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Abstract: In this paper, we consider numerical solutions for a general form of fractional delay
differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional
integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs.
The main characteristic of this approach is, by utilizing the operational matrix of fractional integration,
to reduce the given differential equation to a set of algebraic equations with unknown coefficients.
This equation system can be solved efficiently using a computer algorithm. A bound on the error
for the best approximation and fractional integration are also given. Several examples are given to
illustrate the validity and applicability of the technique. The efficiency of the presented method is
revealed by comparing results with some existing solutions, the findings of some other approaches
from the literature and by plotting absolute error figures.

Keywords: fractional delay differential equations; numerical solutions; fractional Taylor basis; opera-
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1. Introduction

Fractional calculus is a field of mathematical analysis which might be represented
as the generalization of integration and differentiation to arbitrary orders. The history
of this theory started with the speculations of G.W. Leibniz (1695) and L. Euler (1730).
Despite their long history, fractional calculus and the corresponding fractional differential
equations (FDEs) are only recently garnering attention and popularity. There are several
different definitions of fractional derivatives in the literature, including Riemann–Liouville,
Caputo, Grünwald–Letnikov, Weyl, Marchaud, and Prabhakar, to mention just a few of the
well-known ones. The history of this topic can be found in [1–4].

In point of fact, fractional calculus provides mathematical modeling of various phe-
nomena, sometimes in a stronger way than ordinary calculus. When compared with
classical calculus, fractional calculus has memory effects which are useful for modeling
long-time interactions. Due to this, it can illustrate many different kinds of dynamical and
engineering models in a more accurate way. Over the last few decades, applications were
investigated in numerous fields of science and engineering such as bioengineering [5],
biology [6], chaotic systems [7], chemistry [8], control theory [9,10], economics [11], electro-
chemistry [12], finance [13], mechanics [14], optics [15], physics [16], rheology [17], social
sciences [18], viscoelasticity [19], and so forth.

The importance and useful properties of FDEs leads them and their solution methods
to attract widespread interest. Moreover, since analytical solutions such as those using
matrix Mittag–Leffler functions [20] or Laplace transforms [21] are often impossible or
impractical for more advanced FDEs, numerical methods are crucial for solving FDEs
in practice. A variety of such methods have been established in the literature, such as
the q-homotopy analysis transform method [22], the B-spline collocation method [23],
the predictor–corrector method [24], the space-spectral time-fractional Adams–Bashforth–
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Moulton method [25], the fractional Taylor operational matrix method [26], the Bernoulli
polynomials method [27], the differential transform method [28], and so on.

Spectral methods are efficient numerical techniques used to solve differential equations
(DEs) in applied mathematics. In 1938, spectral methods were introduced by Lanczos [29]
by showing the powerful role of Fourier series and Chebyshev polynomials for solutions
of some problems. Spectral methods have received considerable interest in recent years,
solving many different types of integral and differential equations numerically, because of
their easy applicability over both finite and infinite intervals. When the solution of a given
problem is smooth, spectral methods have very good error properties, namely the so-called
“exponential convergence”. These highly accurate methods are based on expressing the
approximate solution of a DE as a linear combination of a chosen set of orthogonal basis
functions and choosing the coefficients in the sum in order to satisfy the solution of the
DE [30]. In general, there are three types of such methods; collocation, Tau, and Galerkin.
In our work, for discretization of FDDEs, we will use a spectral collocation method with a
fractional Taylor basis to approximate the functions. Collocation is based on interpolation;
similarly to the finite difference method, the collocation spectral method uses collocation
points, namely a set of grid points in the domain.

A delay differential equation (DDE) is a special kind of differential equation, which
lies somewhere between ordinary differential equations (ODEs) and partial differential
equations (PDEs); the derivative of the unknown function at a certain time is given in terms
of the values of the function at previous times. Mathematical models that utilize DDEs turn
out to be beneficial, particularly when the description of the investigated systems depends
not only on the status of a system in that moment, but also in the past. There are different
types of DDEs with different types of delays, such as constant delay, time-dependent delay,
state-dependent delay, neutral delay, stochastic delay, and so on. DDEs play an important
role in various applied sciences such as biology, electrical networks, environment science,
life science, mechanics, physiology, and population dynamics; see, for instance, [31–33] and
references therein.

