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Abstract: In the present work, we study the COVID-19 infection through a new mathematical model
using the Caputo derivative. The model has all the possible interactions that are responsible for the
spread of disease in the community. We first formulate the model in classical differential equations
and then extend it into fractional differential equations using the definition of the Caputo derivative.
We explore in detail the stability results for the model of the disease-free case when R0 < 1. We
show that the model is stable locally when R0 < 1. We give the result that the model is globally
asymptotically stable whenever R0 ≤ 1. Further, to estimate the model parameters, we consider
the real data of the fourth wave from Pakistan and provide a reasonable fitting to the data. We
estimate the basic reproduction number for the proposed data to beR0 = 1.0779. Moreover, using
the real parameters, we present the numerical solution by first giving a reliable scheme that can
numerically handle the solution of the model. In our simulation, we give the graphical results for
some sensitive parameters that have a large impact on disease elimination. Our results show that
taking into consideration all the possible interactions can describe COVID-19 infection.

Keywords: Caputo fractional model; stability; data fitting; numerical results

1. Introduction

Currently, Pakistan is experiencing the fourth wave of the pandemic with infected
and death cases. Presently, the number of reported cases to date is 1,278,114 and that of
reported death cases is 28,566, while the number of recovered as of 10 November 2021 is
1,226,590. The total death reported is 2% of the infected cases and the peak of infected
cases suggests a third wave in the country of Pakistan. The number of active cases for the
beginning of the fourth wave started in July and will hopefully end soon. The number
of infected cases is decreasing daily, while the number of recoveries is increasing with a
decreased number of deaths [1]. Due to the decreasing number of cases in the fourth wave,
life in the country is coming back to normal. One of the reasons is that the vaccinations
and the government’s strict polices made it possible to get things back to normal.

Since the beginning of the COVID-19 pandemic, many researchers in their respective
fields have been studying the infection of coronavirus and trying to identify the possible
ways of immunizing the human being from this virus in order to follow the rules and
regulations given by the World Health Organization (WHO), and to maximally immu-
nize individuals. Regarding the studying of the coronavirus infection from different
perspectives by the researchers, it is noteworthy that mathematical models are considered
effective in order to study the number of infected cases and determine the possible peak
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of curve and its prediction for the infected COVID-19 data. The information of finding
the peak of infection in a particular country can lead to decisions on how these cases
can be minimized and to minimize the occurrence of future outbreak with fewer infected
cases. Some mathematical studies were designed for the understanding of coronavirus
infection with the reported cases from their specific countries with different strategies of
controls. The study on the COVID-19 pandemic and its modeling and forecasting in India
was studied in [2]. A mathematical model was constructed for the infection outbreak
in Italy and France, considering real cases [3]. Considering a case study of Pakistan to
built a mathematical model with the analysis of control strategies was considered in [4].
The authors used the infected cases of Nigeria and studied the dynamics of coronavirus
model in [5]. The infected cases in China and their mathematical modeling with analysis
were explored in [6]. The authors in [7] considered the mathematical modeling theory
to investigate the COVID-19 infection using Ethiopian cases. The authors in [8] used the
approach of graph modeling to understand the COVID-19 infection. A model formulated
to study the cases in India was explored in [9]. The cost effective analysis of the COVID-19
infection by utilizing the theory of an optimal control was discussed in [10]. The literature
on COVID-19 dynamics is expansive as there are many works; we refer the readers to see
more related work using the references in the above-mentioned studies.

