_1 1

G =a(m )+ G [ m@naka@), tnedxpl, 19

with . I e -1
. T’YZ_ 1_;772__T_1772_,0S17§T§1,

83(7, 1) = W{ ™l (1—-g)rl, o<t <y <1, 20

and

T(Szfl m

Guten) = m() + T 1o ( [ asem ko)), (o eDix0Y, @

i=1

with

R U e C ) e el ) Y B S ¥
sa(v) = r((sz){ (1 —p)hhol o<t <y <1,

_ 1 fehi gl (rogahl o<y <T<1, (22)
04i(T, ) = M{ Tézfﬁ,-fl(l _ ,7)5275071/ o<t<n<l,

1=1,...,m.
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Lemma 3. We assume that a1,ap,b1,bp >0, H;, i =0,...,n, and ICj,j =0,...,mare non-
decreasing functions. Then the functions G;, i = 1,...,4 given by (9), (11), (19) and (21) have
the properties

(@) G;: [0,1] x [0,1] — [0,00),i = 1,...,4 are continuous functions;

(b) Gi(t, 1) < Fi(n), Y (t,1) € [0,1] x [0,1], where

T =0+ = [ s n) ano(®), vy e 0],

with b1 (1) = s (L =)=, 7 € [0,1];
(©) Ga(t, 1) < Fa(n), ¥ (t,1) €10,1] x [0,1], where

~—

) =0an) + = 3 [ a6, di(@), v € 0.1),

)*), € [0,1];
1] < [0,1];

[0, 1], where

with ba (1) = iy (L= )07 (1= (1=
(d) Go(t, 1) = TV P(y), V(t,m) €0
(e) Gs(t,n) < T3(n), V(t,n) €[0,1] x

1 /1
Faln) = baln) + - [ aa(@m)dKo(0), vy € 0.1]

with b3(7) = oy (1=1)27" 7 €[0,1;
() Ga(t, 1) < Tu(n), ¥ (t,1) € [0,1] x [0,1], where

N

m 1
Ta(7) = baly) + [}Zg [ as@mdki(e), v < 0.1),

with 04(1) = ks (1 — )2 P=1(1— (1= )P, € [0,1];
@ Ga(t ) > <21 4), ¥ (2,) € 0,1] x [0,1].

Proof. (a) Based on the continuity of functions g1, 92,92, ¢ = 1,...,1, 03, 04, 94i, I =
1,...,m (given by (10), (12), (20) and (22)), we obtain that the functions G;, i = 1,...,4
are continuous.

(b) By the definition of g; we find

Gi(7,1) < rélg A=+ L [ @) ano(®)

=000+ — [ @1(0,) dHo(®) = i), VT € 01]

a1

[N

(c—d) Using our assumptlons and the properties of function g, from Lemma 2.1.3
from [12], namely g(7,77) < WG )(1 — )% 11 — (1 — )%) = by(y) and go(T,77) >
171, (y) for all T, 7 € [0,1], we deduce

1

Gs(t,1) < b(n +1f/ogzlz9nd%(> B0,
i=1

Ga(T, 1) = T~ 1(f‘lz to 2921 8, 1) dH; (¢ )) = %), V1,1 €[0,1].
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(e) By the definition of gz we obtain

Gs (1) < r(}m)“ ) [ a6, dKo(o)
= 0a01)+ - [ 9s(8m) dKa(8) = (), Ve € [0,1].

(f-g) Using the assumptions of this lemma and the properties of function g4 from
Lemma 2.1.3 from [12], namely g4(7,7) < 5 )(1 —7)%27Po=1(1 — (1 —)Po) = hy(y7) and

94(T, 1) > 127 1hy(y) forall 7, 7 € [0,1], we find

Ga(t1) < 0uln) + - i/%ﬂnd/c() ),

m

Ga(t,m) > 1%~ 1( Z 94i(9,17) dK;( )) =121 7 (y), V1,7 €[0,1].

=1

O

Lemma 4. We assume that a1,a5,b1,bp >0, H;, i =0,...,n,and ICj, j=0,...,mare nonde-
creasing functions, x,y € C(0,1) N L1(0,1) with x(t) >0, y(t) > 0forall T € (0,1). Then the
solutions u and v of problems (5), (6) and (15), (16), respectively, satisfy the inequalities u(t) > 0,
o(t) > 0forall T € [0,1] and u(t) > ™ u(s) and v(t) > 210 (s) forall T,s € [0,1].

Proof. Based on the assumptions of this lemma, we obtain that the solutions u and v of
problems (5), (6) and (15), (16), respectively, are nonnegative, thatis u(7t) > 0, v(t) > 0 for
all T € [0,1]. In addition, by using Lemma 3, we deduce

u(t) > 011 /1 J2(1) 9o, (/01 G1(n,9)x(9) dﬂ)dﬂ

> 01— 1/ Ga(s, 77)§0Q1</ G1(n,0)x(8) d19>d’7
01-1 (),
ofe) 2 7 [ Tt (| Gan,00w(o) 88 )y

s 1 1
> 7% /O Ga(s,17) o, (/0 Gs(1,0)y(9) dﬂ) di
— Tﬁz*lv(s),
forallt,s €[0,1]. O

We present finally in this section the Guo-Krasnosel’skii fixed point theorem, which
we will use in the proofs of our main results.