Even though delays can be recognised everywhere in real world systems and there
has been widespread interest in the study of DDEs for many years, FDDEs are a very recent
topic. The FDDE is a generalization of the DDE to arbitrary non-integer order. Since a
small delay can have a great impact, FDDEs have gained considerable interest for modeling
some real world problems. FDDEs have many applications in different scientific disciplines
such as biology, control theory, chemistry, economics, electrodynamics, finance, vibration
theory, and so on [34–36]. For pure mathematical results, we refer to [37] for existence and
uniqueness, Ref. [38–40] for stability, and [41] for controllability. For most FDDEs, exact
solutions are not known. Therefore, various numerical techniques such as the Legendre
wavelet method [42], the Chebyshev operational matrix method [43], the Bernoulli wavelets
method [44], the shifted Gegenbauer–Gauss collocation method [45], the Haar wavelet
collocation method [46], the modified operational matrix method [47], the discontinuous
Galerkin method [48], spectral methods [49], etc., have been developed and applied to
provide approximate solutions.

The classical linear DDE is given as

ω
′
(t) = f

(
t, ω(t), ω

′
(t), ω(ct− τ), ω

′
(ct− τ)

)
, t ∈ [0, R], (1)

where ω is the solution to be determined, f is a known analytic function, and c, τ, ct− τ
denote a constant, delay, and delay argument, respectively, with 0 < c ≤ 1.

In this paper, motivated by the powerful properties of fractional calculus, especially
the non-local nature of fractional operators, we replace the integer order derivative of
DDE (1) with a non-integer order Caputo derivative, and focus on numerical solutions for
the following general form of FDDE which involves more than one fractional differential
operator:

Dµω(t) = f
(

t, ω(t), Dβω(t), ω(ct− τ), Dγω(ct− τ)
)

, t ∈ [0, R], (2)
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with initial conditions
ωr(0) = λr, r = {0, 1, ..., dµe − 1}, (3)

and
ω(t) = g(t), t < 0.

where Dµ, Dβ, Dγ represent the Caputo fractional derivatives of order µ, β, γ, respectively,
with µ ≥ β and γ > 0, ω is the solution to be determined, and f and g are known analytic
functions.

The main purpose of this work is to find an approximate solution of the problem
given in (2) and (3) using a spectral method with non-integer order Taylor basis. In order
to realize this aim, we derive the operational matrix of fractional integration by using a
fractional order Taylor basis. Then, by utilizing this matrix, we obtain a system of linear
algebraic equations. The solution of this system for unknown coefficients will give an
approximate solution for the FDDE.

Beside the advantages of using a Taylor basis, like finding fractional derivatives and
approximating the functions easily, it has also led us to create an operational matrix without
any approximation, that is, approximating the unknown function is the only approximation
involved in this method. Obviously, in addition to the important properties of spectral
methods mentioned above, using a Taylor basis is important in order to obtain better
results. In general, if the solution of a given problem is smooth and analytic on the defined
interval, spectral methods will obtain highly accurate results. However, these efficient
methods become less accurate when applied to problems with discontinuous coefficients
and complex geometries. Moreover, the accuracy of derivatives acquired by term-by-term
differentiation of a truncated expansion naturally deteriorates [50].

The structure of this paper is as follows. Section 2 comprises a brief introduction to the
key definitions and properties of fractional calculus. Section 3 introduces an operational
matrix for fractional integration, constructed by the use of fractional Taylor vectors. In
Section 4, we propose a numerical method to solve the given FDDE. In Section 5, we give
an error bound for the best approximation and fractional integration. In Section 6, the
proposed scheme is applied to six examples to indicate its applicability. Conclusions and
suggestions for future work are presented in Section 7. A numerical algorithm for the
present method is provided in Appendix A.

2. Preliminaries and Definitions
2.1. Fractional Calculus

Definition 1. Let ω(t) be an integrable function. The Riemann–Liouville (R–L) fractional integral
to order µ of ω(t) is given as

Iµω(t) =


1

Γ(µ)

∫ t

0
(t− v)µ−1ω(v)dv, µ > 0

ω(t), µ = 0
(4)

When employed to a power function, the R–L fractional integral gives the following result:

Iµ(t)ρ =
Γ(ρ + 1)

Γ(ρ + µ + 1)
(t)ρ+µ, µ ≥ 0, ρ > −1. (5)

The R–L fractional integral operator has a semigroup property, that is:

Iµ Iβω(t) = Iβ Iµω(t), µ, β > 0,

and the operator is linear, namely

Iµ(C1ω1(t) + C2ω2(t)) = C1 Iµω1(t) + C2 Iµω2(t),

for any two functions ω1, ω2 and constants C1, C2.
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Definition 2. The Caputo fractional derivative of ω(t) to order µ is given as

Dµω(t) = Iq−µ

(
dq

dtq ω(t)
)

, q− 1 < µ ≤ q, j ∈ N. (6)

The Newton–Leibniz identity yields a crucial relation among the R–L fractional integral and
the Caputo fractional derivative as follows:

Iµ(Dµω(t)) = ω(t)−
dµe−1

∑
r=0

ω(r)(0)
tr

r!
. (7)

The Taylor vector with non-integer order is represented as [51],

Φmσ(t) =
[
1, tσ, t2σ, ..., tmσ

]
(8)

for m ∈ N and σ > 0.