Recently, researchers from different fields of science and engineering showed their
interest in using fractional differential equations (FDEs) for their proposed models. An
especially great interest was given to mathematical modeling in epidemiological models.
Due to the many properties of FDEs, the memory effect is one of the interesting properties
of fractional order models that cannot be observed in classical differential equations; see,
for more details, [11]. Note that fractional calculus has become one of the most studied
fields used to explain physical properties of real-world problems, such as the COVID-
19 pandemic, SIR, and health problems [12,13]. Fractional differential equations in the
current era are used by various researchers to model their problems. Among these research
problems, the COVID-19 pandemic has been studied widely, obtaining useful results
regarding the infection. For example, a fractional COVID-19 model by using the power
law was considered in [14]. The COVID-19 transmission dynamics using the fractional
order model was explored in [15]. A SIR model in [16] was formulated by the authors
with the help of the Mittag–Leffler law. The spread of coronavirus and its mathematical
modeling in Turkey and Africa with theory and applications were discussed in [17].
A fractional order model in [18] was used to study the COVID-19 infection cases in Saudi
Arabia. Modeling and numerical analysis of the COVID-19 infection was explored in [19].
A mathematical model of COVID-19 with immune response and its fractional optimal
control was suggested in [20].

In the present paper, we aim to study the coronavirus infection through a novel
mathematical model by assuming four different contacts that are responsible for the COVID-
19 infection. Among these contacts, the exposed, asymptomatic, symptomatic and the
hospitalized individuals contact healthy people to spread the infection. In order to motivate
the readers, it is possible that the infection is spreading through the contact of asymptomatic,
symptomatic, and those hospitalized infected individuals, while the individuals that
become exposed after contacting infected people can infect others during their exposed
period. So, all the possible interactions are meaningful and valid, biologically. First, we
give, in detail, the modeling of the coronavirus using classical differential equations and
later extend it to the fractional order system using the power law (Caputo derivative). The
rest of the results in the paper are split section-wise as follows: In Section 2, we discuss
in detail the mathematical modeling of the COVID-19 model in integers and then extend
it to the fractional order model. In Section 3, we explore the mathematical analysis of the
model and its stability. We estimate the parameters of the model using the reported cases in
Section 4. The numerical results and discussion on the fractional order model are discussed
in Section 5. Finally, we summarize our work by the conclusion.
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2. Model Formulation

To study the COVID-19 dynamics thorough a mathematical model, we denoted the
population of humans by N(t) at any time t and divided it further into six different sub-
classes—namely, healthy or susceptible individuals S(t) (the individuals that are at risk
of acquiring the infection, but not yet contracted the disease); exposed individuals (the
individuals infected who are incubating the infection) E(t); asymptomatic individuals
(individuals that do not show clinical symptoms, but are able to transmit the infection),
A(t); symptomatic or infected individuals (individuals that show full symptoms of disease
and infect other individuals), I(t); hospitalization of infected individuals (the individuals
that are infected or hospitalized) H(t); recovered individuals (individuals who either
recovered or were removed from the population ) R(t); so, N(t) = S(t) + E(t) + A(t) +
I(t) + H(t) + R(t). A study shows that about 80% of the individuals infected by COVID-19
are due to the asymptomatic infected individuals that do not show any symptoms [21]. In
other words, the individuals in class A(t) produce a lot of infected cases of COVID-19 in the
population who are unaware of their infection. Due to there being no clinical symptoms of
the disease in the individuals in compartment A(t), disease control is more difficult. If not
isolated rapidly, the individuals that show symptoms clinically detected through random
diagnosed testing or the contract tracing of the confirmed COVID-19 cases will continue
to unknowingly be spreading the infection. The exposed individuals who are incubating
the infection also risk spreading the infection further in populations. Asymptomatic and
exposed individuals in contact with healthy individuals are considered to be one of the
biggest causes of COIVD-19 disease transmissions. COVID-19 with the suggested classes
above and the important features of exposed and asymptomatic infection can be described
in the following through evolutionary differential equations:

dS(t)
dt

= Λ− (β1E(t) + β2 A(t) + β3 I(t) + β4H(t))
N(t)

S(t)− µS(t),

dE(t)
dt

=
(β1E(t) + β2 A(t) + β3 I(t) + β4H(t))