Theorem 1. ([16]). Let X be a real Banach space with the norm || - ||, and let C C X be a cone
in X. Assume O and Qy are bounded open subsets of X with 0 € Qq, O C Oy and let
A:CN(Qn\ Q1) — C be a completely continuous operator such that, either

@) || Aul| < |lull, Yu € CNaQy, and || Aul| > |ju|, Yu € CNoQy; or

(i) || Aul| > |jull, Yu e CNaQy, and |Aul| <||ul|, Vu € CNay.

Then A has at least one fixed point in C N (Qp \ ().
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3. Existence of Positive Solutions

According to Lemmas 1 and 2, the pair of functions (1, v) is a solution of problem (1)
and (2) if and only if (1, v) is a solution of the system

u(2) = [ G090 () 610015 (2,(0),00), 1L0(0), 150(6)a0)
olr) = [ Ga(r D)0 [} Ga(E, 005 (2,(0),0(0), 5Lu(0), K o9)) o ),

for all T € [0,1]. We introduce the Banach space X = C[0, 1] with supreme norm |ju| =
Sup.c(o,1) |4(7)|, and the Banach space Y = X x & with the norm ||(u, )|y = [[u| + [[v]|.
We define the cone

P={(uv)e), u(t) >0, v(tr) >0, VTt el0,1]}.

We also define the operators A;, Ay : Y — X and A: Y — Y by

A 0)(7) = [ Ga(r,0gu [ G118, 011 (0,(6),0(0), 1, 0(0) 15.0(6))do ),
Aol o)) = [ (Do ( [ G3(6,9)3(2,u(8),0(6), 15, u(9), zgivw»dﬁ) i,

for r € [0,1] and (1,v) € YV, and A(u,v) = (A1(u,v), A2(u,v)), (u,v) € Y. We see that

(u,v) is a solution of problem (1) and (2) if and only if (#,v) is a fixed point of operator A.
We introduce now the basic assumptions that we will use in this section.

(I]‘) 'er')’Z € (1/2]/ 51 € (p_llp]/ p € N/ p 2 3/ 52 € (q_llq]/q S N/q Z 3/ n,m € N/
01,02,61,62 > O,DC]' S R/] = 0,...,7’1,0 S ap <ap < --- <y S g < 51 _1,060 Z 1/
,B] S IR/] = 0/*-'/m/0 S ﬁl < ,82 < - < ﬁm S ,BO < 5271,160 2 1/ §9r,-(T) =
|T|"i%T, go,‘l_l = Qo 0i = ri’—jl,i =1,2r>1i=12H;:[0,1] 2R, i=0,...,n
and ICj :[0,1] = R, j =0,..., m are nondecreasing functions, a1, ap, by, by > 0 (given
by (7) and (17)).

(12) The functions f,g € C((0,1) x R%,R;) and there exist the functions ¢y, ¢, €
C((0,1),Ry) and x1,x2 € C([0,1] x RY, Ry) with Ay = [}(1 — )" 1y (1) dT €
(0,00), Ay = [} (1 — )72 Lyh(7) dt € (0, 00), such that

f(t,21,22,23,24) < P1(T)x1(T, 21,22, 23, 24),
(T, 21,22, 23,24) < Yo (T)X2(T, 21,22, 23, 24),

foranyt € (0,1), z;e Ry, i=1,...,4.

Lemma 5. We assume that assumptions (I1) and (12) are satisfied. Then operator A : P — P is
completely continuous.

Proof. We denote by M; = fol Ji() 1 (n)dn, My = fol T3(n)2(n) dn. By using (12) and
Lemma 3, we deduce that M; > 0 and M, > 0. In addition we find
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My = [ )y = ( —1 91(6 D AHa (D) ) (1)
[+ / (/ T =) () g )y
T = | (ng n>+b / B(C 1) dlco@))wz(mdn
< ro a0+ - [ (/ = ) () yal)y
= [Hl(/lé”ld/co(é))]l/ (1= )= a(y) dy < 0.
b1 \Jo I'(72) Jo

5
I
O\.;.

Also, by Lemma 3 we conclude that .4 maps P into P.

We will prove that A maps bounded sets into relatively compact sets. Let £ C P
be an arbitrary bounded set. Then there exists Z; > 0 such that ||(1,v)|y < & for all
(u,v) € £. By the continuity of x; and x», we deduce that there exists &, > 0 such that &, =
max{supfe[o,l],z,-e [0,w],i=1,..4 X1 (T, 21,22, 23,24), SUP¢(0,1],2;€[0,0],i=1,....4 X2 (T, 21,22, 23,24) },

Based on the inequality |Ig Lw(r)l

o 1 1 1 1
where w = &, max{l’ (o, +1)7 T +1)” TG +1)” T(ga+1) }

< r(HwH for { > 0 and w € C[0,1], and by Lemma 3, we find for any (#,v) € £ and

n €10, }

Ay (u,0) () < /01 J2(0) 9o, (/01 ~71(T)1P1(T)x1(r,u(r),z;(~[),[gjru(T)’IgiU(T»dT) i
<&t o ([ A@n i) [ 70 a =3,
Az (u,0) (1) < /01 J1(8) P, (/01 j3(T)lI«’2(T))(2(T,u(T),v(T)’Igjru(l-)’Igiv(T))dT) i
<&t g ([ A0 [ 0 ac = g Ep

where My = [} 72(¢) d and My = [ J4({) d¢.