2.2. Function Approximation by Fractional Taylor Vector

Let Φmσ(t) ⊂ H, where H = L2[0, 1]. Each ω ∈ H has a unique best approximation
ω∗ ∈ B, since B = span

{
1, tσ, t2σ, ..., tmσ

}
is a finite-dimensional vector subspace of H, so

that
∀ω̂ ∈ B, ‖ω−ω∗‖ ≤ ‖ω− ω̂‖.

Therefore, the function ω can be expanded in terms of the fractional Taylor vector as:

ω ' ω∗ = lim
n→∞

n

∑
i=0

citiσ (9)

Truncating the series in Equation (9) to a finite number of terms, we get

y ' y∗ =
m

∑
i=0

citiσ = CTΦmσ(t) (10)

where the vector of coefficients C is given by

CT = [c0, c1, c2, ..., cm]. (11)

3. Construction of Operational Matrix of Fractional Integration

In this part, we create the operational matrix of fractional integration by use of the
fractional Taylor vector.

Let us define the R–L fractional integration to order µ of the Taylor vector given in
(8) as

IµΦmσ(t) = M(t,µ)Φmσ(t), (12)

where M(t,µ) is the operational matrix of fractional integration of order µ with (m + 1)×
(m + 1) dimensions.

By using feature (5) of the R–L fractional integral and the vector (8), we get

Iµ(Φmσ(t)) =
[

1
Γ(µ+1) tµ, Γ(σ+1)

Γ(σ+µ+1) tσ+µ, Γ(2σ+1)
Γ(2σ+µ+1) t2σ+µ, ..., Γ(mσ+1)

Γ(mσ+µ+1) tmσ+µ
]
. (13)

Therefore, we can write (13) as

Iµ(Φmσ(t)) = tµPµΦmσ(t). (14)
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where

Pµ = diag
[

1
Γ(µ + 1)

,
Γ(σ + 1)

Γ(σ + µ + 1)
,

Γ(2σ + 1)
Γ(2σ + µ + 1)

, ...,
Γ(mσ + 1)

Γ(mσ + µ + 1)

]
.

If we define Θ(t,µ) = tµPµ, then the fractional Taylor operational matrix of fractional
integration can be expressed as

M(t,µ) = diag[Θ(t,µ), Θ(t,µ), ..., Θ(t,µ)]. (15)

4. Method of Solution

In this section, we define the proposed technique for the construction of a numerical
solution for a general form of FDDEs. The numerical algorithm, based on the fractional
Taylor operational matrix of fractional integration, is given below.

Let us recall and focus on the fractional order delay differential equations given in (2)
and (3):

Dµω(t) = f
(

t, ω(t), Dβω(t), ω(ct− τ), Dγω(ct− τ)
)

, t ∈ [0, R], (16)

with initial conditions
ωr(0) = λr, r = {0, 1, ..., dµe − 1}, (17)

and
ω(t) = g(t), t < 0.

We start by expanding Dµω(t) by using a fractional Taylor basis vector as follows:

Dµω(t) = CTΦmσ(t). (18)

As a next step, by applying the R–L fractional integral of order µ on (18) and using
initial conditions (17), we get

ω(t) '

CT IµΦmσ(t) +
dµe−1

∑
r=0

λr
r! (t)

r, if t ∈ [0, R],

g(t), if t < 0.
(19)

By using the fractional Taylor operational matrix of integration (15), we can rewrite
(19) as

ω(t) '

CT M(t,µ)Φmσ(t) +
dµe−1

∑
r=0

λr
r! (t)

r, if t ∈ [0, R],

g(t), if t < 0.
(20)

Further, applying a differential operator of order β on both sides of (19), we have

Dβω(t) '

CT Iµ−βΦmσ(t) +
dµe−1

∑
r=0

λr
r! Dβ(tr), if t ∈ [0, R],

Dβg(t), if t < 0,
(21)

and therefore

Dβω(t) '

CT M(t,µ−β)Φmσ(t) +
dµe−1

∑
r=0

λr
r! Dβ(tr), if t ∈ [0, R],

Dβg(t), if t < 0.
(22)
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Similarly, we can approximate the delay term as

