
����������
�������

Citation: Alqhtani, M.; Saad, K.M.

Fractal–Fractional Michaelis–Menten

Enzymatic Reaction Model via

Different Kernels. Fractal Fract. 2022,

6, 13. https://doi.org/10.3390/

fractalfract6010013

Academic Editor: Ahmed I. Zayed

Received: 14 November 2021

Accepted: 23 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Fractal–Fractional Michaelis–Menten Enzymatic Reaction
Model via Different Kernels

Manal Alqhtani 1 and Khaled M. Saad 1,2,*

1 Department of Mathematics, College of Sciences and Arts, Najran University,
Najran P.O. Box 1988, Saudi Arabia; mmalqahtany@nu.edu.sa

2 Department of Mathematics, Faculty of Applied Science, Taiz University, Taiz P.O. Box 6803, Yemen
* Correspondence: kmalhamam@nu.edu.sa

Abstract: In this paper, three new models of fractal–fractional Michaelis–Menten enzymatic reaction
(FFMMER) are studied. We present these models based on three different kernels, namely, power
law, exponential decay, and Mittag-Leffler kernels. We construct three schema of successive approxi-
mations according to the theory of fractional calculus and with the help of Lagrange polynomials.
The approximate solutions are compared with the resulting numerical solutions using the finite
difference method (FDM). Because the approximate solutions in the classical case of the three models
are very close to each other and almost matches, it is sufficient to compare one model, and the results
were good. We investigate the effects of the fractal order and fractional order for all models. All
calculations were performed using Mathematica software.

Keywords: fractal–fractional Michaelis–Menten enzymatic reaction; Lagrange polynomial interpola-
tion; the power law; the exponential law; generalized Mittag-Leffler function

1. Introduction

Shateyi et al. [1] proposed a method which is an extension of the spectral homotopy
analysis method for investigating the approximate solution of the Michaelis–Menten enzy-
matic reaction equation. They compared the results of Runge–Kutta routines for measuring
the accuracy and efficiency. Abu-Reesh [2] derived analytical equations for the optimal
design of a number of membrane reactors in series performing enzyme catalyzed reac-
tions. This enzyme is described by Michaelis–Menten kinetics with competitive product
inhibition. In terms of the Lambert W(x) function, Golicnik [3] proposed an exact closed-
form solution to the Michaelis–Menten equation. Golicnik [4] showed that analysis of the
progress-curve data can be carried out through explicit mathematical equations; this analy-
sis can be performed using any nonlinear regression-curve fitting program. In addition, he
found that when the progress curves are analyzed by the direct solution of the integrated
Michaelis–Menten equation, there were three different demonstrated approximations of
W(x) with relatively high accuracy that are appropriate to utilize. In many studies, they
studied this system and proposed many different kinds of approximate analytical solu-
tions [5–9]. Hussam et al. [10] investigated the semianalytical results of fractional time
enzyme kinetics using the Laplace transformation and Adomian decomposition method.
In general, due to the difficulty that many researchers face in finding exact solutions to
fractional differential equations, many researchers have presented numerical, approximate
methods and applications to treat this problem (see [11–22]). In fact, there are no other
methods that deal with numerical solutions in the fractal–fractional sense, except [23].

In [24], the authors investigated spectral methods in the sense of fractal–fractional
differentiation. However, it included only the studies using Mittag-Leffler kernel. The im-
portance of our study lies here, as we provide a treatment for more than one kernel and
for a longer time. Many of the previous studies deal with approximate solutions in the
case of a short time. Our work, along with some of the previous studies in the sense
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of fractal–fractional differentiation, contributes to providing numerical algorithms that
researchers can apply to many models related to the real world.

This paper focuses on presenting the classical model in the form of three fractal–
fractional models with different kernels. These treatments will be carried out based on
the primary sources [23] as well as similar treatments that were carried out by many
authors (see [25–27]). Atangana [23] proposed new operators of differentiation as con-
volution of power law, exponential decay law, and generalized Mittag-Leffler law with
fractal derivatives. These operators are referred to as fractal–fractional differential and
integral operators.

To this end [23], we replace the derivative with respect to t by the fractal–fractional
derivatives power (FFP) law, the fractal–fractional exponential (FFE), and the fractal–
fractional Mittag-Leffler (FFM) kernels in sense of Riemann–Liouville which correspond to
the Caputo [28], Caputo–Fabrizio (CF) [29], and the Atangana–Baleanu (AB) [30] fractional
derivatives, respectively.