N(t)
S(t)− (η + µ)E(t),

dA(t)
dt

= ηνE(t)− (q1 + µ)A(t),

dI(t)
dt

= (1− ν)ηE(t)− (q2 + κ + ψ + µ)I(t),

dH(t)
dt

= κ I(t)− (ω + q3 + µ)H(t),

dR(t)
dt

= q1 A(t) + q2 I(t) + q3H(t)− µR(t), (1)

subject to the non-negative conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, A(0) = A0 ≥ 0, I(0) = I0 ≥ 0,

H(0) = H0 ≥ 0, R(0) = R0 ≥ 0. (2)

In system (1), we define in detail the parameter involved. The individuals that increase
the population of susceptible individuals are shown by Λ, while the natural death rate
of humans in each compartment is given by µ decreasing the population. The contact
rates such as βi for i = 1, 2 . . . , 4 represente, respectively, the contact among healthy and
susceptible people, the contact among healthy people and those infected with no clinical
symptoms, the contact among healthy people and those infected with clinical symptoms,
the contact between healthy people and hospitalized infected people. It is assumed further
that β1 6= β2 6= β3 6= β4. The exposed individuals progress out of the compartment E
through the rate given by η, and it is assumed that a proportion ν ∈ (0, 1] of individuals in
the exposed class with no clinical symptoms move into the class (A) after the completion
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of the incubation period, while the proportion 1− ν remaining show clinical symptoms
by moving to the symptomatic infected class I through coming out of the incubation
period. The parameters qi for i = 1, 2, 3 denote, respectively, the recovery of asymptomatic,
symptomatic and hospitalized infected people. The symptomatic individuals can be
hospitalized at a rate of κ (they can be isolated at hospital or at home). The people infected
with COVID-19 die due to disease in the classes I and H are shown, respectively, by the
parameters ψ and ω. One can estimate the total death cases reported from the model above
by considering the equation dD

dt = ψI + ωH.

A Fractional-Order Model

Before we construct the fractional-order model, we first defined the Caputo derivative
and the related results that will be required in the onward analysis. The following have
been taken from [22,23].

Definition 1. The Caputo derivative is defined through the following,

CDvg(t) =
1

Γ(1−v)

∫ t

0
(t− u)−vg′(u)du, (3)

where the symbol Γ(1−v) denotes Euler Gamma function, and v ∈ (0, 1).

Lemma 1. Given that the function g(t) and CDvg(t) are both continuous on [0, b]., then

g(t) = g(0) +
1

Γ(v)
CDvg(ζ)tv, 0 < ζ < t, f orevery t ∈ [0, b].

We obtain this if CDvg(t) > 0 for every 0 ≤ t ≤ b, so the function g is strictly
increasing, and if CDvg(t) < 0 for every 0 ≤ t ≤ b, then g is decreasing. By extending the
model (1) by following the Caputo derivative definition, we obtain the following:

C
0 Dv

t S(t) = Λ− λ(t)S(t)− µS(t),

C
0 Dv

t E(t) = λ(t)S(t)− (η + µ)E(t),

C
0 Dv

t A(t) = ηνE(t)− (q1 + µ)A(t),

C
0 Dv

t I(t) = (1− ν)ηE(t)− (q2 + κ + ψ + µ)I(t),

C
0 Dv

t H(t) = κ I(t)− (ω + q3 + µ)H(t),

C
0 Dv

t R(t) = q1 A(t) + q2 I(t) + q3H(t)− µR(t), (4)

where

λ(t) =
(β1E(t) + β2 A(t) + β3 I(t) + β4H(t))

N(t)
,

and using the initial values of (2).

The total dynamics of the fractional-order model (4) can be obtained by adding all
their equations, and it is given by

dN
dt

= Λ− µN − ψI −ωH ≤ Λ− µN,
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when t→ ∞

lim
t→∞

N(t) ≤ Λ
µ

.