ω(ct− τ) '

CT M(ct−τ,µ)Φmσ(ct− τ) +
dµe−1

∑
r=0

λr
r! (ct− τ)r, if ct ≥ τ,

g(ct− τ), if ct < τ.
(23)

Now, by taking a differential operator of order γ on both sides of (23), we get

Dγω(ct− τ) '

CT M(ct−τ,µ−γ)Φmσ(ct− τ) +
dµe−1

∑
r=0

λr
r! Dγ(ct− τr), if ct ≥ τ,

Dγg(ct− τ), if ct < τ.
(24)

Hence, by substituting Equations (18), (20) and (22)–(24) into Equation (16), we get an
algebraic equation with unknown coefficient CT .

As a final step, by using the collocation points tr = r/m where r = 0, 1, . . . , m, we
get a system of m + 1 linear algebraic equations with a vector of unknown constants
CT = [c0, c1, c2, . . . , cm]. This system might be solved efficiently for the vector of coeffi-
cients CT .

5. Error Estimation

To obtain an upper bound for the best approximation, we use the generalized Taylor’s
formula.

Theorem 1 (Generalized Taylor’s Formula [52]). Let Dkµω(t) ∈ C(0, 1] for k = 0, 1, . . . , m.
Then we have

ω(t) =
m

∑
j=0

tjµ

Γ(jµ + 1)
Djµω(0+) +

t(m+1)µ

Γ((m + 1)µ + 1)
D(m+1)µω(η),

with 0 < η ≤ t, ∀t ∈ (0, 1]. Also,∣∣∣∣∣ω(t)−
m

∑
j=0

tjµ

Γ(jµ + 1)
Djµω(0+)

∣∣∣∣∣ ≤ Nµ
t(m+1)µ

Γ((m + 1)µ + 1)

where Nµ ≥
∣∣∣D(m+1)µω(η)

∣∣∣.
In case µ = 1, the generalized Taylor’s formula reduces to the classical one.

5.1. Error Bound for the Best Approximation

In this section, we obtain an error bound for the best approximation by the following
theorem.

Theorem 2 ([51]). Let Dkµω(t) ∈ C(0, 1] for k = 0, 1, . . . , m and B = span{1, tσ, t2σ, . . . , tmσ}.
If ωm = CTTmσ is the best approximation of y from B, then

‖ω(t)−ωN(t)‖2 ≤
Nµ

Γ((m + 1)µ + 1)

√
1

(2(m + 1) + 1)µ
,

where Nµ ≥
∣∣∣D(m+1)µω(t)

∣∣∣.
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Proof of Theorem 2. Since ωN is the best approximation of ω from B, and by use of the
generalized Taylor’s formula, we get

‖ω−ωN‖2 ≤
N2

µ

Γ((m + 1)µ + 1)2

1∫
0

t2(m+1)µtµ−1dt,

=
N2

µ

Γ((m + 1)µ + 1)2
1

(2(m + 1) + 1)µ
. (25)

Now, by taking the square root of Equation (25), the desired result can be obtained.

5.2. Error Bound for Fractional Integration

The error bound for fractional integration can be obtained by the following theorem.

Theorem 3 ([51]). Let all conditions of Theorem 2 be satisfied and µ > 1. Then

‖Iµω(t)− IµωN(t)‖2 ≤
Nµ

Γ(µ)Γ((m + 1)µ + 1)

√
1

(2(m + 1) + 1)µ
.

Proof of Theorem 3. By using the definition of the R–L fractional integral of order µ,
we have

‖Iµω(t)− IµωN(t)‖2 = ‖Iµ(ω(t)−ωN(t))‖2

≤ 1
Γ(µ)

t∫
0

∥∥∥(t− s)µ−1(ω(s)−ωN(s))
∥∥∥

2
ds (26)

≤ 1
Γ(µ)

1∫
0

∥∥∥(1− s)µ−1(ω(s)−ωN(s))
∥∥∥

2
ds

≤ 1
Γ(µ)

t∫
0

‖(ω(s)−ωN(s))‖2ds.

With use of (25) and (26), the desired result can be obtained.

It is noted that the error investigation for the solution of the FDDE might be reduced
to the error analysis of the function approximation and integration which are presented in
Theorems 2 and 3, respectively.

6. Illustrative Examples

In this part, we present six examples to illustrate the applicability and accuracy
of the introduced scheme. In each example, we apply the proposed method to solve
given problems and compare the obtained results with analytical solutions and the results
obtained by other methods from the literature. The acquired results reveal that the present
method is very efficacious for solving FDDEs.