Michaelis and Menten show that the rate of an enzyme-catalyzed reaction is propor-
tional to the concentration of the enzyme–substrate complex predicted by the Michaelis–
Menten equations [31]. The dynamic form of this model [31] is given by

dα1

dt
= −δα1(t)β1(t) + γα2(t), (1)

dβ1

dt
= −δα1(t)β1(t) + (γ + σ)α2(t), (2)

dα2

dt
= δα1(t)β1(t)− (γ + σ)α2(t), (3)

dβ2

dt
= σα2(t), (4)

α1(t) is the concentration of a substrate, β1(t) is the concentration of an enzyme, α2(t) is
the concentration of the resulting complex, and β2(t) is the concentration of the resulting
product. δ, γ, and σ represent the rate of reaction governing the production of the complex
from the α1(t) and the β1(t), the rate of reaction governing decomposition of the com-
plex to the β1(t) and the β1(t), and the rate of reaction governing the breakdown of the
complex into the β2(t) and the β1(t). In addition, the initial conditions are α1(0) = α10,
β1(0) = β10, α2(0) = α20, and β2(0) = β20.

This model is used to study enzyme kinetic reactions, and the schematic is given by

α1 + β1 
 α2 → β1 + β2.

Based on this schematic, a complex α2 is the product of a reaction between a substrate α1 and
an enzyme β1. Finally, a complex α2 is converted into a product β2 and the enzyme β1.

To our best knowledge, this is the first study of this the fractal–fractional Michaelis–
Menten enzymatic reaction using power, exponential decay, and Mittag-Leffler laws.

The paper is organized as follows. In Section 2, we give a background about the
definitions of the fractal–fractional operators via the power, exponential decay, and Mittag-
Leffler kernels. In addition we construct the successive iterations of the fractal–fractional
Michaelis–Menten enzymatic reaction via three kernels. In Section 3, we present the
numerical results. Finally, in Sections 4 and 5, we explain and discuss the numerical results
and give some concluding remarks.

2. Numerical Schemes of Fractal–Fractional Michaelis–Menten Enzymatic
Reaction Model

In this section, we provide the necessary definitions for this work. For more details on
these definitions, refer to references [23]. In addition, we present the construction of the
numerical schemes of the Fractal–Fractional Michaelis–Menten enzymatic reaction model
according to the power, exponential decay, and Mittag-Leffler laws. For the theoretical parts
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of these fractal–fractional operators due to the three different kernels, the reader should
refer to [23].

2.1. Preliminaries and Notation

Definition 1. If η(t) is continuous and fractal differentiable on (a, b) of order k, then the fractal–
fractional derivative of η(t) of order $ in the Rieman–Liouville sense with the power law is given
by [23]:

FFP
0 D$, k

t η(t) =
1

Γ(1− $)

d
dtk

∫ t

0
(t− τ)−$η(τ)dτ, (0 < $, k ≤ 1), (5)

and the fractal–fractional integral of η(t) is given by

FFP
0 I$, k

t η(t) =
k

Γ($)

∫ t

0
τk−1(t− τ)$−1η(τ)dτ. (6)

Definition 2. If η(t) is continuous in the (a, b) and fractal differentiable on (a, b) with order
k, then the fractal–fractional derivative of η(t) of order $ in the Caputo–Fabrizio sense with the
exponential decay kernel is given by [28]

FFE
0 D$,k

t η(t) =
M($)

1− $

d
dtk

∫ t

0
e
−$

1−$ (t−τ)
η(τ)dτ, (0 < $, k ≤ 1), (7)

and the fractal–fractional integral of η(t) is given by

FFE
0 I$,k

t η(t) =
(1− $)ktk−1

M($)
η(t) +

$k
M($)

∫ t

0
τk−1η(τ)dτ (8)

where M($) is the normalization function such that M(0) = M(1) = 1.

