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Abstract: The scale dependence of the effective anti-plane shear modulus response in microstructures
with statistical ergodicity and spatial wide-sense stationarity is investigated. In particular, Cauchy
and Dagum autocorrelation functions which can decouple the fractal and the Hurst effects are used to
describe the random shear modulus fields. The resulting stochastic boundary value problems (BVPs)
are set up in line with the Hill–Mandel condition of elastostatics for different sizes of statistical volume
elements (SVEs). These BVPs are solved using a physics-based cellular automaton (CA) method that
is applicable for anti-plane elasticity to study the scaling of SVEs towards a representative volume
element (RVE). This progression from SVE to RVE is described through a scaling function, which
is best approximated by the same form as the Cauchy and Dagum autocorrelation functions. The
scaling function is obtained by fitting the scaling data from simulations conducted over a large
number of random field realizations. The numerical simulation results show that the scaling function
is strongly dependent on the fractal dimension D, the Hurst parameter H, and the mesoscale δ, and
is weakly dependent on the autocorrelation function. Specifically, it is found that a larger D and a
smaller H results in a higher rate of convergence towards an RVE with respect to δ.

Keywords: homogenization; scaling; effective response; cellular automata

1. Introduction

The continuum mechanical properties of any natural or engineering material are
dependent on the material’s physical structure at various scales below the macroscopic (or
continuum). Thus, any continuum model corresponds to having effective (or averaged)
properties of the heterogeneous substructure in some manner. The pertinent number of
length scales and the relevant characteristics of substructure at each scale for obtaining
these effective properties vary greatly from one material to another. One of the major
challenges lies in homogenization, whose goal is to develop the phenomenological consti-
tutive equations for the macroscopic response of idealized continua with heterogeneous
substructures. The problem of homogenization for heterogeneous materials with linear
mechanical and thermal properties has been studied extensively, with the conventional
focus being on the effective (or macroscopic) responses of two or multi-phase random
composites. This is the case for a representative volume element (RVE), as opposed to the
statistical volume element (SVE), for which one is additionally interested in establishing
the scaling to RVE [1,2]. Key papers in research on the SVE are [3,4].

In recent years, extensive literature has been produced on the computation of effective
properties based on Monte-Carlo type simulations in various fields [5–14]. In the context
of elasticity, Murshed et al. [7] obtained rigorous bounds on randomly distributed elastic
polycrystals comprised of lower symmetry single crystals. Kale et al. [9] studied the
scale-dependent bounds on the effective thermal conductivity of 2d Gaussian correlated
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microstructures. Savvas et al. [12] coupled an extended finite element method with Monte-
Carlo simulations to determine effective stiffness and compliance elasticity tensors in
random composites with differences in local volume fraction. Recently, Karimi et al. [14]
investigated electrostatic and magnetostatic properties of 2d and 3d two-phase media after
adapting Hill–Mandel conditions to electric and magnetic fields.

The present investigation focuses on the effects of fractal and Hurst characteristics of
random media [15] on the scaling of their elastic properties when going from SVE to RVE.
This is beyond all the previous studies that assumed either white-noise or very short-range
correlations. Our study is focused on the anti-plane elasticity of media modeled by random
fields of local shear modulus. Let the SVE in 2d be characterized by a mesoscale: a ratio
of L =

√
volume of SVE relative to the smallest heterogeneity size d. We ask: how do the

random fluctuations in response to the SVE diminish to zero with mesoscale L increasing?
This diminishing signifies attaining the effective deterministic response. This leads to
stochastic partial differential equations under either Dirichlet or Neumann boundary
conditions. The random fields are specified through Cauchy and Dagum autocorrelation
functions which allow independent choices of fractal and Hurst characteristics. We employ
a physics-based cellular automaton, a numerical method in which it is convenient to
introduce randomness on a discretized domain, to solve the stochastic BVPs. From this, we
obtain scale-dependent bounds on the effective shear modulus response at multiple length
scales for various combinations of fractal and Hurst parameters.