6.1. Example 1

In this example, the following generalized form of FDDE is considered [53]:

Dµω(t) + ω(t) + ω

(
t
2
− 0.3

)
= f (t), (27)



Fractal Fract. 2022, 6, 10 8 of 26

with the initial conditions

ω(0) = 0, ω′(0) = −1, ω′′(0) = 1

where t > 0, 0 < µ ≤ 3. The exact solution of (27) is revealed by ω(t) = e−t in the case
when f (t) = e−t/2+0.3 and µ = 3.

In Table 1, we present the comparison of the absolute errors of the present method
with that of the shifted Chebyshev polynomials method (SCPM) [53] for m = 6, 8.

Table 1. The absolute error results obtained by the proposed method and SCPM [53] with m = 6, 8.

t
Present Method SCPM Present Method SCPM

m = 6 m = 6 m = 8 m = 8

0.2 3.62 × 10−13 5.18 × 10−7 2.91 × 10−17 1.45 × 10−9

0.4 2.19 × 10−12 1.93 × 10−6 1.24 × 10−16 5.24 × 10−8

0.6 6.12 × 10−12 3.27 × 10−6 4.17 × 10−16 1.21 × 10−8

0.8 1.02 × 10−11 5.34 × 10−6 9.95 × 10−16 2.13 × 10−8

1 3.21 × 10−11 8.62 × 10−6 1.94 × 10−15 3.29 × 10−8

Table 1 indicates that the solutions derived by using the present approach are closer to
the exact solution when compared with the method of [53].

In Figure 1, we present the numerical solution results for the problem (27) when
µ = 2.65, 2.75, 2.85, 2.95, 3.0. By comparing these findings with the exact solution, we can
state that as µ approaches 3, the approximate solutions converge to those of the integer-
order DE.

Figure 1. The comparison between the exact solution and the approximate solutions obtained for the
various values of µ.

Figure 2 illustrates the graphical representation of the absolute error acquired by using
the present method for parameters m = 8 where µ = 3.
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Figure 2. The acquired absolute error of Example 1 for µ = 3 and m = 8.

6.2. Example 2

Consider an FDDE of the following form [54]:

Dµω(t) + ω(t) + ω(t− τ) =
2

Γ(3− µ)
t2−µ − 1

Γ(2− µ)
t1−µ + 2τt− τ2 − τ, (28)

with the initial condition
ω(0) = 0,

where t > 0 and 0 < µ ≤ 1. The exact solution is given by ω(t) = t2 − t at µ = 1.
We solve this problem for different values of the delay term τ = 0.01, 0.001, 0.01e−t,

0.001e−t, 0.1e−t, 0.2e−t, 0.3e−t.
In Table 2, we compare the absolute errors obtained by using our method for m = 7,

σ = 1, with those results obtained using the Chebyshev polynomial method (CPM) [54],
spectral collocation method (SCM) [43], and Bernoulli wavelet method (BWM) [44], where
τ = 0.01.

Table 2. The comparison of the absolute error results between our method and the CPM [54],
SCM [43], and BWM [44] for τ = 0.01.

t Present Method CPM SCM BWM

0 0 0 0 0
0.2 3.467 × 10−16 1.196 × 10−14 7.586 × 10−14 8.218 × 10−14

0.4 2.356 × 10−16 1.638 × 10−15 3.908 × 10−14 1.113 × 10−16

0.6 3.467 × 10−16 7.299 × 10−15 1.452 × 10−14 5.157 × 10−14

0.8 9.692 × 10−17 4.941 × 10−15 7.960 × 10−14 3.235 × 10−14

1 0 0 0 0

In Figure 3, we graphically illustrate the comparison of absolute errors given in Table 2.
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Figure 3. The graphical comparison of absolute errors acquired by our method, CPM, SCM and
BWM, respectively.

In Figure 4, we illustrate a comparison between the exact solution and the approximate
solution acquired by the proposed technique for the constant delay τ = 0.01.

Figure 4. The behaviour of approximate and exact solutions for Example 2 with τ = 0.01.
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In Figure 5, we graphically illustrate the acquired absolute error by using the given
technique when τ = 0.01.

Figure 5. Acquired absolute error of Example 2 for τ = 0.01.

In Table 3, we present a comparison of the acquired absolute errors between the
present method for m = 5 and the method of [44] when τ = 0.001. These results show that
the proposed method is very efficient even for a small number of basis elements.