Definition 3. If η(t) is continuous in the (a, b) and fractal differentiable on (a, b) with order k,
then the fractal–fractional derivative of η(t) of order $ in the Atangana–Baleanu sense with the the
Mittag-Leffler-type kernel is given by [23]

FFM
0 D$,k

t η(t) =
A($)

1− $

d
dtk

∫ t

0
E$

( −$

1− $
(t− τ)

)
η(τ)dτ, (0 < $, k ≤ 1), (9)

and the fractal–fractional integral of η(t) is given by

FFM
0 I$,k

t η(t) =
(1− $)ktk−1

A($)
η(t) +

$ k
A($)Γ($)

∫ t

0
τk−1(t− τ)$−1η(τ)dτ, (10)

dη(t)
dtk = limτ→t

η(τ)− η(t)
τk − tk (11)

where A($) = 1− $ +
$

Γ($)
is a normalization function.

2.2. FFMMER Scheme via the Power-Law Kernel

In the present subsection, we apply the fractal–fractional operator with power-law ker-
nel to the FFMMER described above. We follow the same procedure as in [23], and we have
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FFP
0 D$

t β1(t) = −δα1(t)β1(t) + γα2(t), (12)
FFP
0 D$

t α1(t) = −δα1(t)β1(t) + (γ + σ)α2(t), (13)
FFP
0 D$

t β2(t) = δα1(t)β1(t)− (γ + σ)α2(t), (14)
FFP
0 D$

t α2(t) = σα2(t). (15)

Following the same method as in [23], we have the successive approximations

α1(t)− α1(0) =
k

Γ($)

∫ t

0
τk−1(t− τ)$−1µ1(α1, β1, α2, β2, τ)dτ, (16)

β1(t)− β1(0) =
k

Γ($)

∫ t

0
τk−1(t− τ)$−1µ2(α1, β1, α2, β2, τ)dτ, (17)

α2(t)− α2(0) =
k

Γ($)

∫ t

0
τk−1(t− τ)$−1µ3(α1, β1, α2, β2, τ)dτ, (18)

β2(t)− β2(0) =
k

Γ($)

∫ t

0
τk−1(t− η)α−1µ4(α1, β1, α2, β2, τ)dη (19)

where

µ1(α1, β1, α2, β2, τ) = −δα1(τ)β1(τ) + γα2(τ), (20)

µ2(α1, β1, α2, β2, τ) = δα1(τ)β1(τ) + (γ + σ)α2(τ), (21)

µ3(α1, β1, α2, β2, τ) = δα1(τ)β1(τ)− (γ + σ)α2(τ), (22)

µ4(α1, β1, α2, β2, τ) = σα2(τ). (23)

Now, we can reformulate Equations (16)–(19) as

α1(t)− α1(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1µ1(α1, β1, α2, β2, τ)dτ, (24)

β1(t)− β1(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1µ2(α1(τ), β1(τ), α2(τ), β2(τ), τ)dτ, (25)

α2(t)− α2(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1µ3(α1, β1, α2, β2, τ)dτ, (26)

β2(t)− β2(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1µ4(α1, β1, α2, β2, τ)dτ. (27)

When we use the two-step Lagrange polynomial interpolation, we can obtain

α1(t)− α1(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1Q1,m(τ)dτ, (28)

β1(t)− β1(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1Q2,m(τ)dτ, (29)

α2(t)− α2(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1Q3,m(τ)dτ, (30)

β2(t)− β2(0) =
k

Γ($)

∞

∑
m=0

∫ tm+1

tm
τk−1(tm+1 − τ)$−1Q4,m(τ)dτ, (31)
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where,

Q1,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m µ1(α1(τm), β1(τm), α2(τm), β2(τm), τm)−

τ − tm

tm − tm−1

×tk−1
m−1µ1(α1(τm−1), β1(τm−1), α2(τm−1), β2(τm−1), τm−1), (32)

Q2,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m µ2(α1(τm), β1(τm), α2(τm), β2(τm), τm)−

τ − tm

tm − tm−1

×tk−1
m−1µ2(α1(τm−1), β1(τm−1), α2(τm−1), β2(τm−1), τm−1), (33)

Q3,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m µ3(α1(τm), β1(τm), α2(τm), β2(τm), τm)−

τ − tm

tm − tm−1

×tk−1
m−1µ3(α1(τm−1), β1(τm−1), α2(τm−1), β2(τm−1), τm−1), (34)

Q4,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m µ4(η4(τm), β1(τm), α2(τm), β2(τm), τm)−

τ − tm

tm − tm−1

×tk−1
m−1µ4(α1(τm−1), β1(τm−1), α2(τm−1), β2(τm−1), τm−1). (35)