Then || A; (1,0)|| < MO 28 M, [| Az (u,0) || < MP 2L M, for all (1,0) € €,
and || A(u,0)|ly < MIT'ES T My + MPT'EL T M, forall (u,0) € &, thatis Ay (E), A (E)
and A(€) are bounded.

We will show that A(E) is equicontinuous. By using Lemma 1, for (1,v) € £ and
1 € [0,1] we obtain

61—1 n
st o)) = [ <gz<m+ T ([ oate) d%i<r>)>q)gl ([ oo
<8, 1(0),2(0), Io+u(19),lgiv(19))dz9)d§

= [ et a=gn e -0t

X0, ( / G:( (19,u(19),v(19),zgl+u(19),Igiv(ﬂ))dﬁ)dg

v / ot =0 g ([ G (o u(e),0(0),

(19) 1 2 0(8)) d9)dg

17 011 1 n 1

L /ng 00 ) g (| 616,010, u(@),000),
151 u(0), 15 0(0)) o)
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Then for any 1 € (0,1) we deduce

(Aa(w o) () = [ 516 = D20 =0 — 6 =1 = )
< / Gi(2,9) fw,uw» o(6), 1§, (6), 1§ 0(2)) 40 ) ¢
' i 2= 0t ([ 6@ 0 (6,u(0),000),

150 u(8), 12 0(9)) do)dg
+‘51‘1 & /1"(/ (5,0 13:(0) ) 9 | G1(@001(0,u(0),0(0),
Igﬁru(ﬂ) 1"2 ) do)dg.

So for any 77 € (0,1) we find

(a2 ()] < gy [} 20 =00+ (= 02

<90 ( [} O (01 (6,u(0),0(0), 1 (0) 2 0(0) 0 )

51_1 / 120 0 g ([ OO (0,00),0(0),
10+u(z9) 9)) do)dg

w /01 y (/01 (T, ) d?—li(r)) Por (/01 T(9)x1(9,u(9),0(8),

a2 i=1
19 u(8), 12 0(8)) d9)dg

_ _ 1 .
== 1M“ 1{(511) Sl a - gt - 9t g

(51 1 01 no— 1d
(51—1 /’7 ¢

+(51_alz)’7/01ié(/01 92i(7,¢) d'Hi(T))dC}-

Therefore, for 7 € (0,1) we obtain

1 -2 o1

< '—'Ql 1, 01— 17 17

(A1 (u,0))" (n )| My { (511)<51¢x0+511
(51 —1 (51 ng— 1 ()1 ’J‘ifl .
I el L/ A / / X 51 = dc |t dH;(7)
1 7 U (0 -1y 2 ¢ *

I 01— L
== [1"(51—1)(51—060+f51—1)+ a251_"‘0 Zr‘sl_“)

i=1
1
></ T"l"‘ild’Hi(T)}.
0

We denote by
Oul) = - (S I
F(51—1) (51—0(0 (51—1
O =Dy 2 ¢ 1 /'1 5—ai—1
+ 1T AN € (0,1
(61 — ap) ;F(él—ai).o (0, € 1)
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This function ®, € L!(0,1), because

/®0 (5)(51i0€0+51>+ (511—“0)

St ! (24)
n;—
><§ Fél—zx / 8T AH(T) < oo

Then for any s1,s, € [0,1] with s; < sy and (u,v) € &, by (23) and (24) we conclude

A (m,0) (1) = As(,0)(52)] = | [ (As(,0) (1)

51

< '—‘91_1M91—1 %2 ®)
<M [Ce(r)dr. (25)
51

By (24) and (25), we deduce that 4; (&) is equicontinuous. By a similar method, we
find that A, (€) is also equicontinuous, and then A(€) is equicontinuous too. Using the
Arzela—Ascoli theorem, we conclude that A;(€) and A»(€) are relatively compact sets,
and so A(E) is also relatively compact. In addition, we can show that A;, A; and A
are continuous on P (see Lemma 1.4.1 from [14]). Hence, A is a completely continuous
operator on P. [

We define now the cone
Po={(w,0) € P, u(n) =" ul, v(y) =5l n € [0,1]}.

Under the assumptions (I1) and (I2), by using Lemma 4, we deduce that A(P) C Py,
and so Alp, : Pop — Po (denoted again by .A) is also a completely continuous operator.
For 0 > 0 we denote by By the open ball centered at zero of radius 6, and by By and 9By its
closure and its boundary, respectively.

We also denote by M; :fol T ()1 (T)dT, My = fo J5(T 1p2( Ydt, M3 = fol Jo(T)dT
01—1
My = [y Ja(t)dz, and for 61,6, € (0, 1) 01 < 6o, M5ff (fgél (2, 7) dT) T

= felz VAL (f91 G5(Z,7) dr) 1dC.

