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Abstract: The distance centric parameter in the theory of networks called by metric dimension plays a
vital role in encountering the distance-related problems for the monitoring of the large-scale networks
in the various fields of chemistry and computer science such as navigation, image processing, pattern
recognition, integer programming, optimal transportation models and drugs discovery. In particular,
it is used to find the locations of robots with respect to shortest distance among the destinations,
minimum consumption of time, lesser number of the utilized nodes, and to characterize the chemical
compounds, having unique presentations in molecular networks. After the arrival of its weighted
version, known as fractional metric dimension, the rectification of distance-related problems in the
aforementioned fields has revived to a great extent. In this article, we compute fractional as well as
local fractional metric dimensions of web-related networks called by subdivided QCL, 2-faced web,
3-faced web, and antiprism web networks. Moreover, we analyse their final results using 2D and
3D plots.

Keywords: fractional metric dimension; web-related networks; resolving neighbourhoods

MSC: 05C12; 05C90; 05C15; 05C62

1. Introduction

The rising sun of each day arrives with a bunch of advancements related to the arena
of information and technology, cheminformatics, and medicines. These advancements
raised disciplines such as artificial intelligence, drug discovery, and image processing.
Besides many concepts, metric dimensions of networks have a stake in their emergence.
Such as in robotics, distance intervenes when we have to allocate robots to different sites
known as landmarks without loss of economical operation cost and employing fewer
robots. This objective is achieved by turning this whole situation into a graph-theoretic
model and allowing metric dimension to give an appropriate picturesque model. Topics
such as these have been covered in [1–3].

The domains of chemistry, which include chemical bonding, drug discovery, and
development of diagnostic kits for different diseases are incomplete without the notion
of distance centric dimensions. With the help of graph-theoretic picturesque imagery of
chemical compounds along with metric dimensions, people from the chemical and medical
fraternity can develop drugs, chemical compounds, and testing kits having higher accuracy
and parsimony with ease. For further insight into this topic, we refer to [4–6].
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In a network G, the path with the shortest distance between two distinct vertices s and t is
denoted by d(s, t). ConsiderW = {w1, w2, w3, . . . , wk} ⊆ V(G) and a vertex s ∈ V(G) the metric
form of s regarding W is an ordered k-tuple r(s|W) = (d(s, w1), d(s, w2), d(s, w3), . . . , d(s, wk)).
The set W, having a unique metric form with respect to s in G, is called the resolving set.
The metric basis of G determined by the resolving set having the least number of elements
and its cardinality represents its metric dimension (MD).

After Slater [2,7], Harary and Melter [8] have discovered by themselves the notions
of resolving sets and MDs of networks, many researchers have incorporated the same for
various network types. These findings can be found in [3,4,9,10]. Chartrand et al. employed
the MD for solving the integer programming problem (IPP) [4]. Afterwards, Currie et al.
laid the foundation of fractional metric dimension (FMD) with its aid, and evaluated
the IPP acquiring results with high precision [11]. It was Arumugam and Mathew who
formally defined the FMD by bringing into light its undercover features [12]. Afterwards,
researchers have stormed with the results of FMD of networks, which are the resultants of
various graph operations such as comb, corona, Cartesian, hierarchical, and lexicographic
products, see [13–16]. Similarly, the FMDs of the generalized Jahangir network, metal
organic networks, rotationally symmetric and planar networks, tetrahedral diamond and
grid-like networks can be found in [17–21]. Moreover, for improved lower bound of FMD
and bounds of FMD of convex polytopes, see [22].

Aisyah et al. (2019) founded the local fractional metric dimension (LFMD) and
obtained it for corona product of two networks [23]. The results regarding the sharp bounds
of LFMD of connected networks and prism related networks can be found in [24,25]. In this
article, we calculate the upper bounds of FMD as well as LFMD of web-related networks
called by subdivided divided QCL, 2-faced web, 3-faced web, and antiprism web networks.
These networks bear rotational symmetry and planarity, which will help in designing
information and chemical structures. The upper extremal values of FMD and LFMD are
analyzed numerically as well as graphically. The flow of the article is as follows: Section 1 is
the introduction, Section 2 discussed the preliminaries and construction of networks under
consideration and Section 3 deals with the local as well as pairwise resolving neighborhood
sets of the networks titled above. In Section 4, the evaluation of the FMDs as well as the
LFMDs of SQm, WB1

m, WB2
m, WB3

m and AWBm is done. Section 5, ends the article with the
conclusions and future directions.

2. Preliminaries

For any node f ∈ V(G) and {s, t} ⊆ V(G) then f is said to resolve the pair {s, t} if
d(s, f ) 6= d(t, f ). The set comprising of all such nodes is called the resolving neighborhood
set (RNs). The RNs of {s, t} is denoted by R{s, t} = { f ∈ V(G)|d(s, f ) 6= d(t, f )}. For
G(V(G), E(G)) that is connected and having v as its order, a resolving function (RF)
µ : V(G)→ [0, 1] of G is a function fulfilling the condition µ(R{s, t}) ≥ 1 ∀ {s, t} ∈ V(G),
where µ(R{s, t}) = ∑

f∈R{s,t}
µ( f ). An RF µ of G is known as the minimal resolving function

(MRF) if ∃ some function γ : V(G) → [0, 1] where γ ≤ µ and µ( f ) 6= γ( f ) for some
f ∈ V(G), which is not the RF of G. For G, the FMD is denoted by f dim(G) is given
by f dim(G) = min{|µ| : µ is the MRF of G}, where |µ| = ∑

f∈V(G)
µ( f ). For more details,

see [12]. The resolving function is called the local resolving function (LRF) if η(R{st}) ≥ 1.
Similarly, FMD will become LFMD if we only consider the pair of adjacent vertices only,
denoted by l f dim(G) [23]. We are sharing the following results, without which our article
is incomplete.

Theorem 1 ([25]). Suppose that G(V(G), E(G)) is a connected network. If |LR(st) ∩ X| ≥ α, ∀
st ∈ E(G), then

1 ≤ l f dim(G) ≤ |X|β ,

where β = min{|LR(st)| : st ∈ E(G)}, X = ∪{LR(st) : |LR(st)| = β} and 2 ≤ β ≤ |V(G)|.
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Theorem 2 ([21]). Suppose that G(V(G), E(G)) is the connected network and R{s, t} is the
resolving neighborhood set for {s, t} in G. If β = min{|R{s, t}|}, X = ∪{R{s, t} : |R{s, t}| =
β} and |R{s, t} ∩ X| ≥ β then

1 ≤ f dim(G) ≤ |X|β ,

where 2 ≤ β ≤ |V(G)|.

Theorem 3 ([25]). Suppose that G is the connected network,

(a) If G is bipartite then l f dim(G) = 1,
(b) If l f dim(G) = 1 then either G is either bipartite or it bears a distinct odd cycle of mini-

mum length.

Construction of Web-Related Networks

This section is dedicated to the construction of the networks under consideration.
As defined in [19], for m ≥ a quadrangular circular ladder (QCL) Q1

m is a cubic network
that is the network obtained after the Cartesian product of P2 × Cm. A subdivided QCL
denoted by SQm is formed after applying the subdivision operation on QCL by adding
vertex xs between vertices vs and vs+1, ys between vertices vs and ws and zs between
vertices ws and ws+1. It can be seen that subdivided QCL is a bipartite network. The sets
V(SQm) and E(SQm) are given by: V(SQm) = {vr

j |1 ≤ j ≤ s} ∪ {wj|1 ≤ j ≤ s} ∪ {wj|1 ≤
j ≤ s} ∪ {xj|1 ≤ j ≤ s} ∪ {yj|1 ≤ j ≤ s} ∪ {zj|1 ≤ j ≤ s} and E(SQm) = {xsvs+1|1 ≤ s ≤
m ∧ vm+1 = v1} ∪ {xsvs|1 ≤ s ≤ m} ∪ {wsys|1 ≤ s ≤ m} ∪ {vsys|1 ≤ s ≤ m} ∪ {wszs|1 ≤
s ≤ m} ∪ {wszs−1|1 ≤ s ≤ m ∧ z0 = zm} respectively. The subdivided QCL is shown
in Figure 1.

z2z2

z1
zm

zm-1

wm

w1w2

w3

z3

y3

y2 y1

ym

v1
vm

xm-1

Xm

x1x2
v2

v3

x3

Figure 1. SQm.

The 2-faced web network WB1
m is formed by joining vertices zs to the vertices ys of

2-faced QCL as defined in [19]. Its order is 3m and size is 4m. Its V(WB1
m) and E(WB1

m)
are given as follows:

V(WB1
m) = {xj|1 ≤ j ≤ s} ∪ {yj|1 ≤ j ≤ s} ∪ {zj|1 ≤ j ≤ s} and E(WB1

m) =
{xsys+1|1 ≤ s ≤ m} ∪ {yszs|1 ≤ s ≤ m} ∪ {xsys+1|1 ≤ s ≤ m ∧ ys+1 = y1} respectively.
The Figure 2 illustrates WB1

m.
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Figure 2. The 2-faced web network WB1
m.

It is clear from Figure 2 that WB1
m is a bipartite network.