To obtain the numerical solutions of (12)–(15) involving the power-law kernel, we integrate
Equations (28)–(31) directly

α1(tn+1) = α1(0) +
kh$

Γ($ + 2)

n

∑
m=0

tk−1
m µ1(α1(tm), β1(tm), α2(tm), β2(tm), tm)Ξ1(n, m)

− tk−1
m−1µ1(α1(τm−1), β1(tm−1), α2(tm−1), β2(tm−1), tm−1)Ξ2(n, m)

)
, (36)

β1(tn+1) = β1(0) +
kh$

Γ($ + 2)

n

∑
m=0

tk−1
m µ2(α1(tm), β1(tm), α2(tm), β2(tm), tm)Ξ1(n, m)

− tk−1
m−1µ2(α1(τm−1), β1(tm−1), α2(tm−1), β2(tm−1), tm−1)Ξ2(n, m)

)
, (37)

α2(tn+1) = α2(0) +
kh$

Γ($ + 2)

n

∑
m=0

tk−1
m µ3(α1(tm), β1(tm), α2(tm), β2(tm), tm)Ξ1(n, m)

− tk−1
m−1µ4(α1(τm−1), β1(tm−1), α2(tm−1), β2(tm−1), tm−1)Ξ2(n, m)

)
, (38)

β2(tn+1) = β2(0) +
kh$

Γ($ + 2)

n

∑
m=0

tk−1
m µ4(α1(tm), β1(tm), α2(tm), β2(tm), tm)Ξ1(n, m)

− tk−1
m−1µ4(α1(τm−1), β1(tm−1), α2(tm−1), β2(tm−1), tm−1)Ξ2(n, m)

)
, (39)

Ξ1(n, m) =
(
(n + 1−m)$(n−m + 2 + $)− (n−m)$ × (n−m + 2 + 2$)

)
, (40)

Ξ2(n, m) =
(
(n + 1−m)$+1 − (n−m)$(n−m + 1 + $)

)
. (41)

2.3. FFMMER Scheme via the Exponential Decay Kernel

In the present subsection, we consider the following fractal–fractional operator with
the exponential decay kernel to the FFMMER described above.

FFE
0 D$

t β1(t) = −δα1(t)β1(t) + γα2(t), (42)
FFE
0 D$

t α1(t) = −δα1(t)β1(t) + (γ + σ)α2(t), (43)
FFE
0 D$

t β2(t) = δα1(t)β1(t)− (γ + σ)α2(t), (44)
FFE
0 D$

t α2(t) = σα2(t). (45)
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For the successive approximations of the system of Equations (42)–(45), we follow the
same procedures as in [23], and obtain

α1(t)− α1(0) =
ktk−1(1− $)

M($)
µ1(α1, β1, α2, β2, t)

+
$

M($)

∫ t

0
k τk−1µ1(α1, β1, α2, β2, τ)dτ, (46)

β1(t)− β1(0) =
ktk−1(1− $)

M($)
µ2(α1, β1, α2, β2, t)

+
$

M($)

∫ t

0
k τk−1µ2(α1, β1, α2, β2, τ)dτ, (47)

α2(t)− α2(0) =
ktk−1(1− $)

M($)
µ3(α1, β1, α2, β2, t)

+
$

M($)

∫ t

0
k τk−1µ3(α1, β1, α2, β2, τ)dτ, (48)

β2(t)− β2(0) =
ktk−1(1− $)

M($)
µ4(α1, β1, α2, β2, t)

+
$

M($)

∫ t

0
k τk−1µ4(α1, β1, α2, β2, τ)dτ. (49)

Using t = tn+1, the following is established:

α1(tn+1)− α1(tn) =
ktk−1(1− $)

M($)
µ1(α1, β1, α2, β2, t)

+
$

M($)

∫ tn+1

0
k τk−1µ1(α1, β1, α2, β2, τ)dτ, (50)

β1(tn+1)− β1(tn) =
ktk−1(1− $)

M($)
µ2(α1, β1, α2, β2, t)

+
$

M($)

∫ tn+1

0
k τk−1µ2(α1, β1, α2, β2, τ)dτ, (51)

α2(tn+1)− α2(tn) =
ktk−1(1− $)

M($)
µ3(α1, β1, α2, β2, t)