The following feasible region is given for model (4), where the solutions related to the
model lie in

Θ =

{
(S, E, A, I, H, R) ∈ R6

+ : S + E + A + I + H + R 6
Λ
µ

}
(5)

3. Equilibria and Its Stability

Here, we obtain the equilibria of the fractional-order model (4) by equating the time rate
of change of the system (4) to zero, and obtain the disease-free equilibrium denoted by P0,

P0 =
(

S0, E0, A0, I0, H0, R0

)
=
(Λ

µ
, 0, 0, 0, 0, 0

)
. (6)

We next compute the basic reproduction number denoted byR0, which is defined as:
the average secondary infection introduced into a population of purely susceptible indi-
viduals producing further secondary infection. The expression for the basic reproduction
number can be obtained using the method explained in [24]. We have, for our model (4),

F =


β1 β2 β3 β 4
0 0 0 0
0 0 0 0
0 0 0 0

, V =


τ1 0 0 0
−ην τ2 0 0

−η(1− ν) 0 τ3 0
0 0 −κ τ 4


The basic reproduction numberR0 for the fractional system (4) is the spectral radius

of γ(FV−1) and hence

R0 =
β1

τ1︸︷︷︸
RE

+
β2ην

τ1τ2︸ ︷︷ ︸
RA

+
β3η(1− ν)

τ1τ3︸ ︷︷ ︸
RI

+
β4ηκ(1− ν)

τ1τ3τ4︸ ︷︷ ︸
RH

,

where τ1 = (η + µ), τ2 = (q1 + µ), τ3 = (q2 + κ + µ + ψ) and τ4 = (ω + q3 + µ).

Existence of Endemic Equilibria

We compute here the endemic equilibria of the model (4) by denoting it as
P∗ = (S∗, E∗, A∗, I∗, H∗, R∗), given by

S∗ = Λ
λ∗+µ

E∗ = λ∗S∗
τ1

A∗ = ηνE∗
τ2

I∗ = η(1−ν)E∗
τ3

H∗ = υI∗
τ4

R∗ = q1 A∗+q3H∗+q2 I∗
µ .
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The above is used in the following expression,

λ =
(β1E + β2 A + β3 I + β4H)

N
,

and allows us to obtain the following,

r1λ∗ + r2 = 0, (7)

r1 = ηκ(1− ν)τ2(µ + q3) + τ4(η(1− ν)τ2(µ + q2) + τ3(ην(µ + q1) + µτ2)),

r2 = µτ1τ2τ3τ4(1−R0).

It is obvious that r1 > 0 and r2 is positive whenever R0 < 1. The existence of (7) to
give positive equilibria is only possible whenR0 > 1 have value greater than unity. Hence,
for the Equation (7) whenR0 > 1 has the positive and unique solution, so the there exists
a unique endemic equilibrium of the system (4) whenR0 > 1.

We explore the stability results for the fractional-order model whenR0 < 1 disease-
free case for local asymptotic stability while for the global stability case we have forR0 ≤ 1.
The following theorems are given:

Theorem 1. WhenR0 < 1, then the fractional model given in (4) is locally asymptotically stable
at P0.

Proof. The fractional model (4) has the Jacobian for P0 for infection-free case:

J(P0) =



−µ −β1 −β2 −β3 −β4 0
0 β1 − τ1 β2 β3 β4 0
0 ην −τ2 0 0 0
0 η(1− ν) 0 −τ3 0 0
0 0 0 κ −τ4 0
0 0 q1 q2 q3 −µ

. (8)

It can be observed from J(P0) that the eigenvalues −µ(twice) are negative, while
we can use the fourth-order polynomials to obtain the rest of the eigenvalues from the
equation below:

λ4 + c1λ3 + c2λ2 + c3λ + c4 = 0, (9)

where

c1 = τ2 + τ3 + τ4 + τ1(1−RE),

c2 = τ3τ4 + τ2(τ3 + τ4) + τ1τ4(1−RE) + τ1τ3[1− (RE +RI)]

+τ1τ2[1− (RE +RA)],

c3 = τ2τ3τ4 + τ1τ2τ4(1−RE −RA) + τ1τ2τ3(1−RE −RA −RI)

+τ1τ3τ4(1−RE −RI −RH),

c4 = τ1τ2τ3τ4(1−R0).