The 3-faced web networks WB2
m and WB3

m are formed by joining vertices zs to the
vertices ys of 3-faced QCLs Q2

m and Q3
m as defined in [19]. Their order is 3m and size is 5m.

The sets V(WB2
m), E(WB2

m),V(WB3
m) and E(WB3

m) are given as follows:

V(WB2
m) = {xr

j |1 ≤ j ≤ s} ∪ {yr
j |1 ≤ j ≤ s} ∪ {zr

j |1 ≤ j ≤ s},
E(WB2

m) = {xsys+1|1 ≤ s ≤ m} ∪ {yszs|1 ≤ s ≤ m} ∪ {xsys+1|1 ≤ s ≤ m ∧ ys+1 =
y1} ∪ {xsys−1|1 ≤ s ≤ m ∧ y0 = ym},
V(WB3

m) = {xr
j |1 ≤ j ≤ s} ∪ {yr

j |1 ≤ j ≤ s} ∪ {zr
j |1 ≤ j ≤ s}, and

E(WB3
m) = {xsys+1|1 ≤ s ≤ m} ∪ {yszs|1 ≤ s ≤ m} ∪ {xsys+1|1 ≤ s ≤ m ∧ ys+1 =

y1} ∪ {xsys+1|1 ≤ s ≤ m ∧ ym+1 = y1} respectively.

The Figure 3 illustrates (a) WB2
m and (b) WB3

m.
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x2 x1
xm
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z
1
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2

z
4

y2 y1

ymy3
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(a) (b)

Figure 3. Possible 3-faced web networks (a) WB2
m (b) WB3

m (right).

From Figure 3 we can see that WB2
m
∼= WB3

m.
An Antiprism web network AWBm is formed by joining vertices zs to vertex ys of

Antiprism Am. Its order is 3m and size is 4m. Its sets V(AWBm) and E(AWBm) are given
by: V(AWBm) = {xr

j |1 ≤ j ≤ s} ∪ {yr
j |1 ≤ j ≤ s} ∪ {zr

j |1 ≤ j ≤ s}, and E(AWBm) =

{xsys|1 ≤ s ≤ m} ∪ {yszs|1 ≤ s ≤ m} ∪ {xsys−1|1 ≤ s ≤ m ∧ y0 = ym} ∪ {xsys−1|1 ≤
s ≤ m ∧ y0 = ym} ∪ {xsxs+1|1 ≤ s ≤ m ∧ xm+1 = y1} ∪ {ysys+1|1 ≤ s ≤ m ∧ ym+1 = y1}
respectively.

The Figure 4 illustrates AWBm.
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Figure 4. Antiprism Web Network AWBm.

3. RNs of Web-Related Networks

The present section concerns with the local as well as pairwise RNs of the networks
under consideration.

3.1. RNs of Subdivided QCL

Lemma 1. Let G ∼= SQm be a subdivided QCL, for any non-zero positive number m ≥ 6 and
m ≡ 0(mod 2) then:

(a) For 1 ≤ s ≤ m, |Rs| = |R{xs, ys}| = 5m
2 + 1 and |

m⋃
s=1

Rs| = 5m and

(b) For 1 ≤ y ≤ 7, |Rs| ≤ |R̄y| and |R̄y ∩
m⋃

s=1
Rs| ≥ |Rs|, for each RNs R̄y other than Rs of G.

Proof. The RN having a fewer number of elements in G is
Rs = R{xs, ys} = V(SQm) − {vj|j ≡ s, s − 1, . . . , s − m

2 + 1(mod m)} ∪ {wj|j ≡ s +
1, s + 2, . . . , s + m

2 (mod m)} ∪ {xj|j ≡ s− 1, s− 2, . . . , s− m
2 (mod m)} ∪ {yj|j ≡ s− 1, s−

2, s− 3, . . . , s− m
2 + 1(mod m)} ∪ {zj|j ≡ s + 1, s + 2, . . . , s + m

2 − 1(mod m)}.

Hence, |Rl | = 2(n− 1) for 1 ≤ l ≤ 3,
m⋃

s=1
Rs = V(SQm) and |

m⋃
s=1

Rs| = 5m.

(b) For the proof of required RNs, the following variables will be needed:

• 1 ≤ s ≤ m
• t ≥ 1 and t ≡ 1(mod 2)
• p ≥ 3 and p ≡ 1(mod 2)
• r ≥ 2 and r ≡ 0(mod 2)

R̄y for 1 ≤ y ≤ 27 other than Rs are

• R̄1 = R{vs, vs+p} = V(SQm) − {xj|j ≡ s + p−1
2 , s + m+p−1

2 (mod m)} ∪ {zj|j ≡
s + p−1

2 , s + m+p−1
2 (mod m)} = R̄2 = R{ys, ys+p} = R̄3 = R{ws, ws+p} = R̄4 =

R{zs, zs+r},
• R̄5 = R{xs, xs+p} = V(SQm)− {vj|j ≡ s + p+1

2 , s + m+p+1
2 (mod m)} ∪ {wj|j ≡ s +

p+1
2 , s+ m+p+1

2 (mod m)}∪{yj|j ≡ s+ p+1
2 , s+ m+p+1

2 (mod m)} = R̄6 = R{ys, ys+r} =
R̄7 = R{ws, ws+r} = R̄8 = R{zs, zs+p},

• R̄9 = R{vs, ws+p} = V(SQ)− {yj|1 ≤ j ≤ m},
• R̄10 = R{xs, ys+1} = V(SQm) − {vj|j ≡ s + 1, s + 2, . . . , s + m

2 (mod m)} ∪ {wj|j ≡
s, s − 1, . . . , s − m

2 + 1(mod m)} ∪ {xj|j ≡ s + 1, s + 2, . . . , s + m
2 (mod m)} ∪ {yj|j ≡

s + 2, s + 3, . . . , s + m
2 (mod m)} ∪ {zj|j ≡ s− 1, s− 2, . . . , s− m

2 + 1(mod m)},
• R̄11 = R{ys, zs} = V(SQm)− {wj|j ≡ s, s− 1, s− 2, . . . , s− m

2 + 1(mod m)} ∪ {xj|j ≡
s + 1, s + 2, . . . , s + m

2 − 1(mod m)} ∪ {yj|j ≡ s − 1, s − 2, . . . , s − m
2 + 1(mod m)} ∪

{zj|j ≡ s− 1, s− 2, . . . , s− m
2 + 1(mod m)},

• R̄12 = R{vs, ws+1} = V(SQm) − {vj|j ≡ s + 1, s + 2, . . . , s − m
2 (mod m)} ∪ {wj|j ≡

s, s− 1, . . . , s− m
2 + 1(mod m)} ∪ {zj|j ≡ s− 1, s− 2, . . . , s− m

2 + 1(mod m)},
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• R̄13 = R{vs, ws+p} = V(SQm) − {vj|j ≡ s + p+1
2 , s + f racm + p + 12(mod m)} ∪

{wj|j ≡ s + p−1
2 , s + m+p−1

2 (mod m)},
• R̄14 = R{vs, ws+r} = V(SQm) − {xj|j ≡ s + s

2 , s + f racm2(mod m)} ∪ {yj|j ≡ s +
s
2 , s + m+r

2 (mod m)} ∪ {zj|j ≡ s + s−2
2 , s + m+r

2 (mod m)},
• R̄15 = R{xs, ys+r} = V(SQm) − {vj|j ≡ s + m+r

2 (mod m)} ∪ {xj|j ≡ s + s
2 , s +

f racm2(mod m)} ∪ {yj|j ≡ s + m+r
2 (mod m)} ∪ {zj|j ≡ s + s−2

2 (mod m)},
• R̄16 = R{xs, ys+p} = V(SQm)− {vj|j ≡ s + p+1

2 (mod m)} ∪ {xj|j ≡ s + n+p+1
2 (mod

m)} ∪ {yj|j ≡ s + p+1
2 (mod m)},

• R̄17 = R{xs, zs+1} = V(SQm) − {vj|j ≡ s + 2, s + 3, . . . , s + m
2 (mod m)} ∪ {xj|j ≡

s + 2, s + 3, . . . , s + m
2 (mod m)} ∪ {wj|j ≡ s, s − 1(mod m)} ∪ {yj|j ≡ s + n+2

2 (mod
m)} ∪ {zj|j ≡ s− 1, s− 2(mod m)},

• R̄18 = R{xs, zs+p} = V(SQm) − {xj|j ≡ s + p+1
2 , s + p+n−1

2 (mod m)} ∪ {yj|j ≡ s +
p+1

2 , s + p+n+1
2 (mod m)},

• R̄19 = R{xs, zs+r} = V(SQm)− {wj|j ≡ s + s
2 (mod m)} ∪ {vj|j ≡ s + s+2

2 (mod m)} ∪
{zj|j ≡ s + s−2

2 (mod m)} ,

• R̄20 = R{ys, zs+p} = V(SQm) − {vj|j ≡ s + p+1
2 (mod m)} ∪ {xj|j ≡ s + p+1

2 , s +
p+m+1

2 (mod m)} ∪ {yj|j ≡ s + p+m+1
2 (mod m)},

• R̄21 = R{ys, zs+r} = V(SQm)− {wj|j ≡ s + s
2 (mod m)} ∪ {xj|j ≡ s + s

2 , s + m+r
2 (mod

m)},
• R̄22 = R{vs, ys+p} = R̄23 = R{vs, ys+r} = R̄24 = R{vs, xs+p} = R̄25 = R{vs, xs+r} =

R̄26 = R{vs, zs+p} = R̄27 = R{vs, zs+r} = V(SQm) .