Table 3. The absolute error results obtained by the proposed method and the method of [44] where
τ = 0.001.

t Present Method BWM

0.2 2.92 × 10−16 1.94 × 10−16

0.4 2.64 × 10−16 3.33 × 10−16

0.6 1.81 × 10−16 8.60 × 10−14

0.8 2.08 × 10−16 8.57 × 10−14

1 0 0

The graphical representations of the exact solution and the approximate solution
obtained using the given method when τ = 0.001 are demonstrated in Figure 6.
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Figure 6. The behaviour of approximate and the exact solutions for Example 2 with τ = 0.001.

In Figure 7, we graphically illustrate the absolute error acquired by the present scheme.

Figure 7. The absolute error of the approximate solution for Example 2 with τ = 0.001 .
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The approximate solutions of the given problem (28) with constant delays τ = 0.001e−t,
0.002e−t, 0.01e−t, 0.02e−t, 0.03e−t are presented graphically in Figure 8.

Figure 8. The behaviour of the approximate solutions for Example 2 with different τ values.

6.3. Example 3

Consider an FDDE with constant delay as follows [46]:

D1/2ω(t)−ω(t− 1) + ω(t) = 2t− 1 +
Γ(3)

Γ(5/2)
t3/2, (29)

with ω(t) = t2, − 1 ≤ t < 0. (30)

The analytical solution is given by ω(t) = t2.
We solve this problem by taking σ = 1/2. In Table 4, we present the obtained results

for the absolute error and relative error when m = 4.

Table 4. Absolute error and relative error results for Example 3 with m = 4, σ = 1/2.

t Absolute Error Relative Error

0 1.26 × 10−17 –
0.2 3.47 × 10−17 8.67 × 10−16

0.4 1.38 × 10−16 8.67 × 10−16

0.6 1.11 × 10−16 3.08 × 10−16

0.8 1.11 × 10−16 1.73 × 10−16

1 2.22 × 10−16 2.22 × 10−16

A comparison of maximum absolute errors obtained by the proposed method for
m = 4, the Haar wavelet collocation technique (HWCT) [46] for N = 2048, and the
fractional backward difference method (FBDM) [55] for N = 640, are presented in Table 5.
This results show the efficiency of the given technique even for a small m value.
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Table 5. Comparison of the maximum absolute errors between the present method, the HWCT [46],
and the FBDM [55].

Present Method for m = 4, σ = 1/2 HWCT for N = 2048 FBDM for N = 640

3.40 × 10−16 8.41 × 10−7 9.81 × 10−4

The graphical demonstration of the exact solution and the behaviour of the approxi-
mate solution obtained by the given numerical technique are presented in Figure 9. The
absolute error results are also presented in Figure 10.

Figure 9. The behaviour of approximate and the exact solutions for Example 3.

Figure 10. The behaviour of absolute error for Example 3.



Fractal Fract. 2022, 6, 10 15 of 26

6.4. Example 4

In this example, the following form of fractional order differential equation with a
proportional delay is considered [47]:

Dµω(t) = ω(t) +
1
4

ω

(
1
4

t
)
+ f (t), (31)

with
ω(0) = 0.

where

f (t) =
1

Γ(2− µ)
t1−µ +

3µ
√

π

4Γ( 3
2 − µ)

t
3
2−µ − t− µt

3
2 − 1

16
t− µ

32
t

3
2

The exact solution is given by ω(t) = t + µt
3
2 .

We solve the given problem (31) for µ = 1/2 and by choosing σ = 1/2, m = 4. A
comparison between the acquired absolute errors of the present technique and the modified
operational matrix method (MOMM) [47] are presented in Table 6. From these findings, we
can conclude that the present method is very efficient even for small numbers m.

Table 6. Comparison of the absolute errors between the present method and the MOMM [47].

t Present Method for m = 4, σ = 1/2 MOMM for n = 20

0 0 0
0.2 1.4 × 10−16 1.5 × 10−12

0.4 0 1.7 × 10−12

0.6 2.2 × 10−16 1.8 × 10−12

0.8 4.4 × 10−16 2.0 × 10−12

1 2.2 × 10−16 2.1 × 10−12

In Figure 11, we illustrate the exact solution and the approximate solution acquired by
using the given approach for the problem (31).

Figure 11. The compared results of the approximate and exact solutions for Example 4.
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The behaviour of the acquired absolute error for the problem (31) when we use the
proposed scheme is presented in Figure 12.

Figure 12. The acquired absolute error of the approximate solution for Example 4.