We have all the coefficients cj > 0 for j = 1, . . . , 4 whenR0 < 1 and further c1c2c3 >

c2
3 + c2

1c4 which is the conditions for Routh–Hurtwiz criteria can be obtained easily. This
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ensures that the fractional-order model (4) will have eigenvalues containing negative real
parts, and hence the model is locally asymptotically stable at P0 forR0 < 1.

The next theorem illustrates the global asymptotic stability of the fractional model at P0.

Theorem 2. The model (4) at P0 is globally asymptotically stable ifR0 ≤ 1.

Proof. Here, by defining the Lyapunove function in the following,

L(t) = k1E(t) + k2 A(t) + k3 I(t) + k4H(t), (10)

where km > 0, for m = 1, . . . 4. From the time differentiation of (10) and further using (4),
we have

CDv L(t) = k1
CDvE(t) + k2

CDv A(t) + k3
CDv I(t) + k4

CDv H(t),

= k1[
(β1E + β2 A + β3 I + β4H)

N
S− τ1E]

+k2[ηνE− τ2 A] + k3[(1− ν)ηE− τ3 I] + k4[κ I − τ4H].

Rearranging and considering the assumptions S(t) ≤ N(t), we have

CDv L(t) = [k1β1 + k2ην + k3(1− ν)η − τ1k1]E + [β2k1 − k2τ2]A

+[k1β3 + k4κ − k3τ3]I + [k1β4 − k4τ4]H.

Now, considering the values of the constants k1 = τ2, k2 = β2, k3 = τ2
τ3
(β3 +

κβ4
τ4

),

k4 = τ2β4
τ4

, we have

CDv L(t) = −τ1τ2(1−R0)E.

So, CDv L(t) ≤ 0 whenever R0 ≤ 1. Also, CDv L(t) = 0 if and only if E = A =
I = H = 0. We conclude that by following the result from [25] the fractional model (4) is
globally asymptotically stable wheneverR0 ≤ 1.

4. Estimation of Parameters

We consider the real data from Pakistan of the fourth wave to have started from
1 July 2021, until 28 October 2021. The cases are taken on daily bases, so, the time unit will
be considered in the days. Among the model parameters values, we choose some of the
parameters from literature, such as q1 = 1/5.1, q2 = 1/10, q3 = 1/8, and ψ = 0.015, which
are cited properly in Table 1. The other parameters such as the birth Λ and the natural
death rate µ, we can estimate it from the equation N(0) = Λ/µ. Assume that the initial
population of Pakistan at the onset of fourth wave in 2021 is to be considered approximately,
N(0) = 22, 00, 00, 000, while the average life span in Pakistan is µ = 1/(67.7); so, we have,
after computing this, Λ ≈ 8903. The list of parameters and their numerical values fitted
or estimated to the data is shown in Table 1. The initial conditions considered in the data
fitting is as follows: we have N(0) = 22, 00, 00, 000, and so in the disease absence the value
of S(0) = 219, 768, 233, E(0) = 200, 000, A(0) = 0, I(0) = 31, 767, H(0) = 0, and R(0) = 0.
The basic reproduction number, computed using the values given in Table 1 isR0 ≈ 1.0779.
The data set versus the model using the nonlinear least square curve fitting has been used
and the desired results is shown in Figure 1. In Figure 1a is the model fitting versus data
while Figure 1b shows the predictions of the model versus data.
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Table 1. Estimated parameters.

Symbol Definition Value/per Day Source
Λ Birth rate µ× N(0) Estimated
µ Natural death rate 1

67.7×365 [26]
η Incubation period 0.8036 Fitted
ν Individuals progress to A 0.8887 Fitted
q1 Recovery from asymptomatic class 1/5.1 [27]
q2 Recovery from symptomatic class 0.1 [27]
q3 Recovery of hospitalized individuals 1/8 [27]
ω Disease contact rate of hospitalized individuals 0.01 Fitted
ψ Disease death rate of symptomatic individuals 0.015 [27]
κ Hospitalization of symptomatic people 0.4000 Fitted
β1 Contact rate due to exposed 0.7085 Fitted
β2 Contact rate due to asymptomatic 0.0300 Fitted
β3 Contact rate due to symptomatic 0.2784 Fitted
β4 Contact rate due to hospitalized 0.0100 Fitted
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Figure 1. (a) Real data versus model fitting, (b) model predictions.