Their cardinalities can be summarized in Table 1.

Table 1 shows that |Rs| ≤ |R̄y| and |R̄y ∪
m⋃

s=1
Rs| ≥ |Rs|.

Table 1. RNs R̄y for 1 ≤ y ≤ 27.

RNs Cardinalities

R̄1,R̄2,R̄3,R̄4 5m− 4

R̄5,R̄6,R̄7,R̄8,R̄14 5m− 6

R̄9 4m

R̄10
5m
2 + 2

R̄11
5m
2 + 1

R̄12
7m
2 + 3

R̄13, R̄18 5m− 4

R̄15 5(m− 1)

R̄16, R̄17, R̄19, R̄20, R̄21 5m− 3

R̄22, R̄23, R̄24, R̄25, R̄26, R̄27 5m

3.2. RNs of 2-Faced Web Network

Lemma 2. Let G ∼= WB1
m be a 2-faced subdivided web network, for any non-zero positive number

m ≥ 6 and m ≡ 0(mod 2) then:

(a) For 1 ≤ s ≤ m, |Rs| = |R{xs, zs}| = n + 1 and |
m⋃

s=1
Rs| = 3m and

(b) For 1 ≤ y ≤ 7, |Rs| ≤ |R̄y| and |R̄y ∩
m⋃

s=1
Rs| ≥ |Rs|, for each RN set R̄y other than Rs

of G.
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Proof. The RN bearing fewer number of elements in G is
Rs = R{ys, zs} = V(WB1

m) − {yj|1 ≤ s ≤ m} ∪ {zj|j ≡ s + 1, s + 2, . . . , s + n −
1(mod m)}.

Thus, |Rs| = 2(n− 1) for 1 ≤ l ≤ 3,
m⋃

s=1
Rs = V(SQm) and |

m⋃
s=1

Rs| = 3m.

(b) For the proof of required RNs, the following variables will be needed:

• 1 ≤ s ≤ m
• t ≥ 1 and t ≡ 1(mod 2)
• p ≥ 3 and p ≡ 1(mod 2)
• r ≥ 2 and r ≡ 0(mod 2)

RNs R̄y for 1 ≤ y ≤ 12 other than |Rs| are as under:

• R̄1 = R{xs, xs+t} = R̄2 = R{xs, zs+t} = R̄3 = R{ys, ys+t} = R̄4 = R{zs, zs+t} =
R̄5 = R{xs, ys} = R̄6 = R{xs, zs+t} = R̄7 = R{xs, zs+t} = R̄8 = R{ys, zs+r} =
V(WB1

m),
• R̄9 = R{xs, ys+1} = V(WB1

m) − {xj|j ≡ s + 1, s + 2, . . . , s + m
2 (mod m)} ∪ {yj|j ≡

s, s− 1, s− 2, . . . , s− m
2 + 1(mod m)} ∪ {zj|j ≡ s, s− 1, s− 2, . . . , s− m

2 + 1(mod m)},
• R̄10 = R{xs, zs+1} = V(WB1

m) − {xj|j ≡ s + 1, s + 2, . . . , s + m
2 (mod m)} ∪ {yj|j ≡

s, s− 1, s− 2, . . . , s− m
2 + 1(mod m)} ∪ {zj|j ≡ s, s− 1, s− 2, . . . , s− m

2 + 1(mod m)},
• R̄11 = R{xs, zs+2} = V(WB1

m) − {xj|j ≡ s + 2, s + 3, . . . , s + m
2 (mod m)} ∪ {yj|j ≡

s + m+r
2 (mod m)} ∪ {zj|j ≡ s + m+r

2 (mod m)},
• R̄12 = R{ys, zs+p} = V(WB1

m) − {xj|j ≡ s + p+1
2 , s + m+p+1

2 (mod m)} ∪ {yj|j ≡
s + p+1

2 , s + m+p+1
2 (mod m)} ∪ {zj|j ≡ s + p+1

2 , s + m+p+1
2 (mod m)}.

Whereas, their cardinalities are listed in Table 2.

Table 2 shows that |Rs| ≤ |R̄y| and |R̄y ∪
m⋃

s=1
Rs| ≥ |Rs|.

Table 2. RNs R̄y for 1 ≤ y ≤ 12.

RNs Cardinalities

R̄1,R̄2,R̄3,R̄4,R̄5,R̄6,R̄7,R̄8 3m

R̄9, R̄10
3m
2

R̄11
3m
2 + 3

R̄12 3(m− 2)

3.3. RNs of 3-Faced Web Network

Lemma 3. Let G ∼= WB2
m be a 3-faced subdivided web network, for any non-zero positive number

m ≥ 6 and m ≡ 0(mod 2) then:

(a) For 1 ≤ s ≤ m, |Rs| = |R{xs, ys−1}| = 3m
2 + 1 and |

m⋃
s=1

Rs| = 3m and

(b) For 1 ≤ y ≤ 7, |Rs| ≤ |R̄y| and |R̄y ∩
m⋃

s=1
Rs| ≥ |Rs|, for each RN set R̄y different from Rs

of G.

Proof. The RN having a fewer number of elements in G is Rs = R{xs, ys−1} = V(WB2
m)−

{xj|j ≡ s, s− 1, s− 2, . . . , s− m
2 + 1(mod m)} ∪ {yj|j ≡ s + 1, s + 2, . . . , s + m

2 (mod m)} ∪
{zj|j ≡ s + 2, s + 3, . . . , s + m

2 (mod m)}.

Therefore, |Rs| = 3m
2 + 1 for 1 ≤ s ≤ m,

m⋃
s=1

Rs = V(WB2
m) and |

m⋃
s=1

Rs| = 3m.

(b) For the proof of required RNs, the following variables will be needed:

• 1 ≤ s ≤ m
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• t ≥ 1 and t ≡ 1(mod 2)
• p ≥ 3 and p ≡ 1(mod 2)
• r ≥ 2 and r ≡ 0(mod 2)

RNs R̄y for 1 ≤ y ≤ 12 other than |Rs| are given as follows:

• R̄1 = R{ys, zs} = V(WB2
m),

• R̄2 = R{xs, xs+p} = V(WB2
m)− {yj|j ≡ s + p−1

2 , s + m+p−1
2 (mod m)} ∪ {zj|j ≡ s +

p−1
2 , s + m+p−1

2 (mod m)} = R̄3 = R{zs, zs+r},
• R̄4 = R{ys, ys+p} = V(WB2

m)−{xj|j ≡ s+ p+1
2 , s+ m+p+1

2 (mod m)} = R{zs, zs+p} =
R̄5 = R{xs, xs+r} = R̄6 = R{zs, zs+p},

• R̄7 = R{xs, ys+t} = V(WB2
m) − {xj|j ≡ s + t+1

2 , s + m+t+1
2 (mod m)} ∪ {yj|j ≡ s +

p−1
2 (mod m)} ∪ {zj|j ≡ s + p−1

2 (mod m)},
• R̄8 = R{xs, ys+r} = R{xs, zs+p} = V(WB2

m)− {xj|j ≡ s + m+r
2 (mod m)} ∪ {yj|j ≡

s + m+r
2 (mod m)} ∪ {zj|j ≡ s + m+r

2 (mod m)},
• R̄9 = R{xs, zs} = V(WB2

m)− {yj|j ≡ s, s + 1, . . . , s + m
2 (mod m)} ∪ {zj|j ≡ s + 1, s +

2, . . . , s + m
2 (mod m)},

• R̄10 = R{xs, zs+1} = V(WB2
m)− {xj|j ≡ s + 2, s + 3, . . . , s + m

2 (mod m)},
• R̄11 = R{ys, zs+1} = V(WB2

m) − {xj|j ≡ s + 2, s + 3, . . . , s + m
2 (mod m)} ∪ {yj|j ≡

s + 1, s + 2, . . . , s + m
2 (mod m)} ∪ {zj|j ≡ s + 2, s + 3, . . . , s + m−2

2 (mod m)},
• R̄12 = R{ys, zs+p} = V(WB2

m)−{xj|j ≡ s+ m+p+1
2 (mod m)}∪{yj|j ≡ s+ m+p+1

2 (mod
m)} ∪ {zj|j ≡ s + m+p+1

2 (mod m)},
• R̄13 = R{ys, zs+r} = V(WB2

m) − {xj|j ≡ s + s+2
2 (mod m)} ∪ {yj|j ≡ s + s

2 (mod
m)} ∪ {zj|j ≡ s + s

2 (mod m)} .

The cardinalities of the aforementioned RNs have been summarized in Table 3.

Table 3. RNs R̄y for 1 ≤ y ≤ 12.

RNs Cardinalities

R̄1 3m

R̄2, R̄3,R̄4,R̄5,R̄6
3m
2

R̄7, R̄11
3m
2 + 3

R̄8 3(m− 2)

R̄9 2m

R̄10
3m
2

R̄12 3(m− 1)

R̄13 3m− 3

Table 3 shows that |Rs| ≤ |R̄y| and |R̄y ∪
m⋃

s=1
Rs| ≥ |Rs|.