Theorem 2. We suppose that assumptions (I11), (12),

(I3) Thereexistc; >0, i=1,...,4withy} ¢;>0,d; >0, i=1,...,4withy}  d; >0,
and p1 > 1, pp > 1 such that

X1<U121/Z2/Z3/Z4)
10 = limsup max <1,
X £ o Eo ne1] ¢, ((c121 + 222 + 323 + c424)1)
and
X20 = 11msup max xX2(1,21,22, 23, 24) <y,

74 diz—0 €01 @ry ((d121 + dozp + d3z3 + dgzg)12)

where 1, = (zrl—lMlMgrlpﬂl(mfl))—1 I, = (2~ 1M, Mrzflp}iz(rzfl))—ll with py =

c [ ds dy .
Zmax{cl'c2' N CEACES)) } P2 = 2max{d1’d2’ e r) T }
(I4) Thereexist p; >0, i=1,...,4 with Zi:l pi>0,g9;>0,i=1,...,4with Z?:l gi >0,
01,0, € (0,1), 01 < 0pand Ay > 1, Ay > 1 such that

foo = liminf min f1,21,22,25,24) > I3,

Y pizi—eo 1€[01,02] Pry (p1z1 + pazo + p3z3 + pazs)

or
Qoo = liminf min 801,21, 22,23, 24) > 1y,
Y4, qizi—oon€[01,02] Pry (qlzl + 4222 + g3z3 + 6]424)
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where I3 = Aq (2p3M56‘51_1)1’71 Iy = )\2(2p4M66f2_1)1’72 with p3 = min{pl()fl_l,

+5 5 -
L ) paf2 M) e yzl%ﬁ*l%@>
P2 T(01+01) 7 T(0a+e) P4 = moy 92 T(o1+61) 7
Q49§2+52 I'(d,)
T(62+62) ’

hold. Then there exists a positive solution (u(t),v(t)), T € [0,1] of problems (1) and (2).
Proof. By (I3) there exists R € (0,1) such that

X1(1,21,22,23,24) < li@r, ((c121 + C2zp + €323 + c424)M), (26)
X2(1,21,22,23,24) < lagr,((d121 + daza + d3zz + dyzq)H?),

forally € [0,1],z; > 0,i=1,...,4 with Z?:l ¢izi < R and Z?zl diz; < R. We define
Ry <min{R/p1,R/p2, R}. For any (u,v) € Bg, NP and { € [0,1] we have

qwo+qmo+%ﬂ @ku@(@

< 2max{e1, 02, 1 }n(u o)y = pill(w0)lly < prR1 < R,
(@) +d50(0) + 1§ u(E) + daI520(0)

< 2max{dy, da, 15y, ey }||<u o)y = pall(,0) |y < p2Ry < R.

Then by (26) and Lemma 3, for any (u,v) € dBg, NPy and 77 € [0, 1], we deduce

(Ao < [ T ( [ T10)1(0,u00),000), Ky u(0), B 0(0)) do ) ag
1

= M3 Po 0

[ @001 (6, (8),2(6), 52 (8), 5 0(9) dﬂ)
< Mz, (/01 T ()1 (0l @r, ((cru(®) + c20(9) + c3gt u(8) + C4Ig§rv(l9))”1)dl9)

= Maqvql((Plrl((mll(u v)IIy)”l))(Pel(11)<P91§Ml)1
= MsMP P 1||(u o)[) < MsMQI_ F e (wo)lly = 31w o)y,

(Aa(w,0)) (1) / il qogz( [} 5 (g(6,u(6),0(0), (o), 2 0(0) o )
~ Muga [ 20180 ,uw),vw»Igiuwmgivw»dﬂ)

T1(9)f(8,u(8),0(8), It u(8), I 0(8)) d19>

NN

S MS ¢Q1

< Mygas (| B(OW0)2(0,1(0),0(0), Iy u(6), 1 0(8)) 89

< M4§DQ2 (/01 j3(l9)lpz(19)12§0r2 ((dlu(ﬂ) + dz’(’)(ﬂ) + dglgiu(ﬂ) + dugiv(ﬂ))m)dﬁ)

< M4¢g2(¢1r2((P12||(u, v)||y)”2))%z(lz)<l)g2§Mz)l
- — — -1 u
= MyM3* 137 02| (w,0) |37 < MaM3 157 (| (u,0) ||y = 31 (w,0)]]y-
Then we conclude that
[A(u,0)|ly = [[A1(w, 0) | + | A2(u, 0)[| < ||(w,0)|ly, V(u,v) € 9Br, NPo.  (27)

Now we suppose in (I4) that fo > I3 (in a similar manner we study the case goo > ls).
Then there exists C; > 0 such that

f(n,21,22,23,24) > 3@y, (p121 + p2zo + p3z3 + pazs) — Cy, (28)
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forally € [6,6;] and z; > 0, i = 1,...,4. By definition of I7
7 € [0,1] we have

o4, for any (u,v) € Py and

(71 — 1 d - L 1 —_\a—1troa-
5 (n)—m/o 01 =0 (@)t > g [0 =071 ful g

0

e=my ] / o1—1,61—1,,0,—1 [ull  oytoy-1 /'1 51—1 -1
dy = L1 _»p017a 1 1— 1—14
T(oy) Jo (1 m) Ay = oo A G DA
[l g7+ 71T(8)
I'(é1+01)

lull  ots,-1
= B(61,01
(o) (61,01) =

(29)
and in a similar way
[0+~ T (52)
F(52 -+ 0'2)
where B(p, q) is the first Euler function. Then by using (28) and (29), for any (u,v) € Py
and 77 € [01,6>] we obtain

Ig2 o(n) >

Arlw2) ) = [ G2l Dgu ( [ 610158, u(0),00), 15,0(6), - o(0))a0 ) g

> g0~ 1/ </ G1(¢, 19 I3(p1u(8) + p2o(8) + p3lgt u(8) + palg> v(8)) !
—Cl]dﬂ)gl 1dg

si-1 [ 4 51 o
> 6! /91 J2(0) </6] G1(¢,9) [l3<p1311 ] + p262 o] -
—

-1
gi'lﬂsl*lr((sl) 9(72+5z—1 T'(6,) "
+P3WH ull +p 4(57_“7)” dl —Cy|do g

) g : - a1, 0T
267 [ 20 </e G1(2,9) lh (mm{pleil R e

51 r-1 ol
pab? T (5) 3
o woly ) —ald)