+
$

M($)

∫ tn+1

0
k τk−1µ3(α1, β1, α2, β2, τ)dτ, (52)

β2(tn+1)− β2(tn) =
ktk−1(1− $)

M($)
µ4(α1, β1, α2, β2, t)

+
$

M($)

∫ tn+1

0
k τk−1µ4(α1, β1, α2, β2, τ)dτ. (53)
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Further, we have the following:

α1(tn+1)− α1(tn) =
ktk−1

n (1− $)

M($)
µ1(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ1(α1, β1, α2, β2, tn−1)

+
$

M($)

∫ tn+1

tn
k τk−1µ1(α1, β1, α2, β2, τ)dτ, (54)

β1(tn+1)− β1(tn) =
ktk−1

n (1− $)

M($)
µ2(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ2(α1, β1, α2, β2, tn−1)

+
$

M($)

∫ tn+1

tn
k τk−1µ2(α1, β1, α2, β2, τ)dτ, (55)

α2(tn+1)− α2(tn) =
ktk−1

n (1− $)

M($)
µ3(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ3(α1, β1, α2, β2, tn−1)

+
$

M($)

∫ tn+1

tn
k τk−1µ3(α1, β1, α2, β2, τ)dτ, (56)

β2(tn+1)− β2(tn) =
ktk−1

n (1− $)

M($)
µ4(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ4(α1, β1, α2, β2, tn−1)

+
$

M($)

∫ tn+1

tn
k τk−1µ4(α1, β1, α2, β2, τ)dτ. (57)

It follows from the Lagrange polynomial interpolation and integration of the following
expressions:

α1(tn+1)− α1(tn) =
ktk−1

n (1− $)

M($)
µ1(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ1(α1, β1, α2, β2, tn−1) +

kh$

2M($)

×
(

3tk−1
n µ1(α1, β1, α2, β2, tn)− tk−1

n−1µ1(α1, β1, α2, β2, tn−1), (58)

β1(tn+1)− β1(tn) =
ktk−1

n (1− $)

M($)
µ2(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ2(α1, β1, α2, β2, tn−1) +

kh$

2M($)

×
(

3tk−1
n µ2(α1, β1, α2, β2, tn)− tk−1

n−1µ2(α1, β1, α2, β2, tn−1), (59)
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α2(tn+1)− α2(tn) =
ktk−1

n (1− $)

M($)
µ3(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ3(α1, β1, α2, β2, tn−1) +

kh$

2M($)

×
(

3tk−1
n µ3(α1, β1, α2, β2, tn)− tk−1

n−1µ3(α1, β1, α2, β2, tn−1), (60)

β2(tn+1)− β2(tn) =
ktk−1

n (1− $)

M($)
µ4(α1, β1, α2, β2, tn)

−
ktk−1

n−1(1− $)

M($)
µ4(α1, β1, α2, β2, tn−1) +

kh$

2M($)

×
(

3tk−1
n µ4(α1, β1, α2, β2, tn)− tk−1

n−1µ4(α1, β1, α2, β2, tn−1). (61)

Finally, it is appropriate to write the successive approximations of the system
Equations (42)–(45) as follows:

α1(tn+1)− α1(tn) = ktk−1
n

( (1− $)

M($)
+

3h$

2M

)
µ1(α1, β1, α2, β2, tn)

− ktk−1
n−1

( (1− $)

M($)
+

h$

2M($)

)
µ1(α1, β1, α2, β2, tn−1), (62)

β1(tn+1)− β1(tn) = ktk−1
n

( (1− $)

M($)
+

3h$

2M

)
µ2(α1, β1, α2, β2, tn)

− ktk−1
n−1

( (1− $)

M($)
+

h$

2M($)

)
µ2(α1, β1, α2, β2, tn−1), (63)

α2(tn+1)− α2(tn) = ktk−1
n

( (1− $)

M($)
+

3h$

2M

)
µ3(α1, β1, α2, β2, tn)

− ktk−1
n−1

( (1− $)

M($)
+

h$

2M($)

)
µ3(α1, β1, α2, β2, tn−1), (64)

β2(tn+1)− β2(tn) = ktk−1
n

( (1− $)

M($)
+

3h$

2M

)
µ4(α1, β1, α2, β2, tn)

− ktk−1
n−1

( (1− $)

M($)
+

h$

2M($)