Lemma 4. Let G ∼= WB2
m be a 3-faced subdivided web network, for any non-zero positive number

m ≥ 6 and m ≡ 0(mod 2) then:

(a) For 1 ≤ s ≤ m, |LRs| = |LR{xs, ys−1}| = 3m
2 + 1 and |

m⋃
s=1

LRs| = 3m an

(b) For 1 ≤ y ≤ 7, |LRs| ≤ |L̄Ry| and |L̄Ry ∩
m⋃

s=1
LRr| ≥ |LRs|, for each RN set L̄Ry different

from Rs of G.
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Proof. For proof,see Lemma 3(a).
(b) The required LRNs L̄Ry for 1 ≤ y ≤ 12 are as follows:

• L̄R1 = LR{xs, ys} = V(WB2
m)− {xj|j ≡ s + 1, s + 2, . . . , s + m

2 (mod m)},
• L̄R2 = LR{xs, xs+1} = V(WB2

m)− {yj|j ≡ s, s + m
2 (mod m)} ∪ {zj|j ≡ s, s + m

2 (mod
m)},

• L̄R3 = LR{ys, ys+1} = V(WB2
m)− {xj|j ≡ s + 1, s + m+2

2 (mod m)},
• L̄R4 = LR{xs, ys+t} = V(WB2

m) − {xj|j ≡ s + t+1
2 , s + m+t+1

2 (mod m)} ∪ {yj|j ≡
s + p−1

2 (mod m)} ∪ {zj|j ≡ s + p−1
2 (mod m)},

• L̄R5 = LR{xs, ys} = V(WB2
m).

The cardinalities of the aforementioned RNs have been summarized in Table 4.

Table 4. RNs L̄Ry for 1 ≤ y ≤ 5.

RNs Cardinalities

L̄R1
3m
2

L̄R2 3m− 4

L̄R3 3m− 2

L̄R4
3m
2 + 3

L̄R5 3m

Table 4 shows that |LRs| ≤ |L̄Ry| and |L̄Ry ∪
m⋃

s=1
LRs| ≥ |LRs|.

3.4. RNs of Antiprism Web Network

Lemma 5. Let G ∼= AWBm be an antiprism web network, for any non-zero positive number
m ≥ 6 and m ≡ 0(mod 2) then:

(a) For 1 ≤ s ≤ m, |Rs| = |R{xs, ys}| = 3m
2 and |

m⋃
s=1

Rs| = 3m and

(b) For 1 ≤ y ≤ 7, |Rs| ≤ |R̄y| and |R̄y ∩
m⋃

s=1
Rs| ≥ |Rs|, for each RN set R̄y of G different

from Rs.

Proof. The RN having fewer number of elements in G is Rs = R{xs, ys} = V(AWBm)−
{xj|j ≡ s + 1, s + 2, . . . , s + m

2 (mod m)} ∪ {yj|j ≡ s− 1, s− 2, . . . , s− m
2 (mod m)} ∪ {zj|j ≡

s− 1, s− 2, . . . , s− m
2 (mod m)}.

Consequently, |Rs| = 3m
2 + 1 for 1 ≤ s ≤ m,

m⋃
s=1

Rs = V(AWBm) and |
m⋃

s=1
Rs| = 3m.

(b) For the proof of required RNs, the following variables will be needed:

• 1 ≤ s ≤ m
• t ≥ 1 and t ≡ 1(mod 2)
• p ≥ 3 and p ≡ 1(mod 2)
• r ≥ 2 and r ≡ 0(mod 2)

R̄y for 1 ≤ y ≤ 14 other than |Rs| are given by:

• R̄1 = R{xs, xs+t} = V(AWBm) − {yj|j ≡ s + t−1
2 , s + m+t−1

2 (mod m)} ∪ {zj|j ≡
s + p−1

2 , s + m+p−1
2 (mod m)} = R̄2 = R{zs, zs+r},

• R̄3 = R{ys, ys+t} = V(AWBm) − {xj|j ≡ s + t+1
2 , s + m+t+1

2 (mod m)} = R̄4 =
R{zs, zs+t} = R̄5 = R{xs, xs+r} = R̄6 = R{xs, xs+r},

• R̄7 = R{xs, ys+t} = V(AWBm) − {xj|j ≡ s + t+1
2 (mod m)} ∪ {yj|j ≡ s + t−1

2 (mod
m)} ∪ {zj|j ≡ s + t−1

2 (mod m)},
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• R̄8 = R{xs, ys+r} = V(AWBm)− {xj|j ≡ s + m+r
2 (mod m)} ∪ {yj|j ≡ s + m+r

2 (mod
m)} ∪ {zj|j ≡ s + m+r

2 (mod m)},
• R̄9 = R{xs, zs} = V(AWBm) − {yj|j ≡ s, s + 1, . . . , s + m

2 − 1(mod m)} ∪ {zj|j ≡
s + 1, s + 2, . . . , s + m

2 (mod m)},
• R̄11 = R{xs, zs+p} = V(AWBm)− {xj|j ≡ s + m+p+1

2 (mod m)} ∪ {yj|j ≡ s + m+p+1
2

(mod m)} ∪ {zj|j ≡ s + m+p+1
2 (mod m)} ,

• R̄12 = R{xs, zs+r} = V(AWBm) − {xj|j ≡ s + s+2
2 (mod m)} ∪ {yj|j ≡ s + s

2 (mod
m)} ∪ {zj|j ≡ s + s

2 (mod m)},
• R̄13 = R{xs, ys−1} = V(AWBm)− {xj|j ≡ s− 1, s− 2, . . . , s− m

2 (mod m)} ∪ {yj|j ≡
s + 1, s + 2, . . . , s + m

2 (mod m)} ∪ {zj|j ≡ s + 1, s + 2, . . . , s + m
2 (mod m)},

• R̄14 = R{ys, zs} = V(AWBm).

The cardinalities of the aforementioned RNs have been summarized in Table 5.

Table 5 shows that |Rs| ≤ |R̄y| and |R̄y ∪
m⋃

s=1
Rs| ≥ |Rs|.

Table 5. RNs R̄y for 1 ≤ y ≤ 14.

RNs Cardinalities

R̄1,R̄2 3m− 4

R̄3,R̄4,R̄5,R̄6 3m− 2

R̄7, R̄8, R̄11, R̄12 3(m− 1)

R̄9 2n

R̄13
3m
2

R̄14 3m

Lemma 6. Let G ∼= AWBm be an antiprism web network, for any non-zero positive number
m ≥ 6 and m ≡ 0(mod 2) then:

(a) For 1 ≤ s ≤ m, |LRs| = |LR{xs, ys}| = 3m
2 and |

m⋃
s=1

LRs| = 3m and

(b) For 1 ≤ y ≤ 7, |LRs| ≤ |R̄y| and |L̄Ry ∩
m⋃

s=1
LRs| ≥ |LRs|, for each RN set L̄Ry of G

different from LRs.

Proof. For proof see Lemma 5(a).
(b) The required LRNs L̄Ry for 1 ≤ y ≤ 12 are given as follows:

• L̄R1 = R{xs, xs+1} = V(AWBm)− {yj|j ≡ s, s + m
2 (mod m)} ∪ {zj|j ≡ s, s + m

2 (mod
m)},

• L̄R2 = R{ys, ys+1} = V(AWBm)− {xj|j ≡ s + 1, s + m+2
2 (mod m)},

• L̄R3 = R{xs, ys−1} = V(AWBm)− {xj|j ≡ s− 1, s− 2, . . . , s− m
2 (mod m)} ∪ {yj|j ≡

s + 1, s + 2, . . . , s + m
2 (mod m)} ∪ {zj|j ≡ s + 1, s + 2, . . . , s + m

2 (mod m)},
• L̄R4 = R{ys, zs} = V(AWBm).

The cardinalities of the aforementioned RNs has been summarized in Table 6.

Table 6 shows that |LRs| ≤ |L̄Ry| and |L̄Ry ∪
m⋃

s=1
LRs| ≥ |LRs|.
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Table 6. RNs L̄Ry for 1 ≤ y ≤ 14.

RNs Cardinalities

L̄R1 3m− 4

L̄R2 3m− 2

L̄R3
3m
2

L̄R4 3m

4. FMD and LFMD of Web-Related Networks

This section covers the results regarding the FMD and LFMD of the networks un-
der consideration.

4.1. FMD and LFMD of Subdivided QCL

Theorem 4. Suppose that G ∼= SBm be subdivided QCL network, taking any non-zero positive
number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ f dim(G) ≤ 3

2 .

Proof. Case I: For m = 6.
By making use of symmetry, the RNs are tabulated as below:
Table 7 is exhibiting the RNs with the least cardinality of 17. Whereas RNs with

maximum cardinality has been shown by Tables 8–14, respectively. Hence
9⋃

s=1
Rl = V(G),

|
9⋃

s=1
Rs| = 30 and |R̄y ∩

9⋃
s=1

Rs| ≥ |Rs|, where 1 ≤ y ≤ 70. Now, we are defining a mapping

µ : V(G) → [0, 1] such that µ(vk) = µ(wk) = µ(xk) = µ(yk) = µ(zk) = 1
17 . We can see

that Rs for 1 ≤ r ≤ 9 of V(G) are intersecting in a pairwise manner, showing non-cyclic

behavior with
12⋂

s=1
Rs = φ, so, by Theorem 3, we arrive at 1 ≤ f dim(G) ≤

32
∑

s=1

1
17 = 30

17 .