—oit 250 ([facobeslwalyy ~ce)"

N - 21
= M50y [13(2p3| (1, 0)[[)" " — G
-1
- (M?*l@(él*l)(”’l)l 271—19?71||(u o)y Mglfleylfl)(rlfl)cl)%
(/\1” u, Z))Hﬁ 1 C ) L Cy = Mgl legél—l)(rl—l)cl'

Then we deduce

01-1
Aoy = A, 0)| = [As(w,0) )] = (Ml o) |57 =C)™ ¥ (o) € P
We choose R, > max{l, Cgl_l/()\l - 1)91—1} and we obtain

[ A(u, 0) [y = [[(w,0)[y, V(#,0) € 9Br, N Po. (30)

By Lemma 5, (27), (30) and Theorem 1 (i), we conclude that A has a fixed point (1, v) €

(Br, \ Br,) NPy, 50 Ry < |[(1,0)|ly < Ry, and u(t) > v~ 1|u|| and v(t) > 270 for

all T € [0,1]. Then |lu|| > O or ||v|| > 0, thatis u(t) > 0 forall T € (0,1] or v(7) > 0 for all
€ (0,1]. Hence (u(t),v(7)), T € [0,1] is a positive solution of problem (1) and (2). O

Theorem 3. We suppose that assumptions (I11), (12),
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(I5) Thereexiste; >0, i =1,...,4withy* je; >0,k >0,i=1,...,4withyt k >0

such that
Xleo = limsup max x1(1,21,22,23,24) 5
5 eizi—eo 1E10A] P11 (e1z1 + exz0 + €323 + e424)
" (1,21,22,23,24)
e zhn;cszufw e G%(kéf 4:7 /k21z,2 i kz,z;- Kaza) ~ M

where my < min{1/(2My (& Mz)1~1),1/(My (28 M3)1 1)},
my < min{1 /(2M2(§2M4)’2*1) 1/ (My(282My)2~ 1)} with

61 = Zmax{el,ez, N CESH] & } Gy = Zmax{kl,kQ, FES) ks ky }

01+l)’ r(az+1 g1+1)’ T(g2+1)
(I6) Thereexists; > 0, i=1,...,4 with lel si>0,t>0,i=1,...,4with 2?21 t; >0,
61,0, € (0,1), 61 < Oand vy € (0,1], v € (0,1], A3 > 1, Ay > 1 such that

fo= liminf min f1,21,22,23,24) > ms,

v sizi07€f162] Pry (5121 + 5222 + 5323 + 5424)"1)

or
go = liminf min g(n,21,22,23,24) -
v bz 0 7€0002] @ry (B1Z1 + 2o + t32z3 + £424)"2)

where my = AY ™' (Ms 2V1g”1951‘1)1—f1 my = A2 (Mg2%282002 Y2, with & =

9(71+51 (s 6172+02 5
0y — 153 (61) s4 () §4fm1n{t191 1t952 1

F(01+01) 7 T(o2+02)

H517UIT() 465272711 (5y)
T[(01+c1) 7 T(o+62) ’

hold. Then there exists a positive solution (u(t),v(t)), T € [0,1] of problem (1) and (2).

1
mm{519 1,500

Proof. From (I5) there exist C3 > 0, C4 > 0 such that

X1(11,21,22,23,24) < my@y, (e121 + €2zp + €323 + e4z4) + C3,

31
XZ(U!Z‘I/ZZ/ z3, Z4) S m2§0r2 (klzl + kZZZ + k3z3 + k4Z4) + C4/ ( )

foranyn € [0,1] and z; > 0, i = 1,...,4. By using (I2) and (31) for any (#,v) € Py and
n € [0,1] we find

1 1
D < [ B@ea ([ T0)50,u00),000) 5L u(@), 1 0(0) a8 ) g
< Mgy, ( [ @101 (6,(8),0(6), 52 (8), 5 0(0) dﬂ)

< M3@q, ./(;1 T (8) 1 (0) [my@r, (e1u(O) + e2v(0) + 31 u(9) + e4lg2 0(8)) + C3]dl9)

;

1 es||u A n-l
< Msgy,( [ mw)wl(ﬁ)[ml(qnu|+ez||v||+r(3”+”1)+r(;2” ds) e

= Mage, [ml(max{"l'ezf TG T 1) }ZII(u v)lly) ) +c3}

<(f moma)” 1

—1 _ 01—-1
= M{ M (e o) |5+ )
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and
-1 1
Aat0)) < [ TO0gun ([ o(0)5(0,(0),0(0), 51(0), 152 0(0)) 0 )
< Mupes( [ T(Op2(OD2a(0,(0),0(0), 5L u(0), K o(0)) o
< My, /01 T3(8) 2 (8) [ma@r, (kyu(8) 4 kov(9) + k3 I§L u(8) + kaI§20(9)) + Cy]dd

do

1 kallu kg||v 121
< Magi, /Jg,w)lpz(m[mz(kl||u||+kz||v||+ (5”+”1)+r(;2“+”1)) +Cy

< Mygo, {mz (max{ ko, mary, iy bl 0) 1y ) +c4]

X (/0 T3(8)2() dﬁ)gz 1

~1 -1 1 0
= M My (gl (w,0) 5 + Ca)

Then we obtain

s o)l < MO M (e (o) )
[ Aa0,0) | < ME 7 Ma (magg (w015 +G) ™
and so
4G o)y < M2 M (o) 7 + o)
+M3 1M4<m2§rz Ui, % 1+C4) 1,

for all (u,v) € Py. We choose

M M0 20 MP T M2 2!