)
µ4(α1, β1, α2, β2, tn−1). (65)

2.4. FFMMER Scheme via the Mittag-Leffler Kernel

Finally, in this subsection, we consider FFMMER with the Mittag-Leffler kernel and,
following the same procedure as in [23], we obtain

FFM
0 D$

t α1(t) = −δα1(t)β1(t) + γα2(t), (66)
FFM
0 D$

t β1(t) = −δα1(t)β1(t) + (γ + σ)α2(t), (67)
FFM
0 D$

t β2(t) = δα1(t)β1(t)− (γ + σ)α2(t), (68)
FFM
0 D$

t α2(t) = σα2(t). (69)
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We treat the following system Equations (66)–(69) based on Mittag-Leffler kernel as in [23],
and we have

α1(t)− α1(0) =
ktk−1(1− $)

A($)
µ1(α1, β1, α2, β2, t)

+
$

A($)Γ($)

∫ t

0
k τk−1(t− τ)$−1µ1(α1, β1, α2, β2, τ)dτ, (70)

β1(t)− β1(0) =
ktk−1(1− $)

A($)
µ2(α1, β1, α2, β2, t)

+
$

A($)Γ($)

∫ t

0
k τk−1(t− τ)$−1µ2(α1, β1, α2, β2, τ)dτ, (71)

α2(t)− α2(0) =
ktk−1(1− $)

A($)
µ3(α1, β1, α2, β2, t)

+
$

A($)Γ($)

∫ t

0
k τk−1(t− τ)$−1µ3(α1, β1, α2, β2, τ)dτ, (72)

β2(t)− β2(0) =
ktk−1(1− $)

A($)
µ4(α1, β1, α2, β2, t)

+
$

A($)Γ($)

∫ t

0
k τk−1(t− τ)$−1µ4(α1, β1, α2, β2, τ)dτ. (73)

When tn+1, we have the following:

α1(tn+1)− α1(0) =
ktk−1

n (1− $)

A($)
µ1(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

∫ tn+1

0
k τk−1(tn+1 − τ)$−1µ1(α1, β1, α2, β2, τ)dτ, (74)

β1(tn+1)− β1(0) =
ktk−1

n (1− $)

A($)
µ2(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

∫ tn+1

0
k τk−1(tn+1 − τ)$−1µ2(α1, β1, α2, β2, τ)dτ, (75)

α2(tn+1)− α2(0) =
ktk−1

n (1− $)

A($)
µ3(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

∫ tn+1

0
k τk−1(tn+1 − τ)$−1µ3(α1, β1, α2, β2, τ)dτ, (76)

β2(tn+1)− β2(0) =
ktk−1

n (1− $)

A($)
µ4(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

∫ tn+1

0
k τk−1(tn+1 − τ)$−1µ4(α1, β1, α2, β2, τ)dτ, (77)

We approximate the integrals of Equations (74)–(77)
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α1(tn+1)− α1(0) =
ktk−1

n (1− $)

A($)
µ1(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

n

∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)$−1µ1(α1, β1, α2, β2, τ)dτ, (78)

β1(tn+1)− β1(0) =
ktk−1

n (1− $)

A($)
µ2(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

n

∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)$−1µ2(α1, β1, α2, β2, τ)dτ, (79)

α2(tn+1)− α2(0) =
ktk−1

n (1− $)

A($)
µ3(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

n

∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)$−1µ3(α1, β1, α2, β2, τ)dτ, (80)

β2(tn+1)− β2(0) =
ktk−1

n (1− $)

A($)
µ4(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
$

A($)Γ($)

n

∑
m=0

∫ tm+1

tm
k τk−1(tn+1 − τ)$−1µ4(α1, β1, α2, β2, τ)dτ. (81)

Now, when we approximate the integrals in Equations (78)–(81), we obtain the following
numerical schemes:

α1(tn+1)− α1(0) =
ktk−1

n (1− $)

A($)
µ1(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
kh$

A($)Γ($ + 2)

n

∑
m=0

[
tk−1
m µ1(α1(tm), β1(tm), α2(tm), β2(tm), (tm))Ξ1(n, m)

− tk−1
m−1µ1(α1(tm−1), β1(tm−1), α2(tm−1), β2(tm−1), (tm−1))Ξ2(n, m)

]
, (82)

β1(tn+1)− β1(0) =
ktk−1

n (1− $)