Table 7. RNs Rs for 1 ≤ s ≤ 9.

RNs Elements

R{x1, y1} V(SQ6)−{v1, v5, v6}∪ {w2, w3, w4}∪ {x3, x4, x5}∪ {y3, y4}∪ {z2, z3}
R{x2, y2} V(SQ6)−{v1, v2, v6}∪ {w3, w4, w5}∪ {x4, x5, x6}∪ {y4, y5}∪ {z3, z4}
R{x3, y3} V(SQ6)−{v1, v2, v3}∪ {w4, w5, w6}∪ {x1, x5, x6}∪ {y5, y6}∪ {z4, z5}
R{x1, y2} V(SQ6)−{v2, v3, v4}∪ {w1, w5, w6}∪ {x2, x3, x4}∪ {y3, y4}∪ {z5, z6}
R{x2, y3} V(SQ6)−{v3, v4, v5}∪ {w1, w2, w6}∪ {x3, x4, x5}∪ {y4, y5}∪ {z1, z6}
R{x3, y4} V(SQ6)−{v4, v5, v6}∪ {w1, w2, w3}∪ {x4, x5, x6}∪ {y5, y6}∪ {z1, z2}
R{y1, z1} V(SQ6)−{v2, v3, v4}∪ {w1, w5, w6}∪ {x2, x3, x4}∪ {y5, y6}∪ {z5, z6}
R{y2, z2} V(SQ6)−{v3, v4, v5}∪ {w1, w2, w6}∪ {x3, x4, x5}∪ {y1, y6}∪ {z1, z6}
R{y3, z3} V(SQ6)−{v1, v2, v3}∪ {w4, w5, w6}∪ {x1, x5, x6}∪ {y1, y2}∪ {z1, z2}

Table 8. RNs R̄y for 1 ≤ y ≤ 3.

RNs Elements

R{x1, z2} V(SQ6)− {v3, v4} ∪ {x3, x4} ∪ {w1, w6} ∪ {y5} ∪ {z5, z6}
R{x2, z3} V(SQ6)− {v4, v5} ∪ {x4, x5} ∪ {w1, w2} ∪ {y6} ∪ {z1, z6}
R{x3, z4} V(SQ6)− {v5, v6} ∪ {x5, x6} ∪ {w2, w3} ∪ {y1} ∪ {z1, z2}
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Table 9. RNs R̄y for 4 ≤ y ≤ 6.

RNs Elements

R{v1, w2} V(SQ6)− {v2, v3, v4} ∪ {w1, w5, w6} ∪ {z4, z5}
R{v2, w3} V(SQ6)− {v3, v4, v5} ∪ {w1, w2, w6} ∪ {z5, z6}
R{v3, w4} V(SQ6)− {v4, v5, v6} ∪ {w1, w2, w3} ∪ {z1, z6}

Table 10. RNs R̄y for 7 ≤ y ≤ 9 and p = 3.

RNs Elements

R{vs, ws+p} V(SQ)− {yj|1 ≤ j ≤ m}

Table 11. RNs R̄y for 10 ≤ y ≤ 17.

RNs Elements Equality

R{x1, x2} V(SQ6)− {v2, v5} ∪ {w2, w5} ∪ {y2, y5} R{z1, z2},
R{x3, x6}

R{x2, x3} V(SQ6)− {v3, v6} ∪ {w3, w6} ∪ {y3, y6} R{z2, z3},
R{x1, x4}

R{v3, v4} V(SQ6)− {v1, v4} ∪ {w1, w4} ∪ {y1, y4} R{z3, z4},
R{x2, x5}

Table 12. RNs R̄y for 18 ≤ y ≤ 44.

RNs Elements Equality

R{v1, w4} V(SQ6)− {v3, v6} ∪ {w1, w4}
R{v2, w3} V(SQ6)− {v1, v4} ∪ {w2, w5}
R{v3, w4} V(SQ6)− {v2, v5} ∪ {w3, w6}
R{v1, w3} V(SQ6)− {v3, v6} ∪ {w1, w4}
R{v2, w4} V(SQ6)− {v1, v4} ∪ {w2, w5}
R{v3, w5} V(SQ6)− {v2, v5} ∪ {w3, w6}
R{x1, z4} V(SQ6)− {x3, x5} ∪ {y3, y5}
R{x2, z5} V(SQ6)− {x4, x6} ∪ {y4, y6}
R{x3, z6} V(SQ6)− {x1, x5} ∪ {y1, y5}
R{x1, z4} V(SQ6)− {w3, w5} ∪ {x3, x5}
R{x2, z5} V(SQ6)− {w4, w6} ∪ {x4, x6}
R{x3, z6} V(SQ6)− {w1, w5} ∪ {x1, x5}
R{x1, y3} V(SQ6)− {v3} ∪ {x6} ∪ {y1} ∪ {z4}
R{x2, y4} V(SQ6)− {v4} ∪ {x1} ∪ {y2} ∪ {z5}
R{x3, y5} V(SQ6)− {v5} ∪ {x2} ∪ {y3} ∪ {z6}
R{y1, z4} V(SQ6)− {v3} ∪ {x3, x6} ∪ {y6}
R{y2, z5} V(SQ6)− {v4} ∪ {x1, x4} ∪ {y1}
R{y3, z6} V(SQ6)− {v5} ∪ {x2, x5} ∪ {y2}
R{x1, y3} V(SQ6)− {v3} ∪ {x6} ∪ {y1} ∪ {z4}
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Table 12. Cont.

RNs Elements Equality

R{x2, y4} V(SQ6)− {v4} ∪ {x1} ∪ {y2} ∪ {z5}
R{x3, y5} V(SQ6)− {v5} ∪ {x2} ∪ {y3} ∪ {z6}
R{v1, v2} V(SQ6)− {x1, x4} ∪ {z1, z4} R{y1, y2},

R{v3, v6}
R{v2, v3} V(SQ6)− {x2, x5} ∪ {z2, z5} R{y2, y3},

R{v1, v4}
R{v3, v4} V(SQ6)− {x3, x6} ∪ {z3, z6} R{y3, y6},

R{v2, v5}

Table 13. RNs R̄y for 45 ≤ y ≤ 52.

RNs Elements

R{x1, y4} V(SQ6)− {v3} ∪ {x6} ∪ {y3}
R{x2, y5} V(SQ6)− {v4} ∪ {x1} ∪ {y4}
R{x3, y6} V(SQ6)− {v5} ∪ {x2} ∪ {y5}
R{x1, z3} V(SQ6)− {w2} ∪ {v3} ∪ {z1}
R{x2, z4} V(SQ6)− {w3} ∪ {v4} ∪ {z2}
R{x3, z5} V(SQ6)− {w4} ∪ {v5} ∪ {z3}
R{y1, z3} V(SQ6)− {w2} ∪ {x2, x5}
R{y2, z4} V(SQ6)− {w3} ∪ {x3, x6}
R{y3, z5} V(SQ6)− {w4} ∪ {x1, x4}

Table 14. RNs R̄y for 53 ≤ y ≤ 70.

RNs RNs Elements

R{vs, ys+p} R{vs, ys+r} V(SQm)

R{vs, xs+p} R{vs, xs+r} V(SQm)

R{vs, zs+p} R{vs, zs+r} V(SQm)

Case II: For any m ≥ 6:
As we can see from Lemma 1 the RN with the least cardinality of 5m

2 + 2 is Rs =

R{xs, ys}, |
m⋃

s=1
Rs| = 5m and |R{s, t} ∩

m⋃
s=1

Rs| ≥ |Rs| ∀ {s, t} ∈ V(G). Suppose that

σ = |
m⋃

s=1
Rs| = 5m and κ = |Rs| = 5m

2 + 2. Then we define a mapping µ : V(G) → [0, 1]

such that

µ(v) =


1
β for a ∈

m⋃
s=1

Rs,

0 for a ∈ V(G)−
m⋃

s=1
Rs

We can see that µ is a RF for G with m ≥ 6 because µ(R{s, t}) ≥ 1 ∀ s, t ∈ V(G).
On contrary, assume that there exists a different RF γ, such that γ(u) ≤ µ(u), for some
u ∈ V(G) γ(u) 6= µ(u). Consequently, γ(R{s, t}) < 1, where R{s, t} is an RN of G having
the least cardinality β. This shows that γ is not an RF. Thus, µ is a MRF that acquires
minimum |µ| for G. Also, all the Rs are intersecting in pairwise manner, holding non-cyclic
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behavior with
m⋂

s=1
Rs = φ, thus by Theorem 3, assigning 1

β to the vertices of G in
m⋃

s=1
Rs and

evaluating the summation of all the weights, we get: 1 ≤ f dim(G) ≤
σ

∑
l=1

1
β = 10m

5m+4 .

Theorem 5. Suppose that G ∼= SBm is a subdivided QCL network, taking any non-zero positive
number m ≥ 6 and m ≡ 0(mod 2), then ldim(G) = 1.