1— (MO M20 2% ey 4+ MP T M2 2 E)
M IMCE T 4+ MSET MLCP

1— (M Mym ey + M My 1g2)
MY MY ST M0 2c§2

1— (M Mam® e+ MP T M2 2m@ 1)

Rz > max{l,

(32)

MY Ma207208 T 4+ MBI MuC ! }
1— (MO M2 2 1)+ ME T Mm@ ' E)

and then we conclude
| A(u,0)|ly < [[(u,9)]ly, V(u,0) € dBry N Py. (33)

The above number R3 was chosen based on the inequalities (x + )@ < 29~ 1(x®@ 4 y®)
forw > land x,y > 0, and (x +y)? < x? +y? for @ € (0,1] and x,y > 0. Here
@ = 01 — 1 or 0o — 1. We prove the inequality (33) in one case, namely ¢; € [2,00) and
02 € [2,00). In this case, by using (32) and the relations MflflMg,ZQ1 ’zm?*l@l <1/2and
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M§2_1M4292_2m32_1§2 < 1/2 (from the inequalities for m; and m; in (I5)) we have the
inequalities

M M (my 7 TR 4 o)+ MSET M (mzCr2 Rp! +C4)€'r1

< MY I M329 2 (m T E Ry + CSUTY) o+ MY Mg29 2 (28R + CR T

= (M§1*1M32Q1—2m§1’1§1 +MP T M292 2P 8)R;
H(MP T M0 28 4 MET M2 -2C2 T < Ry

In a similar manner we consider the cases 01 € (1,2] and 0, € (1,2]; 01 € [2,00) and
02 € (1,2]; 01 € (1,2] and 0, € [2,00).

In (I6), we suppose that gy > my (in a similar manner we can study the case fy > m3).
We deduce that there exists Ry € (0,1] such that

g(1,21,22,23,24) > Ma@r, (1121 + t2zp + t323 + taz4)"?), (34)
forally € [61,62], z; 2 0,i=1,...,4, Z;'L:1 tiz; < Ry4. We take Ry < min{§4/g4, R4}, where

&= 2max{t1,t2, e T (gt24+1) } Then for any (1,v) € Bg, NP and 57 € [0,1] we have

ta|ul] ta|o||
T(g1+1) T(c2+1)

)}znw,v)ny — &l o)lly < &Ry < Ry,

tu(Q) + t20(0) + t3I§, u(Q) + talg, v(Q) < t|lul| + to]jo]| + +
t3 ty

T(g1+1)" T(g2+1

< max{h, t2,

Therefore by using (34) and (29), we obtain for any (u,v) € dBg, NPy and 1 € [0y, 6;]

Aa(0)() > [ Ore ([ oate,013(0,u(0),v(0), (o), 20060 )
29‘152 1 9 4,@2 g3 7, 9) [magr, (11u(8) + tr0(8) + 315 u(9)
+t41€2 d19 dg
sopt [ %2(/ Gs(2,8) ma (1163 Jul + 1262 o]
9§1+51 -1r ( ) 9g2+52 1r (52) vp(rp—1)
t o |d

> ¢! / ( / Ga (8, 8)ma (24| (u Iy)”(’”)dﬂ)Q“d@
— o 22g) 2@ V0D (,0) ( [Fo@( [ sieo ) 1d@>

— 1
= Mgt m2 12282 (u,0) 1% = Adll(w,0) |13 > ([, 0) 15 > | (u, )|
Then we deduce ||.Ay(u,v)|| > ||(u,v)]|y and then
| A(u,0)lly > [|(u,0)[ly, V(u,0) € dBr, NPo. (35)

From Lemma 5, (33), (35) and Theorem 1 (ii), we conclude that A has a fixed point
(u,v) € (Br, \ Br,) NPo, so Ry < ||(1,v)||y < Ra, which is a positive solution of prob-
lem (1) and (2). O

Theorem 4. We suppose that assumptions (I1), (12), (I4) and (16) hold. In addition, the functions
i and x;, i = 1,2 satisfy the condition
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~101-1 ~10-1
(17) MsM{' D' < 3, MyM$* D < L, where

Do = max max x1(1,21,22,23,24),
n€(0,1],z;€[0,wp], i=1,...,4

max X2(77/21,22,Z3,Z4) ,
7€(0,1],z;€[0,wp], i=1,...4

. _ 1 1 1 1
with wo = max{l, T +1)’ T(op+1)’ T(g1+1)” T(ca+1) }

Then there exist two positive solutions (u1(T),v1(7)), (u2(7),v2(7)), T € [0,1] of prob-
lem (1) and (2).