5. Numerical Results and Discussion

Here, we first explain the numerical scheme for the fractional model in terms of
the Caputo derivative given in (4). Considering the Adams–Bashforth–Moulten method
given in [28,29] to obtain the numerical scheme for the model (4). After implementing
the numerical scheme we will consider the real parameters given in Table 1 using the
fractional-order v values and present the results.

Numerical Scheme for Model (4)

To implement the Adamas-Bashforth-molten for the system (4), we first re-write the
original model in the following shape:{

CDv
t z(t) = g(t, z(t)), 0 < t < T

z(r)(0) = z(r)0 , r = 0, 1, . . . , χ, χ = [v].
(11)

Equation (11) is equivalent to Volterra integral equation given by

z(t) =
χ−1

∑
r=0

z(r)0
tr

r!
+

1
Γ(v)

∫ t

0
(t− u)v−1g(s, z(s))ds (12)

To integrate (12), we follow the results from [28,29], where the authors used the
Adams–Bashforth–Moulton method by setting h = T

N , tm = mh, m = 0, 1, . . . , N ∈ Z+.
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So, we write in view of the above-mentioned work [28,29], and the recently used by the
scheme given in [14], the fractional model (4) has the following scheme:

Sm+1 = S0 +
hv

Γ(v + 2)
[Λ− λSp − µSp] +

hv

Γ(v + 2)

m

∑
j=0

aj,m+1
[
Λ− λSj − µSj

]
,

Em+1 = E0 +
hv

Γ(v + 2)
[λSp − τ1Ep] +

hv

Γ(v + 2)

m

∑
j=0

aj,m+1
[
λSj − τ1Ej

]
,

Am+1 = A0 +
hv

Γ(v + 2)
[ηνEp − τ2 Ap] +

hv

Γ(v + 2)

m

∑
j=0

aj,m+1
[
ηνEj − τ2 Aj

]
,

Im+1 = I0 +
hv

Γ(v + 2)
[(1− ν)ηEp − τ3 Ip] +

hv

Γ(v + 2)

m

∑
j=0

aj,m+1
[
(1− ν)ηEj − τ3 Ij

]
,

Hm+1 = H0 +
hv

Γ(v + 2)
[κ Ip − τ4Hp] +

hv

Γ(v + 2)

m

∑
j=0

aj,m+1
[
κ Ij − τ4Hj

]
,

Rm+1 = R0 +
hv

Γ(v + 2)
[q1 Ap + q2 Ip + q3Hp − µRp]

+
hv

Γ(v + 2)

m

∑
j=0

aj,m+1
[
q1 Aj + q2 Ij + q3Hj − µRj

]
, (13)

where

Sp
m+1(t) = S0 +

1
Γ(v)

m

∑
j=0

∆j,m+1
{

Λ− λSj − µSj
}

,

Ep
m+1(t) = E0 +

1
Γ(v)

m

∑
j=0

∆j,m+1
{

λSj − τ1Ej
}

,

Ap
m+1(t) = A0 +

1
Γ(v)

m

∑
j=0

∆j,m+1
{

ηνEj − τ2 Aj
}

,

Ip
m+1(t) = I0 +

1
Γ(v)

m

∑
j=0

∆j,m+1
{
(1− ν)ηEj − τ3 Ij

}
,

Hp
m+1(t) = H0 +

1
Γ(v)

m

∑
j=0

∆j,m+1
{

κ Ij − τ4Hj
}

,

Rp
m+1(t) = R0 +

1
Γ(v)

m

∑
j=0

∆j,m+1
{

q1 Aj + q2 Ij + q3Hj − µRj
}

,

where

aj,m+1 =


mv+1 − (m−v)(m + 1)v, j = 0,

(m− j + 2)v+1 + (m− j)v+1 − 2(m− j + 1)v+1, 1 ≤ j ≤ m,

1, j = m + 1

and

∆j,m+1 =
hv

v

(
(m− j + 1)v − (m− j)v

)
, 0 ≤ j ≤ m.