This article is organized as follows. In Section 2, we first establish the governing
equations, and discuss the Hill–Mandel conditions for elastostatics. We then introduce the
concepts of apparent and effective properties and that of the scaling function. Next, we
discuss the Cauchy and Dagum random fields that define the microstructure in this study,
followed by an overview of the cellular automaton method that is applicable to anti-plane
elasticity. Section 3 presents and discusses the homogenization results over a wide range of
fractal and Hurst parameters for various SVE sizes. The major findings and conclusions
are outlined in Section 4.

2. Theory
2.1. Governing Equations

Consider a random mesoscale body, Bδ = {Bδ(ω); ω ∈ Ω}, where Bδ(ω) is a specific
realization corresponding to the sample event ω in the Ω space. The dimensionless
parameter δ = L/d characterizes the mesoscale, where L is the domain (window) size.
Focusing on the quasi-static loading with negligible body forces, we have the following
governing equation of local equilibrium:

∇ · σ = 0, (1)

where σ is the the Cauchy stress field in the body, Bδ(ω). Let the strain field in Bδ(ω) be ε.
The present study focuses on anti-plane linear elasticity for Bδ ⊂ R2, so the equilibrium
equation becomes:

∇ · (C(x, ω)∇u) = 0, ∀x ∈ Bδ(ω). (2)

In general, C(x, ω) is the stiffness tensor random field (TRF) [16] and u ≡ u3(x, y)
is the anti-plane displacement. Equation (2) reduces to a stochastic generalization of the
Navier–Cauchy equation of elastostatics. We consider the TRF C(x, ω) = c(x, ω)I to be
locally isotropic, where I is a second-rank identity tensor and c(x, ω) is henceforth referred
to as the random shear modulus. Thus, the TRF model is modeled directly by a scalar
random field. The central issue addressed here concerns the scale-dependence of C as it is
smoothed on ever larger scales, while assuming the fractal and Hurst properties for the
finest scale resolution.
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2.2. Scale-Dependent Homogenization
2.2.1. Hill–Mandel Macrohomogeneity Condition

The transition from micro to mesoscale is studied in terms of the so-called Hill–Mandel
macrohomogeneity condition [17,18]. This condition requires the equivalence of the energetic
and mechanical interpretations of spatially-averaged work performed on a material domain.
If these interpretations give the same result for different uniform boundary conditions
imposed on the domain, then we have an RVE, and if the material domain is too small,
we have an SVE. To study this mesoscale (L/d) dependence, consider σ and ε to be the
volume averages of σ and ε over the SVE. The Hill–Mandel macrohomogeneity condition
reads [1]:

σ : ε = σ : ε⇔
∫

∂Bδ(ω)

(t− σ · n)(u− ε · x) dS = 0, ∀x ∈ Bδ(ω). (3)

where t and n are traction and normal vectors, respectively. The notation a : b = tr(aTb)
denotes the tensor scalar product between two second order tensors a and b. Equation (3)
is satisfied by three types of uniform boundary conditions [2,7,19]:

• Uniform displacement (Dirichlet):

u(x) = ε0 · x, ∀x ∈ ∂Bδ(ω). (4)

• Uniform traction (Neumann):

t(x) = σ0 · n, ∀x ∈ ∂Bδ(ω). (5)

• Uniform displacement-traction (mixed-orthogonal):

[u(x)− ε0 · x] · [t(x)− σ0 · n] = 0, ∀x ∈ ∂Bδ(ω). (6)

where ε0 and σ0 are constant strain and stress tensors, respectively. Note that ε0 = ε and
σ0 = σ on account of the average strain and stress theorems [2].

2.2.2. Apparent and Effective Properties

At any particular mesoscale δ, upon solving the stochastic boundary value problem under
the boundary conditions (4) or (5), and consequent ensemble averaging, results in a different
apparent stiffness (or compliance) tensor. In the current work, the uniform displacement and
the uniform traction boundary conditions are considered. Equation (4) results in the apparent
stiffness tensor 〈Cd

δ(ω)〉, where d stands for displacement boundary conditions. On the
other hand, Equation (5) results in the apparent compliance tensor

〈
St

δ(ω)
〉
, where t stands

for traction boundary conditions and note that 〈Ct
δ(ω)〉 ≡

〈
St

δ(ω)
〉−1.