Proof. Under assumptions (I1), (I2) and (I4), Theorem 2 gives us the existence of Ry > 1
such that
A, )y = [[(u,0)l[y, ¥ (u,0) € IBr, N Po. (36)

Under assumptions (I1), (12) and (I16), Theorem 3 gives us the existence of Ry < 1
such that
A, 0)lly = [[(u,0)lly, ¥ (u,0) € IBr, NPo. (37)

Now we consider the set By = {(u,v) € Y, ||(u,v)[ly < 1}. By (17), for any (u,v) €
dB1 NPy and 7 € [0,1], we obtain

A 0)0n) < [ B@a ([ T O (2,00),00), 1 u(6), 2 0(0)) do ) a2
1—1
< Dgl_l </01 J>(0) dC) (/01 J1(0)p1(0) dﬂ)g = M3Dgl_1M§1_1 < %,
a0 0)01) < [ @ [ TO2(O1a(0,000),0(0), 5L u(0), 5 0(0)) do )
o-1( (! 1 e 0-1ym-1 _ 1
<op ([ @) ([ moworas) - mpgmg < b
Then ||A;(u,v)|| < 1/2forall (u,v) € 9B NPy, i =1,2. Hence

[AGu, 0) [y = A1 (w,0)[| + A2, 0)[| <1 = [[(w,0)lly, V(#,0) €BiNPy.  (38)

So from (36), (38) and Theorem 1, we deduce that problem (1) and (2) has one positive
solution (u1,v1) € Py with 1 < |[(u1,v1)|ly < Rp. From (37) and (38) and the Guo-
Krasnosel’skii fixed point theorem, we conclude that problem (1) and (2) have another
positive solution (u,v7) € Py with Ry < ||(u2,v2)||y < 1. Then problem (1) and (2) have
at least two positive solutions (u1(7),v1(7)), (u2(7),v2(7)), T € [0,1]. O

4. Examples

Let')q = 3/2, Y2 = 7/6, p = 4,q = 3, 51 = 10/3, (57_ = 12/5, o] = 2/5, 0y = 29/7,
61 =11/9,60=21/4,n=2,m=1,a0 =13/8, 01 =5/7, a0 = 3/4, Bo = 10/9, p1 = 7/8,
rn = 17/4, 1, = 25/8, 01 = 17/13, 0o = 25/17, Ho(t) = {2/7, t € [0,3/4); 11/4,
t € [3/4,1]}, Ha(t) = t/2, t € [0,1], Ha(t) = {1/2, t € [0,1/2); 13/10, t € [1/2,1]},
Ko(t) =4t/9, t € [0,1], K1(t) = {1/4, t € [0,1/3); 29/20,
te[1/3,1]}.

We consider the system of fractional differential equations

{ Dg’f gg017/4 ED%Y%(T}%) :f(T,u(T),v(T),Igfu(r),lgiﬁv(r)), Te(0,1),

(39)
Dgi6 D(l)i/“r’v(r) ) = g(r,u(r),v(T),Ié}r/gu(T),131/40(1')), 7€ (0,1),

$25/8
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with the boundary conditions

u(0) = '(0) = u”(0) = 0, DY >u(0) =0, Dg%°u(1) = 555 Dp%*u(3),
DI/Pu(t) =} 2 R Tuty) dy + DY u(h), 0
0(0) = /(0) = 0, DFY/*0(0) =0, ¢as/s(DgY/*0(1)) = § Jy pas/s (D *0(n) ) i,

10/9 _ 6p7/8,
Dy "o(1) = 3Dg°0 (3)

We have here a; ~ 0.56698729 > 0, a, ~ 2.16111947 > 0, b; = 0.61904762 > 0,
by ~ 0.43774133 > 0. So, assumption (I1) is satisfied. We also obtain

() = L[ A () 0y,
’ r(3/2) | 21 -m?, 0<t <y <1,
IR B O e G (LA E UL ¥
92(7/77) = I(10/3) T7/3(1 _ 77)17/24, 0<t<y<1,
() = 1 /2] — ) 7/2% ()32 g<p <<,
21(T, 1 7”55/21) 1'34/21(1 _ ,7)17/24, 0<t<n<l,
] (T 17) _ 1 T19/12(1 _ ’7)17/24 _ (T— 17)19/12, 0< 7 <t<1,
22, r(31/12) T19/12(1 _ 77)17/24, 0<t< 1 <1,
() = L[ T ()T 0y s,
’ r(7/6) | /(1 -6, 0<T<y<1,
L1 [P ) 0y <t <,
as(T, 1) = T(12/5) | 7/5(1— )34, o<t <y <1,
b () = 1 T2/40(] — ) B3/45 _ (1 —p)21/40 g <y <<,
410L, F(61/40) T21/4O(1 _ 7,/)13/45, 0<t< n <1,

/
i) = m(en)+ 5w (3n), @€ 0.1 x 01
7/3
Go(t,m) = g(T, 1) + (; /01 g21(0, 1) do + %gzz (;,17>), (t,n) €10,1] x [0,1],

1/6
Gs(r,) = ws(em) + 2 [Mas(6.m)d6, (xn) € 0,1] x 0,1,

617/> 1
Ga(T, ) = ga(T, 1) + 56, g41<3,17), (t,1) € [0,1] x [0,1],

b1(n) = r(31/2)( mY2, ba(y) = o7 (1~ 721 -1 -n)B®), nelo1],

1) = T (1= 0al) = e (1= B = (1 =)*”), ne D1

Besides we deduce

J(Q) = me)+ 2“1&3/2 {(%)1/2 OV2-(3- 5)1/2}' 0<7<y,
(@*W(%)m 6)1/2 3 o<,
h2(2) + {m {( _os - §)55/21}
19/12 19712
ng-{ IO ()" a0 (120" h ose<d

h2(2) + {2T(76/21 {(1 O/ _ (1 - §)55/21}
19/12
+5r(3ﬁ( ) - 5)17/24}, l<z<y,
(g) = 63(@ W [( é)l/é ( )7/6} = [0,1]’