We consider the fractional order model considered in Caputo derivative given in
(4) using the numerical values of the model parameters given in Table 1 to obtain the
graphical results by the scheme presented above. The numerical scheme, consider for the
Caputo fractional order given by (13) is considered and the respective results are shown
graphically in Figures 2–4. We produced Figure 2 by considering the fractional-order
parameter ϕ with its different values and presented their results. Figure 2 demonstrates
the graphical results for the endemic equilibrium point where the number of susceptible
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and recovered peoples increases with the decrease in the fractional-order parameters while
an increase was observed for the infected compartments of the model. Further, we studied,
graphically, the impact of the sensitive and important parameters of the model as shown in
Figures 3 and 4. The impact of the contact parameters β1, β2, β3 and β4 with different values
on the model (4) is shown in Figure 3. Decreasing the contacts among the healthy with
exposed, with asymptomatic, with symptomatic and those with hospitalized individuals
can efficiently decrease the populations of infected people and reduce the disease burden
on the populations. The impact of the parameters η, ν and κ with many values can decrease
the infected populations, as shown in Figure 4. Facilitating the people by increasing the
testing facility and to identify the asymptomatic individuals and to isolate can decrease
the further infection of the disease in the country. Upon testing, positive individuals with
severe illness should be hospitalized and the treatment of such infected people is the best
method to decrease the population of infected people.
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Figure 2. Cont.
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Figure 2. Simulation of model variables with different values of v = 1, 0.97, 0.95, 0.93, where sub-
figures describe, (a) susceptible individuals, (b) exposed individuals, (c) asymptomatic individuals,
(d) symptomatic individuals, (e) hospitalized individuals, (f) recovered individuals.
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Figure 3. The impact of contact parameters on the infected population, where sub-figures describe,
(a) β1 = 0.7085, 0.6985, 0.6885, 0.6785, (b) β2 = 0.03, 0.028, 0.024, 0.02, (c) β3 = 0.2784, 0.1784, 0.0784,
(d) β4 = 0.03, 0.02, 0.01.
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Figure 4. The impact of parameters η, ν and κ on the infected individuals, where sub-graphs describe
(a) η = 0.8036, 0.7836, 0.7436, (b) ν = 0.8887, 0.8487, 0.8087, (c) κ = 0.2, 0.3, 0.4.

6. Conclusions

A new mathematical model to illustrate the dynamics of COVID-19 with the interac-
tion of exposed, asymptomatic, symptomatic and hospitalized individuals in terms of the
fractional-order Caputo derivative has been investigated. It is well known that individuals
become infected with COVID-19 due to contact with asymptomatic, symptomatic, and hos-
pitalized infected individuals, as well as those who have been exposed to it. It is noted that
many health workers and doctors and those working in the management of hospitals died.
We discussed the formulations of the problem and then obtained the related properties
of the model mathematically. We studied the model to obtain its stability analysis on the
basis of the basic reproduction number R0. We found that the model in the disease-free
case is locally asymptotically stable wheneverR0 < 1. The global asymptotic stability was
proven for the model when R0 < 1. Further, we the data to be valid from 1 July 2021 to
28 October 2021 and we parameterized the model. The parameters obtained using the
nonlinear least-square fitting has been used to obtain the numerical solutions graphically.
The impact of the various parameters on the model equations has been discussed and
shown graphically. It can be observed from the numerical results that the infection can be
eliminated faster if the exposed cases, the identification of asymptomatic cases, the infected
cases and those hospitalized or quarantined at home restrict their contact with healthy
individuals. The testing facility of the audiovisuals should be increased and those identified
as asymptomatic infected should be quarantined in order to decrease the burden and the
future wave of infection in the country.
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