Proof. Since G is a bipartite network, therefore by Theorem 2,

ldim(G) = 1.

4.2. FMD and LFMD of 2-Faced Web Network

Theorem 6. Suppose that G ∼= WB1
m is a 2-faced web network, taking any non-zero positive

number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ f dim(G) ≤ 3m
m+1 .

Proof. Case I: For m = 6.
By making use of symmetry, the RNs are tabulated as below:
Table 15 exhibits the RNs with the least cardinality of 7. Whereas RNs with maximum

cardinality has been shown by Tables 16–20 respectively. Thus
3⋃

s=1
Rs = V(G). It is

observed that |
3⋃

s=1
Rs| = 18 and |R̄y ∩

9⋃
s=1

Rs| ≥ |Rs|, where 1 ≤ y ≤ 30. Now, we are

defining a mapping µ : V(G) → [0, 1] such that µ(xk) = µ(yk) = µ(zk) = 1
7 . It can be

seen that Rs for 1 ≤ r ≤ 9 of V(G) intersecting in pairwise manner, showing non-cyclic

behavior with
3⋂

s=1
Rs = φ, therefore, by Theorem 3, we have 1 ≤ f dim(G) ≤

18
∑

s=1

1
7 = 18

7 .

Table 15. RNs Rs for 1 ≤ s ≤ 3.

RNs Elements

R{x1, z1} V(WB1
6)− {yj|1 ≤ j ≤ 6} ∪ {z2, z3, z4, z5, z6}

R{x2, z2} V(WB1
6)− {yj|1 ≤ j ≤ 6} ∪ {z1, z3, z4, z5, z6}

R{x3, z3} V(WB1
6)− {yj|1 ≤ j ≤ 6} ∪ {z1, z2, z4, z5, z6}

Table 16. RNs R̄y for 1 ≤ y ≤ 6.

RNs Elements

R{x1, y2} V(WB1
6)− {x2, x3, x4} ∪ {y1, y5, y6} ∪ {z1, z5, z6}

R{x2, y3} V(WB1
6)− {x3, x4, x5} ∪ {y1, y2, y6} ∪ {z1, z2, z6}

R{x3, y4} V(WB1
6)− {x4, x5, x6} ∪ {y1, y2, y3} ∪ {z1, z2, z3}

R{x1, z2} V(WB1
6)− {x2, x3, x4} ∪ {y1, y2, y3} ∪ {z1, z2, z3}

R{x2, z3} V(WB1
6)− {x3, x4, x5} ∪ {y2, y3, y4} ∪ {z2, z3, z4}

R{x3, z4} V(WB1
6)− {x4, x5, x6} ∪ {y3, y4, y5} ∪ {z3, z4, z5}
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Table 17. RNs R̄y for 7 ≤ y ≤ 9.

RNs Elements

R{y1, z4} V(WB1
6)− {x3, x5} ∪ {y3, y5} ∪ {z3, z5}

R{y2, z5} V(WB1
6)− {x4, x6} ∪ {y4, y6} ∪ {z4, z6}

R{y3, z6} V(WB1
6)− {x1, x5} ∪ {y1, y5} ∪ {z1, z5}

Table 18. RNs R̄y for 10 ≤ y ≤ 12.

RNs Elements

R{x1, z3} V(WB1
6)− {x3, x4} ∪ {y5} ∪ {z5}

R{x2, z4} V(WB1
6)− {x4, x5} ∪ {y6} ∪ {z6}

R{y3, z5} V(WB1
6)− {x5, x6} ∪ {y1} ∪ {z1}

Table 19. RNs R̄y for 13 ≤ y ≤ 20.

RNs Elements Equality

R{x1, x2} V(WB1
6)− {v2, v5} ∪ {w2, w5} ∪ {y2, y5} R{z1, z2},

R{x3, x6}

R{x2, x3} V(WB1
6)− {v3, v6} ∪ {w3, w6} ∪ {y3, y6} R{z2, z3},

R{x1, x4}

R{v3, v4} V(WB1
6)− {v1, v4} ∪ {w1, w4} ∪ {y1, y4} R{z3, z4},

R{x2, x5}

Table 20. RNs R̄y for 21 ≤ y ≤ 30.

RNs Elements Equality

R{xs, xs+t} R{zs, zs+t} V(WB1
m)

R{xs, zs+t} R{xs, ys} V(WB1
m)

R{ys, ys+t} R{ys, zs} V(WB1
m)

R{xs, zs+t} R{xs, zs+t} V(WB1
m)

R{ys, zs+r} V(WB1
m)

Case II: For any m ≥ 6: As we can see from Lemma 3.2.1 the RN with the least cardinality

of m + 1 is Rs = R{xs, zs}, |
m⋃

s=1
Rs| = 3m and |R{s, t} ∩

m⋃
s=1

Rs| ≥ |Rs| ∀ {s, t} ∈ V(G).

Suppose that σ = |
m⋃

s=1
Rs| = 3m and β = |Rs| = n + 1. Then, we define a mapping

µ : V(G)→ [0, 1] such that

µ(v) =


1
β for a ∈

m⋃
s=1

Rs,

0 for a ∈ V(G)−
m⋃

s=1
Rs

It is observed that µ is a RF for G with m ≥ 6 because µ(R{s, t}) ≥ 1 ∀ s, t ∈ V(G).
Assume on the contrary that ∃ a different RF γ, such that γ(u) ≤ µ(u), for some u ∈ V(G)
γ(u) 6= µ(u). Consequently, γ(R{s, t}) < 1, where R{s, t} is an RN of G having the
least cardinality β. This shows that γ is not a RF a contradiction. Hence, µ is a MRF that
attains minimum |µ| for G. Also, all the Rs are intersecting in pairwise manner, exhibiting
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non-cyclic behaviour with
m⋂

s=1
Rs = φ, thus by Theorem 3, assigning 1

β to the vertices of G

in
m⋃

s=1
Rs and evaluating the summation of all the weights, we get: 1 ≤ f dim(G) ≤

σ

∑
l=1

1
β =

3m
m+1 .

Theorem 7. Suppose that G ∼= WB1
m is a 2-faced web network network, taking any non-zero

positive number m ≥ 6 and m ≡ 0(mod 2), then ldim(G) = 1.

Proof. Since G is a bipartite network, therefore by Theorem 2,

ldim(G) = 1.

4.3. FMD and LFMD of 3-Faced Web Network

Theorem 8. Suppose that G ∼= WB2
m is a 3-faced web network network, taking any non-zero

positive number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ f dim(G) ≤ 2.

Proof. Case I: For m = 6. By making use of symmetry, the RNs are tabulated as below:
Table 21 is exhibiting the RNs with the least cardinality of 9. Whereas RNs with

maximum cardinality has been shown by Tables 22–27, respectively. Thus
3⋃

s=1
Rs = V(G).

It is observed that |
3⋃

s=1
Rs| = 18 and |R̄y ∩

3⋃
s=1

Rs| ≥ |Rs|, where 1 ≤ y ≤ 27. Now, we are

defining a mapping µ : V(G)→ [0, 1] such that µ(xk) = µ(yk) = µ(zk) =
1
7 . We have seen

that Rs for 1 ≤ r ≤ 3 of V(G) intersecting in pairwise manner, holding non-cyclic behavior

with
3⋂

s=1
Rs = φ, therefore, by Theorem 3, we have 1 ≤ f dim(G) ≤

18
∑

s=1

1
9 = 2.

Table 21. RNs Rs for 1 ≤ s ≤ 3.

RNs Elements

R{x2, y1} V(WB2
m)− {x1, x5, x6} ∪ {y2, y3, y4} ∪ {z2, z3, z4}

R{x3, y2} V(WB2
m)− {x1, x2, x6} ∪ {y3, y4, y5} ∪ {z3, z4, z5}

R{x4, y3} V(WB2
m)− {x1, x2, x3} ∪ {y4, y5, y6} ∪ {z4, z5, z6}

Table 22. RNs R̄y for 1 ≤ y ≤ 3.

RNs Elements

R{y1, z2} V(WB2
6)− {x3, x4} ∪ {y2, y3, y4} ∪ {z3, z4, z5}

R{y2, z3} V(WB2
6)− {x4, x5} ∪ {y3, y4, y5} ∪ {z4, z5, z6}

R{y3, z4} V(WB2
6)− {x5, x6} ∪ {y4, y5, y6} ∪ {z1, z5, z6}

Table 23. RNs R̄y for 4 ≤ y ≤ 6.

RNs Elements

R{x1, z1} V(WB2
6)− {y1, y2, y3, y4} ∪ {z2, z3, z4}

R{x2, z2} V(WB2
6)− {y2, y3, y4, y5} ∪ {z3, z4, z5}

R{x3, z3} V(WB2
6)− {y3, y4, y5, y6} ∪ {z4, z5, z6}
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Table 24. RNs R̄y for 7 ≤ y ≤ 12.

RNs Elements

R{x1, y2} V(WB2
6)− {x2, x5} ∪ {y1} ∪ {z1}

R{x2, y3} V(WB2
6)− {x3, x6} ∪ {y2} ∪ {z2}

R{x3, y4} V(WB2
6)− {x1, x4} ∪ {y3} ∪ {z3}

R{x1, x2} V(WB2
6)− {y1, y4} ∪ {z1, z4}

R{x2, x3} V(WB2
6)− {y2, y5} ∪ {z2, z5}

R{x3, x4} V(WB2
6)− {y3, y6} ∪ {z3, z6}

Table 25. RNs R̄y for 13 ≤ y ≤ 21.