6.5. Example 5

In this example, the following form of fractional order neutral functional-differential
equation with proportional delay is considered [45]:

D5/2ω(t) = ω(t) + D1/2y
(

t
3

)
+ D3/2ω

(
t
4

)
+ D5/2ω

(
t
5

)
+ f (t), (32)

with the initial conditions

ω(0) = 0, ω′(0) = 0, ω′′(0) = 0,

where t ∈ [0, R] and

f (t) =
32√

π
t3/2 − t4 − 128

945Γ(3π)
t

7
2 − 2

5
√

π
t− 32

5
√

5π
t

3
2 (33)

The exact solution of this problem is revealed by ω(t) = t4.
In order to solve this fractional differential equation with proportional delay, we

use the given method with σ = 1 and m = 4. The obtained results for the absolute
errors are presented and compared with the shifted Gegenbauer–Gauss collocation method
(SGGC) [45] in Table 7.

The approximate solution obtained by using our technique and the exact solution of
the given problem are graphically presented in Figure 13. Additionally, illustration of the
absolute errors can be seen in Figure 14 where t ∈ [0, 1].
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Figure 13. The demonstration of the approximate and exact solutions for Example 5.

Figure 14. The demonstration of the absolute error for Example 5.
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Table 7. The compared results for the acquired absolute errors between the present method and the
SGGC [45].

t Present Method for m = 4, σ = 1 SGGC for n = 16

0 1.581 × 10−17 4.609 × 10−16

0.1 6.482 × 10−17 6.161 × 10−6

0.2 2.082 × 10−16 3.563 × 10−5

0.3 4.857 × 10−16 9.834 × 10−5

0.4 9.333 × 10−16 2.028 × 10−4

0.5 1.589 × 10−15 3.579 × 10−3

0.6 2.498 × 10−15 5.777 × 10−4

0.7 3.636 × 10−15 8.657 × 10−4

0.8 4.330 × 10−15 1.227 × 10−3

0.9 6.883 × 10−15 1.671 × 10−3

1 9.104 × 10−15 2.071 × 10−3

In Figures 15 and 16, we illustrate the behaviours of the approximate solution and the
absolute errors acquired by use of the present method, respectively, where t ∈ [0, 7].

Figure 15. The compared results of the approximate and exact solutions for Example 5 where t ∈ [0, 7].
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Figure 16. The absolute error of Example 5 for t ∈ [0, 7].

From these results, we can see that the given method provides highly accurate results
also for wide intervals of t even for a small number of basis elements.

6.6. Example 6

As a last example, we consider the following form of FDDE with proportional de-
lay [44]:

Dµω(t) = aω(t) + bω(ct) + cos(t)− a sin(t)− b sin(ct), t ∈ [0, R] and 0 < µ ≤ 1 (34)

with
ω(0) = 0.

The exact solution of this problem is given by ω(t) = sin(t) when µ = 1 for any a, b ∈ R
and 0 < c < 1.

In Table 8, we give comparison results for the acquired absolute errors of the ap-
proximate solution between the proposed method, the Bernoulli wavelet method [44], the
spectral method based on a modification of hat functions [49], and the Legendre wavelet
method [42] for c = 1/2.

Table 8. The results for the absolute errors of the approximate solutions provided by the present
method and the methods of [42,44,49].

t
Present Method Bernoulli Legendre Spectral method

m = 6 k = 2, M1 = 6 k = 2, M = 8 n = 40

0 0 5.93 × 10−9 0 0
0.2 5.55 × 10−17 2.27 × 10−10 7.82 × 10−10 1.97 × 10−10

0.4 1.66 × 10−16 1.22 × 10−9 7.02 × 10−10 5.36 × 10−11

0.6 0 5.57 × 10−6 1.94 × 10−9 3.29 × 10−10

0.8 2.23 × 10−16 4.56 × 10−6 1.64 × 10−9 9.01 × 10−10
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From Table 8, we can see that the present method provides higher efficiency even for a
small number of basis elements from the fractional Taylor vector.

The illustration of the approximate solution and the absolute error obtained by our
method are presented in Figure 17 and Figure 18, respectively.

Figure 17. The compared results of the approximate and exact solutions for Example 6 in the interval
t ∈ [0, 1]

Figure 18. The absolute error of Example 6 for t ∈ [0, 1].
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From Figure 19, we can see the graphical representations of the numerical solutions
acquired by using the proposed scheme when c = 1/10 and t ∈ [0, 5].

Figure 19. The compared results of the approximate and exact solutions for Example 6 when c = 1/10
in the interval t ∈ [0, 5].

Figures 20 and 21 graphically present the results for the approximate solutions and
the absolute errors provided by use of our method, respectively, where t ∈ [0, 8].

Figure 20. The demonstration of the approximate and exact solutions for Example 6 in the interval
t ∈ [0, 8].