A($)
µ2(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
kh$

A($)Γ($ + 2)

n

∑
m=0

[
tk−1
m µ2(α1(tm), β1(tm), α2(tm), β2(tm), (tm))Ξ1(n, m)

− tk−1
m−1µ2(α1(tm−1), β1(tm−1), α2(tm−1), β2(tm−1), (tm−1))Ξ2(n, m)

]
, (83)

α2(tn+1)− α2(0) =
ktk−1

n (1− $)

A($)
µ3(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
kh$

A($)Γ($ + 2)

n

∑
m=0

[
tk−1
m µ3(α1(tm), β1(tm), α2(tm), β2(tm), (tm))Ξ1(n, m)

− tk−1
m−1µ3(α1(tm−1), β1(tm−1), α2(tm−1), β2(tm−1), (tm−1))Ξ2(n, m)

]
, (84)
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β2(tn+1)− β2(0) =
ktk−1

n (1− $)

A($)
µ4(α1(tn), β1(tn), α2(tn), β2(tn), tn)

+
kh$

A($)Γ(α + 2)

n

∑
m=0

[
tk−1
m µ4(α1(tm), β1(tm), α2(tm), β2(tm), (tm))Ξ1(n, m)

− tk−1
m−1µ4(α1(tm−1), β1(tm−1), α2(tm−1), β2(tm−1), (tm−1))Ξ2(n, m)

]
. (85)

3. Numerical Results

In this section, we investigate the dynamics behavior and the numerical results of
the concentration of a substrate, the concentration of an enzyme, the concentration of
the resulting complex, and the concentration of the resulting product in the sense of
fractal–fractional operators via power law, exponential decay, and Mittag-Leffler kernels or
different fractal dimensions k and fractional order $.

Figure 1 shows a comparison of the numerical solutions for Equations (36)–(39) of
the concentration of the substrate, the concentration of an enzyme, the concentration of
the resulting complex, and the concentration of the resulting product with the numerical
solutions founded for those concentrations using the FDM.
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Figure 1. Comparison between the numerical solutions of Equations (36)–(39) via power-law kernel
and numerical solution based on finite differences method for $ = 1, k = 1, δ = 1, γ = 2, σ = 1, and
h = 0.01. Black solid line: numerical solutions of Equations (36)–(39); red dashed line: numerical
solutions of Equations (12)–(15) using finite differences method. (a) α1(t), (b) β1(t), (c) α2(t), and
(d) β2(t).

In this figure, the initial conditions are α1(0) = 0.1, β1(0) = 0.5, α2(0) = 9, and
β2(0) = 2, and the parameters values are δ = 1, γ = 2, σ = 1, and h = 0.01. Figure 2
shows the absolute error between the approximate solutions of Equations (82)–(85) and the
approximation solutions in [24] according to the initial conditions α1(0) = 1, β1(0) = 0.1,
α2(0) = 2, and β2(0) = 0.2. Here, the fractal dimension and fractional order are given by
0.8 and 0.9, respectively, with δ = 1, γ = 0.1, σ = 0.2, and h = 0.003.

Figure 3 represents the behavior of the dynamics of the numerical solutions of Equa-
tions (36)–(39), (62)–(65), and (82)–(85) for the concentration of a substrate, the concentration
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of an enzyme, the concentration of the resulting complex, and the concentration of the
resulting product via power law, exponential decay, and Mittag-Leffler kernels, in (a)–(c),
respectively.

In this figure, we show the approximate solutions according to the initial conditions
α1(0) = 1, β1(0) = 0.1, α2(0) = 2, and β2(0) = 0.2 with $ = 1, k = 0.8, δ = 1, γ = 2, σ = 1,
and h = 0.003.