RNs Elements Equality

R{x1, y3} V(WB2
6)− {x5} ∪ {y5} ∪ {z5}

R{y1, z4} V(WB2
6)− {x6} ∪ {y6} ∪ {z6} R{x2, y4}

R{x2, y4} V(WB2
6)− {x1} ∪ {y1} ∪ {z1} R{x3, y5}

R{x3, y5} V(WB2
6)− {x2} ∪ {y2} ∪ {z2}

R{y1, z3} V(WB2
6)− {x3} ∪ {y2} ∪ {z2}

R{x2, y4} V(WB2
6)− {x4} ∪ {y3} ∪ {z3}

R{x3, y5} V(WB2
6)− {x5} ∪ {y4} ∪ {z4}

Table 26. RNs R̄y for 22 ≤ y ≤ 25.

RNs Elements

R{y1, y2} V(WB2
6) ∪ {x2, x5}

R{y2, y3} V(WB2
6) ∪ {x3, x6}

R{y3, y4} V(WB2
6) ∪ {x1, x4}

Table 27. RNs R̄y for 25 ≤ y ≤ 27.

RNs Elements

R{ys, zs} V(WB2
m)

Case II: For any m ≥ 6:
As we can see from Lemma 3. the RN with the least cardinality of 3m

2 is Rs =

R{xs, ys−1}, |
m⋃

s=1
Rs| = 3m and |R{s, t} ∩

m⋃
s=1

Rs| ≥ |Rs| ∀ {s, t} ∈ V(G). Suppose that

α = |
m⋃

s=1
Rs| = 3m and β = |Rs| = 3m

2 . Then we define a mapping µ : V(G) → [0, 1]

such that

µ(v) =


1
β for a ∈

m⋃
s=1

Rs,

0 for a ∈ V(G)−
m⋃

s=1
Rs

It is observed that µ is a RF for G with m ≥ 6 because µ(R{s, t}) ≥ 1 ∀ s, t ∈ V(G).
Assume on the contrary that there exists a different RF γ, such that γ(u) ≤ µ(u), for some
u ∈ V(G) γ(u) 6= µ(u). Consequently, γ(R{s, t}) < 1, where R{s, t} is an RN of G having
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the least cardinality β. This shows that γ is not a RF contradiction. Consequently, µ is
a MRF that attains minimum |µ| for G. Also, all the Rs are intersecting in a pairwise

manner, representing non-cyclic pattern with
m⋂

s=1
Rs = φ, thus by Theorem 3, assigning

1
β to the vertices of G in

m⋃
s=1

Rs and evaluating the summation of all the weights, we get:

1 ≤ f dim(G) ≤
α

∑
l=1

1
β = 2.

Corollary 1. Suppose that G ∼= WB3
m is a 3-faced web network network, taking any non-zero

positive number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ f dim(G) ≤ 2.

Proof. The above statement is true as WB2
m ≡WB3

m.

Theorem 9. Suppose that G ∼= WB2
m is a 3-faced web network network, taking any non-zero

positive number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ l f dim(G) ≤ 2.

Proof. Case I: For m = 6.
By making use of symmetry, the LRNs are tabulated as below:
Table 28 is exhibiting the LRNs with the least cardinality of 9. Whereas LRNs with

maximum cardinality has been shown by Tables 29–31 respectively. Thus
3⋃

s=1
Rs = V(G).

It is observed that |
3⋃

s=1
Rs| = 18 and |L̄Ry ∩

3⋃
s=1

Rs| ≥ |Rs|, where 1 ≤ y ≤ 9. Now, we are

defining a mapping µ : V(G)→ [0, 1] such that µ(xk) = µ(yk) = µ(zk) =
1
9 . It is observed

that Rs for 1 ≤ r ≤ 3 of V(G) intersecting in pairwise manner, representing non-cyclic

pattern with
3⋂

s=1
Rs = φ, therefore, by Theorem 1, we have 1 ≤ l f dim(G) ≤

18
∑

s=1

1
9 = 2.

Table 28. RNs Rs for 1 ≤ s ≤ 3.

LRNs Elements

LR{x2, y1} V(WB2
m)− {x1, x5, x6} ∪ {y2, y3, y4} ∪ {z2, z3, z4}

LR{x3, y2} V(WB2
m)− {x1, x2, x6} ∪ {y3, y4, y5} ∪ {z3, z4, z5}

LR{x4, y3} V(WB2
m)− {x1, x2, x3} ∪ {y4, y5, y6} ∪ {z4, z5, z6}

Table 29. LRNs L̄Ry for 1 ≤ y ≤ 3.

LRNs Elements

LR{x1, x2} V(WB2
6)− {y1, y4} ∪ {z1, z4}

LR{x2, x3} V(WB2
6)− {y2, y5} ∪ {z2, z5}

LR{x3, x4} V(WB2
6)− {y3, y6} ∪ {z3, z6}

Table 30. LRNs L̄Ry for 4 ≤ y ≤ 6.

LRNs Elements

LR{y1, y2} V(WB2
6) ∪ {x2, x5}

LR{y2, y3} V(WB2
6) ∪ {x3, x6}

LR{y3, y4} V(WB2
6) ∪ {x1, x4}
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Table 31. LRNs L̄Ry for 7 ≤ y ≤ 9.

LRNs Elements

LR{ys, zs} V(WB2
m)

Case II: For any m ≥ 6:
As we can see from Lemma 4 the LRN with the least cardinality of 3m

2 is Rs =

LR{xs, ys−1}, |
m⋃

s=1
Rs| = 3m and |LR{st} ∩

m⋃
s=1

Rs| ≥ |Rs| ∀ {s, t} ∈ V(G). Suppose that

α = |
m⋃

s=1
Rs| = 3m and β = |Rs| = 3m

2 . Then we define a mapping µ : V(G) → [0, 1]

such that

µ(v) =


1
β for a ∈

m⋃
s=1

Rs,

0 for a ∈ V(G)−
m⋃

s=1
Rs

It is observed that µ is a LRF for G with m ≥ 6 because µ(LR{st}) ≥ 1 ∀ s, t ∈ V(G).
On the contrary, suppose that there exists a different LRF γ, such that γ(u) ≤ µ(u), for some
u ∈ V(G) γ(u) 6= µ(u). Consequently, γ(LR{st}) < 1, where LR{st} is an RN of G having
the least cardinality β. This shows that γ is not a LRF a contradiction. Therefore, µ is a
MRF that attains minimum |µ| for G. Also, all the Rs intersecting in pairwise manner, show

non-cyclic behavior with
m⋂

s=1
Rs = φ, thus by Theorem 1, assigning 1

β to the vertices of G in

m⋃
s=1

Rs and evaluating the summation of all the weights, we get: 1 ≤ l f dim(G) ≤
α

∑
l=1

1
β = 2.

4.4. FMD and LFMD of Antiprism Web Network

Theorem 4.4.1: Suppose that G ∼= AWBm is the antiprism web network network, taking
any non-zero positive number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ f dim(G) ≤ 2.

Proof. Case I: For m = 6.
By making use of symmetry, the RNs are tabulated as below:
Table 32 is exhibiting the RNs with the least cardinality of 9. Whereas RNs with

maximum cardinality has been shown by Tables 33–37 respectively. Thus
6⋃

s=1
Rs = V(G).

It is observed that |
6⋃

s=1
Rs| = 18 and |R̄y ∩

6⋃
s=1

Rs| ≥ |Rs|, where 1 ≤ y ≤ 26. Now, we are

defining a mapping µ : V(G)→ [0, 1] such that µ(xk) = µ(yk) = µ(zk) =
1
7 . It is observed

that Rs for 1 ≤ r ≤ 3 of V(G) intersecting in pairwise manner, holding non-cyclic behavior

with
3⋂

s=1
Rs = φ, therefore, by Theorem 3, we have 1 ≤ f dim(G) ≤

18
∑

s=1

1
9 = 2.

Table 32. RNs Rs for 1 ≤ s ≤ 6.

RNs Elements

R{x1, y1} V(AWBm)− {x2, x3, x4} ∪ {y4, y5, y6} ∪ {z4, z5, z6}
R{x2, y2} V(AWBm)− {x3, x4, x5} ∪ {y1, y5, y6} ∪ {z1, z5, z6}
R{x3, y3} V(AWBm)− {x4, x5, x6} ∪ {y1, y2, y6} ∪ {z1, z2, z6}
R{x2, y1} V(AWBm)− {x1, x5, x6} ∪ {y2, y3, y4} ∪ {z2, z3, z4}
R{x3, y2} V(AWBm)− {x1, x2, x6} ∪ {y3, y4, y5} ∪ {z3, z4, z5}
R{x4, y3} V(AWBm)− {x1, x2, x3} ∪ {y4, y5, y6} ∪ {z4, z5, z6}
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Table 33. RNs R̄y for 1 ≤ y ≤ 3.