(D) = b4(8) + seorer/am) Egi 2/40 7)13/45 _ (% - §>21/4o]/ <<
3

7

Q=

7)13/45,
b4(0) + 55,17 61/40 3<{<1
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Example 1. We consider the functions

13a/4 17b/8

f(n,21,22,23,24) = (221+f72,c<1‘r(5123;;)7’(224) , 8§(n,21,20,23,24) = (321+8;%;réz_3,7+)2f4) ,  (41)
fory € (0,1),z; > 0,i =1,...,4 wherea > 1, b > 1, k1 € (O 1), ©; € (0,3/2),
K3 < (0/1)/ Ky S (O 7/6) Here 1IJ1( ) - W/ IIJZ( ) - K3(1 7];(4 f07’77 € (0 1)
x1(7,21,22,23,24) = (221 + 22 + 523 + 724) 3/ * and X2(77,21122,23,Z4) (321 + 822 + 223 +
924)170/8 fory € [0,1], z; > 0, i = 11, ,4. We also find Ay = fo (1 — )2y (1) dT =
B(l—x1,3 — %) € (0,00), Ap = [5(1—1)V8yr(1)dT = B(1—x3, % —1x4) € (0,00).
Then assumption (12) is also satisfied. Moreover, in (I3), forc1 =2,¢co =1,¢c3 =5,¢c4 =7,
wp=1dy =3,dy =8,d3 =2,dy =9, uyp =1, we obtain x10 = 0, x20 = 0. In (14),
for [61,602] C (0,1), p1 =2, p2 =1, p3 =5, ps = 7, we have fo, = 0. By Theorem 2, we deduce
that there exists a positive solution (u(t),v(t)), T € [0,1] of problems (39) and (40) with the
nonlinearities (41).

Example 2. We consider the functions

fln,21,22,23,24) = % (i + i+ 23+ d)
+( 2nt3ntntg )wz , 1€0,1], z>0,i=1,...,4 W)
8(1,21,22,23,24) = %(ezl +In(zp +23 +1) +247),
ne01), z>0,i=1,...,4
where s) > 0, g > 0, w1 > §, wp € (0/%) w3 > 0. Here, we have §1(n) = 3%/’72,
n€ Ol zuzz2) = 587(57162)[ %Z Zz+Z3+ )w1+( Z1 + zz+23+

wy .
%Z4> } ne€01],z>0i=1,...,44(n) = \/73/ 7 €10,1), xa(11,21,22,23,24) =

3+si .
W(ﬁwln(zﬁzﬁl)ﬂfﬂ, ne01,z >0i=1,.,4 Wefind Ay =
30

Jfa-1 )12 dr = B(g,z) € (0,00), Ay = fg(lfT)1/6VﬁdT = % ¢ (0,00).
Then assumption (12) is satisfied. For [01,62] C (0,1), p1 =1/4, p2=1/3,p3 =1, ps =1/2,
we obtain foo = oo, and for sy = 1/4,sp = 1/3,s3 = 1,54 = 1/2and vy € (41‘%2,1}
we have fy = oo. So assumptions (I14) and (16) are satisfied. Then after some computations,
we deduce My = [ J1(T)y1(t) dt ~ 3.04682891, M2 = [ T3()¢a(7) dT ~ 2.64937892,
Mz = fol Jo(T)dt =~ 0.15582207, My = fol Ju(T ~ 1.25629509. In addition, we ob-
~ 112706049, Dy = max{350 [(Bewo)" + (Bewo) ], tomoleco +

(7/5)
In(2wo + 1)+wi?] }, with my = max, (o) %*jzn)’? 3.0123699. If

tain that wy =

so < min

7 7
3(2M3) 373 M [(25wp /12)¥1 + (25w /12)¥2]” 3(2M4)7/8 M [(25w0/12)“1 4 (25000 /12)%2] }
1 1
(2M3)13/4 My mg[e0+In(2wo+1)+wy 3| (2Mg)17/8 Mymg[e0+In(2wo+1)+wy |

tg < min

7

then the inequalities M3M;L/ 13D§/ 13 M MS/ 17D8/ 7 < 2 are satisfied (that is, assumption
(17) is satisfied). For example, if wi = 4 wz =2, w3 = 3 and sg < 0.0034 and to < 0.0031, then
the above inequalities are satisfied. By Theorem 4, we conclude that problem (39) and (40) with the
nonlinearities (42) has at least two positive solutions (u1(t),v1(7)), (u2(7),v2(7)), T € [0,1].

5. Conclusions

In this paper we investigate the system of Riemann-Liouville fractional differential
Equations (1) with r;-Laplacian and rp-Laplacian operators and fractional integral terms,
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subject to the uncoupled boundary conditions (2) which contain Riemann-Stieltjes integrals
and fractional derivatives of various orders. The nonlinearities f and g from the system are
nonnegative functions and they may be singular at T = 0 and/or T = 1. First we present
the Green functions associated to our problem (1) and (2) and some of their properties. Then
we give various conditions for the functions f and g such that (1) and (2) has at least one
or two positive solutions. In the proof of our main results we use the Guo-Krasnosel'skii
fixed point theorem of cone expansion and compression of norm type. We finally present
two examples for illustrating the obtained existence theorems.
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