In addition, Figure 4 shows the behavior of the dynamics of the numerical solutions of
Equations (36)–(39), (62)–(65), and (82)–(85) with the same initial conditions and parameters
as in Figure 3 but with $ = 0.8, and k = 0.9.
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Figure 2. Cont.
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Figure 2. Absolute error between the numerical solutions of Equations (82)–(85) and [24] based on
Mittag-Leffler kernel for $ = 0.9, k = 0.8, δ = 1, γ = 2, σ = 1, and h = 0.0003. (a) Absolute error for
α1(t), (b) Absolute error for β1(t), (c) Absolute error for α2(t), and (d) Absolute error for β2(t).
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Figure 3. The numerical solutions of the fractal–fractional Michaelis–Menten enzymatic reaction for
$ = 1, k = 0.8, δ = 1, γ = 2, σ = 1, and h = 0.003. (a) The numerical solutions of Equations (36)–(39)
based on power-law kernel; (b) The numerical solutions of Equations (62)–(65) based on exponential
decay kernel; (c) The numerical solutions of Equations (82)–(85) based on Mittag-Leffler kernel
(orange line: α1(t); red line: β1(t); green color: α2(t); blue line: β2(t)).
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Figure 4. The numerical solutions of the fractal–fractional Michaelis-Menten enzymatic reaction for
$ = 0.8, k = 0.9, δ = 1, γ = 2, σ = 1, and h = 0.003. (a) The numerical solutions of Equations (36)–(39)
based on power-law kernel; (b) The numerical solutions of Equations (62)–(65) based on exponential
decay kernel; (c) The numerical solutions of Equations (82)–(85) based on Mittag-Leffler kernel
(orange line: α1(t); red line: β1(t); green line: α2(t); blue line: β2(t)).

4. Discussion

In the last section, we illustrated the numerical results graphically through four figures
via the the fractal–fractional Michaelis–Menten enzymatic reaction based on power law,
exponential decay, and Mittag-Leffler kernels. Firstly, validity of the results is verified
by comparing the numerical schemes of Equations (36)–(39) with the numerical results
using the finite differences method when the fractal dimension and fractional order are
integers. The comparison was made in the case of power-law kernel in Figure 1, when
$ = 1 and k = 1 , due to the results, are very close to each other for all the schemes of
Equations (36)–(39), (62)–(65), and (82)–(85). As for the verification in the case of the fractal
dimension and fractional order, there are no previous studies that can be compared with
it, except in the case of Mittag-Leffler kernel [24]. In Figure 2, the absolute error between
our numerical results and the numerical results in [24] was illustrated. As seen from this
figure, we can see the order of error is 10−3. We can increase this order by increasing the
iteration in our results and the terms in [24]. Despite this, the accuracy and effectiveness
of the algorithm presented in this work, its accuracy and stability, in general, was verified
in [23]. In Figures 3 and 4, the effect of the fractal dimension and fractional order on the
behavior of approximate solutions was studied. In Figure 3, we found that the strong
coupling between α1 and α2 and β1 and β2, besides all the approximate solutions, intersect
with each other after a short time. In Figure 3, we noticed that there is no coupling between
α1 and α2 and β1 and β2, at least at the beginning of reactions. Additionally, we observed
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in Figure 3 that there is an oscillation at the beginning of the reaction, especially in the case
of the existence of the exponential decay and Mittag-Leffler kernels.

5. Conclusions

We have proposed three new models of Michaelis–Menten enzymatic reaction by
replacing the classical differential derivatives with fractal–fractional derivatives based on
power law, exponential decay, and Mittag-Leffler kernels. The construction of the successive
numerical iterations was obtained according to the theory of fractional calculus and with
the help of Lagrangian interpolation for the three kernels. Validation of the numerical
results based on power law in case of integer order compared with finite differences method
was performed, and found excellent agreement in comparison with previous results in [24],
in the case of fractal–fractional, and the error was of the order of 10−3.

However, the comparison was only in the case of Mittag-Leffler kernel, due to the
rarity or nonexistence of the studies carried out for the power-law and exponential decay
kernels. Of course, what is meant by the previous studies is the sense of fractal–fractional
differential. Hence, this is still a future goal for us and for many researchers, to develop
many methods known in the sense of fractal-fraction differentials. Finally, the effects of
the variety of values of the fractal dimension and fractional order on the dynamics of
fractal–fractional enzymatic reaction were investigated with power law, exponential decay,
and Mittag-Leffler kernels.

All calculations were performed using the Mathematica program.
In our future works, we propose to focus our attention on developing this study with

the help of other special functions and spectral collocation methods. In addition, we can
use Newton polynomial interpolation instead of Lagrange polynomial interpolation and
obtain new results. Finally, due to the similarity of the rate equations we have used in
this work to those associated with epidemiology and, in particular, the current COVID-19
pandemic, we will endeavor to extend our work to some models that are proposed in [32].
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