RNs Elements

R{x1, z1} V(AWB6)− {y1, y2, y3} ∪ {z2, z3, z4}
R{x2, z2} V(AWB6)− {y2, y3, y4} ∪ {z3, z4, z5}
R{x3, z3} V(AWB6)− {y3, y4, y5} ∪ {z4, z5, z6}

Table 34. RNs R̄y for 4 ≤ y ≤ 14.

RNs Elements Equality

R{x1, y2} V(AWB6)− {x2} ∪ {y1} ∪ {z1}
R{x2, y3} V(AWB6)− {x3} ∪ {y2} ∪ {z2} R{x1, z3}
R{x2, y3} V(AWB6)− {x4} ∪ {y3} ∪ {z3} R{x2, z4}
R{x1, y3} V(AWB6)− {x5} ∪ {y5} ∪ {z5} R{x3, y5}
R{x2, y4} V(AWB6)− {x6} ∪ {y6} ∪ {z6} R{x1, z4}
R{x3, y5} V(AWB6)− {x1} ∪ {y1} ∪ {z1} R{x2, z5}

Table 35. RNs R̄y for 15 ≤ y ≤ 17.

RNs Elements Equality

R{x1, x2} V(AWB6)− {y1, y4} ∪ {z1, z4} R{z1, z3}
R{x2, x3} V(AWB6)− {y2, y5} ∪ {z2, z5} R{z2, z4}
R{x2, x3} V(AWB6)− {y3, y6} ∪ {z3, z6} R{z3, z5}

Table 36. RNs L̄Ry for 18 ≤ y ≤ 20.

RNs Elements Equality

R{y1, y2} V(AWB6)− {x2, x5} R{z1, z3}
R{y2, y3} V(AWB6)− {x3, x6} R{z2, z4}
R{y2, y3} V(AWB6)− {x1, x4} R{z3, z5}

Table 37. RNs R̄y for 21 ≤ y ≤ 26.

RNs Elements

LR{ys, zs} V(AWB6)

Case II: For any m ≥ 6:
As we can see from Lemma 5. the RN with the least cardinality of 3m

2 is Rs = R{xs, ys},

|
m⋃

s=1
Rs| = 3m and |R{s, t} ∩

m⋃
s=1

Rs| ≥ |Rs| ∀ {s, t} ∈ V(G). Suppose that α = |
m⋃

s=1
Rs| =

3m and β = |Rs| = 3m
2 . Then we define a mapping µ : V(G)→ [0, 1] such that

µ(v) =


1
β for a ∈

m⋃
s=1

Rs,

0 for a ∈ V(G)−
m⋃

s=1
Rs

It is observed that µ is a RF for G with m ≥ 6 because µ(R{s, t}) ≥ 1 ∀ s, t ∈ V(G).
Assume on the contrary that there exists a different RF γ, such that γ(u) ≤ µ(u), for some
u ∈ V(G) γ(u) 6= µ(u). Consequently, γ(R{s, t}) < 1, where R{s, t} is an RN of G having
the least cardinality β. This shows that γ is not a RF contradiction. Hence, µ is a MRF that
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attains minimum |µ| for G. Also, all the Rs intersecting in pairwise manner, representing

non-cyclic behavior with
m⋂

s=1
Rs = φ, thus by Theorem 3, assigning 1

β to the vertices of G in

m⋃
s=1

Rs and evaluating the summation of all the weights, we get: 1 ≤ f dim(G) ≤
α

∑
l=1

1
β = 2.

Theorem 10. Suppose that G ∼= AWBm is a antiprism web network , taking any non-zero positive
number m ≥ 6 and m ≡ 0(mod 2), then 1 ≤ ldim(G) ≤ 2.

Proof. Case I: For m = 6.
By making use of symmetry, the LRNs are tabulated as below:
Table 38 is exhibiting the LRNs with the least cardinality of 9. Whereas LRNs with

maximum cardinality has been shown by Tables 39–41 respectively. Thus
3⋃

s=1
Rs = V(G).

It is observed that |
3⋃

s=1
Rs| = 18 and |L̄Ry ∩

3⋃
s=1

Rs| ≥ |Rs|, where 1 ≤ y ≤ 9. Now, we

are defining a mapping µ : V(G) → [0, 1] such that µ(vj
k) =

1
9 . It is observed that Rs for

1 ≤ r ≤ 3 of V(G) are intersecting in a pairwise manner, showing non-cyclic behavior with
3⋂

s=1
Rs = φ, therefore, by Theorem 1, we have 1 ≤ l f dim(G) ≤

18
∑

s=1

1
9 = 2.

Table 38. LRNs Rs for 1 ≤ s ≤ 6.

LRNs Elements

LR{x1, y1} V(AWBm)− {x2, x3, x4} ∪ {y4, y5, y6} ∪ {z4, z5, z6}
LR{x2, y2} V(AWBm)− {x3, x4, x5} ∪ {y1, y5, y6} ∪ {z1, z5, z6}
LR{x3, y3} V(AWBm)− {x4, x5, x6} ∪ {y1, y2, y6} ∪ {z1, z2, z6}
LR{x2, y1} V(AWBm)− {x1, x5, x6} ∪ {y2, y3, y4} ∪ {z2, z3, z4}
LR{x3, y2} V(AWBm)− {x1, x2, x6} ∪ {y3, y4, y5} ∪ {z3, z4, z5}
LR{x4, y3} V(AWBm)− {x1, x2, x3} ∪ {y4, y5, y6} ∪ {z4, z5, z6}

Table 39. LRNs R̄y for 1 ≤ y ≤ 3.

LRNs Elements

LR{x1, x2} V(AWB6)− {y1, y4} ∪ {z1, z4}
LR{x2, x3} V(AWB6)− {y2, y5} ∪ {z2, z5}
LR{x3, x4} V(AWB6)− {y3, y6} ∪ {z3, z6}

Table 40. LRNs R̄y for 1 ≤ y ≤ 3.

LRNs Elements

LR{y1, y2} V(AWB6)− {x2, x5}
LR{y2, y3} V(AWB6)− {x3, x6}
LR{y2, y3} V(AWB6)− {x1, x4}

Table 41. LRNs R̄y for 1 ≤ y ≤ 3.

LRNs Elements

LLR{ys, zs} V(AWB6)
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Case II: For any m ≥ 6:
As we can see from Lemma 6. the LRN with the least cardinality of 3m

2 is Rs =

LR{xs, ys−1}, |
m⋃

s=1
Rs| = 3m and |LR{st} ∩

m⋃
s=1

Rs| ≥ |Rs| ∀ {s, t} ∈ V(G). Suppose that

α = |
m⋃

s=1
Rs| = 3m and β = |Rs| = 3m

2 . Then we define a mapping µ : V(G) → [0, 1]

such that

µ(v) =


1
β for a ∈

m⋃
s=1

Rs,

0 for a ∈ V(G)−
m⋃

s=1
Rs

It is observed that µ is a LRF for G with m ≥ 6 because µ(LR{st}) ≥ 1 ∀ s, t ∈ V(G).
Assume on the contrary that there exists a different LRF γ, such that γ(u) ≤ µ(u), for some
u ∈ V(G) γ(u) 6= µ(u). Consequently, γ(LR{st}) < 1, where LR{st} is an RN of G having
the least cardinality β. This shows that γ is not a LRF a contradiction. Therefore, µ is a MRF
that attains minimum |µ| for G. Also, all the Rs are intersecting in pairwise manner, holding

non-cyclic behavior with
m⋂

s=1
Rs = φ, thus by Theorem 1, assigning 1

β to the vertices of G in

m⋃
s=1

Rs and evaluating the summation of all the weights, we get: 1 ≤ l f dim(G) ≤
α

∑
l=1

1
β = 2.

5. Conclusions

In this article, we have:

• Found the FMD and LFMD of networks called by subdivided QCL, 2-faced web,
3-faced web, and antiprism web networks;

• Since subdivided QCL and 2-faced web networks are bipartite in nature, both thus
have l f dim as unity;

• The 3-faced web and antiprism web networks have FMD and LFMD in the interval
[1, 2];

• The summary of obtained results are shown in Table 42.

Table 42. Summarized Numerical Results.

G f dim l f dim lim
f dim→∞

lim
l f dim→∞

Remarks

SQm [1, 3
2 ] 1 3/2 1 Bounded and Constant

WB1
m [1, 3m

m+1 ] 1 3 1 Bounded and Constant

WB2
m [1, 2] [1, 2] 2 2 Bounded and Constant

WB3
m [1, 2] [1, 2] 2 2 Bounded and Constant

AWBm [1, 2] [1, 2] 2 2 Bounded and Constant

• The graphical analysis of obtained results at ∞ is shown in Figure 5.
• The networks under consideration bear rotational symmetry and planarity as well.

Moreover, they are non-regular and vertex transitive networks with the attachment of
a pendent edge that they can use to help solve the problems related to designing a fire
exit plan, computer network, or in chemical strata.

• These results strengthen and prove the tautology of Theorem 1, Theorems 2 and 3
proved in [21,25].

• However, finding the distance-based fractional dimensions of families of networks
other than web-related ones is still an open problem.
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FMD of SQm

FMD of WBm
1

FMD and LFMD of WB     , WB      and AWBm
2

m
3
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Figure 5. Graphical analysis, 2D (left) and 3D (right).
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