Fractal Fract. 2022, 6, 10 22 of 26

Here, we can conclude that even for a wide range of t, we can obtain highly accurate
results by use of the present method.

Figure 22 presents a graphical representation of the comparison between the exact and
approximate solutions provided by use of the present method by taking m = 3, 4, 5, 6 when
t ∈ [0, 8].

Figure 21. The absolute error of Example 6 for t ∈ [0, 8].

Figure 22. The demonstration of the exact and approximate solutions for Example 6 with different m
values where t ∈ [0, 8].
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From these illustrations and results, we can conclude that the given technique rapidly
provides efficient results.

7. Conclusions and Future Work

In this study, a numerical technique based on an operational matrix of fractional
integration is used to solve FDDEs. The main purpose of this approach is to reduce the given
FDDE to algebraic equations, which simplifies the given problem. Hence, the numerical
solution is obtained by solving this set of algebraic equations. Concerning the difficulty of
solving FDDEs analytically, the proposed technique can have important contributions to
the field of numerical methods by having very efficient results and applicability, even for a
very low number of basis elements. The results provided by using the proposed technique
have been shown and compared with some other techniques from the literature in Section 6.
From these results, we can conclude that the given method has wide applicability for the
solutions of many different kinds of FDDEs. We also observe that the choice of Taylor
basis performs very well in approximating the unknown function. Another advantage
is that the operational matrix of fractional integration M(t,µ) is a sparse matrix; that is,
most of the elements are zero which shortens the required CPU time. All computational
results were calculated using MATLAB version R2019A software on an Intel(R) Core(TM)
i5-6500 CPU, 3.20 GHz computer with 6.00 GB RAM. For future work, this technique can
be extended to apply to other DDEs such as PDEs with delays and variable-order DDEs.
Furthermore, other orthogonal polynomials can be used for the approximation of unknown
state functions.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Pseudo-Code Implementation of Numerical Algorithm

The Algorithm A1 given in this section allows us to employ the present method to get
a set of linear algebraic equations in the form ACT = b for a given FDDE [56]. Then, these
equations can be solved for unknown coefficients CT by one of the well-known methods,
or by a software library such as the linsolve(A, b) command in MATLAB. In this way,
readers who are interested in implementing the proposed scheme can do so easily in the
programming language of their preference.
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Algorithm A1: Fractional-order Taylor basis approximation for FDDEs
Input: Here are the input variables needed in order to convert FDDE into system of

algebraic equations
1: f = the function of variables defines the right-hand side of the FDDE (2).
2: g = given analytic function of the problem.
3: µ = the order of FDDE. (µ > 0)
4: γ = the order of derivative for delay term.
5: β = the order of derivative for non-delay term.
6: w0 = the array of initial values w(0), w

′
(0)..., w(dwe−1)(0).

7: R = the upper bound of the interval where the solution is to be approximated.
(R ∈ R>0)

8: m = the number of steps (m ∈ Z+).
9: σ = we usually choose σ = 1 or σ = µ− bµc.

10: c = the proportional delay argument.
11: τ = the constant delay argument.
Output: Here are the output variables
12: A = the (m + 1)× (m + 1) dimensional matrix for the linear system ACT = b.
13: b = the (m + 1)× (1) dimensional matrix for the linear system ACT = b.
14: Internal variables:
15: A = the pre-allocated (m + 1)× (m + 1) dimensional matrix.
16: b = the pre-allocated (m + 1)× (1) dimensional matrix.
17: M = the fractional Taylor operational matrix of fractional integration, defined in

Equation (15).
18: Φ = the Taylor vector with non-integer order, defined in Equation (8).
19: for i = 0 : 1 : m;
20: s = i/m;
21: if cs < τ

22: CTΦmσ(s) = CT M(s,µ)Φmσ(s) +
dµe−1

∑
r=0

λr
r! (s)

r + CT M(s,µ−β)Φmσ(s)

23: +
dµe−1

∑
r=0

λr
r! Dβ(sr)+ g(cs− τ) + Dγg(cs− τ)

24: else

25: CTΦmσ(s) = CT M(s,µ)Φmσ(s) +
dµe−1

∑
r=0

λr
r! (s)

r

26: + CT M(t,µ−β)Φmσ(s) +
dµe−1

∑
r=0

λr
r! Dβ(sr)

27: + CT M(cs−τ,µ)Φmσ(cs− τ) +
dµe−1

∑
r=0

λr
r! (cs− τ)r

28: + CT M(cs−τ,µ−γ)Φmσ(cs− τ) +
dµe−1

∑
r=0

λr
r! Dγ(cs− τr)

29: end
30: end
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