σ = Cd
δ(ω) : ε0, (7)

ε = St
δ(ω) : σ0. (8)

As δ→ ∞, the randomness vanishes and the tensor represent the macroscale effective
elastic response Ceff of an RVE. In general, 〈Cd

δ(ω)〉, which gives an upper estimate for the
effective stiffness, is different from 〈Ct

δ(ω)〉, which gives a lower estimate for the effective
stiffness [10]. Indeed, upon using the principles of minimum potential energy and com-
plementary energy with the assumptions of spatial homogeneity and ergodicity of the
random microstructure, one can obtain the heirarchy of δ-dependent bounds on Ceff as
follows [3,4]:

〈St
1〉−1 ≤ 〈St

δ′〉
−1 ≤ 〈St

δ〉−1 ≤ Ceff ≤ 〈Cd
δ〉 ≤ 〈Cd

δ′〉 ≤ 〈C
d
1〉, ∀δ′ < δ. (9)
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Upon using the definition of isotropic stiffness tensor along with Equation (9), we get the
δ-dependent bounds on the shear modulus ceff as follows:

cR ≡ 〈st
1〉−1 ≤ 〈st

δ′〉
−1 ≤ 〈st

δ〉−1 ≤ ceff ≤ 〈cd
δ〉 ≤ 〈cd

δ′〉 ≤ 〈c
d
1〉 ≡ cV , ∀δ′ < δ, (10)

where cR and cV are the Reuss (harmonic mean estimate of the shear modulus) and Voigt
(arithmetic mean estimate of the shear modulus) estimates of the shear modulus.

2.2.3. Scaling

Consider the contraction between the apparent stiffness tensor and the apparent
compliance tensor with the assumption of local isotropy for anti-plane elasticity in 2d:

〈Cd
δ〉 :

〈
St

δ

〉
= 2
〈cd

δ〉
〈ct

δ〉
, (11)

lim
δ→∞
〈Cd

δ〉 :
〈
St

δ

〉
= 2. (12)

Following the previous studies, we postulate the following relation between the
left-hand side of Equation (11) and the left-hand side of Equation (12):

〈Cd
δ〉 :

〈
St

δ

〉
= lim

δ→∞
〈Cd

δ〉 :
〈
St

δ

〉
+ g(δ), (13)

g(δ) = 2

(
〈cd

δ〉
〈ct

δ〉
− 1

)
, (14)

where g(δ) is the scaling function. Besides δ, it is also a function of the random microstruc-
ture. In general, g(δ) has two exact properties: (i) in the RVE limit: limδ→∞ g(δ) = 0; (ii)
for a homogeneous microstructure: g(δ) = 0. The next step is to introduce the random
fields that specify the random medium.

2.3. Random Fields

Many natural material properties are usually described through fractal behavior and
Hurst effects. We introduce the randomness into the shear modulus fields, c(x, ω), through
two stochastic models, which can both capture and decouple fractal behavior and Hurst
effects: Cauchy and Dagum [20–23]. The fractal dimension, D ∈ [n, n + 1), is a measure
of roughness for a surface defined over Rn. The larger is D, the rougher is the surface.
The Hurst exponent or the Hurst parameter represents the “spatial memory.” In the case
of a 1d RF (i.e., parametrization by R), H ∈ [0, 0.5) represents an anti-persistent system,
H ∈ (0.5, 1) represents a persistent system, and H = 0.5 corresponds to a true random
walk. Both the Cauchy and Dagum shear modulus random fields are taken as Gaussian
RFs, truncated to ensure the positive-definiteness of energy density.

The autocorrelation function for two random variables Z(x1) and Z(x2), R : R2 ×
R2 → R is:

R(x1, x2) = 〈Z(x1)Z(x2)〉. (15)

We consider random fields, which are wide-sense-stationary (WSS) and isotropic.
Define r = ‖x1 − x2‖, for the Cauchy class Gaussian random field, c(x, ω), x ∈ R2, the
generalized Cauchy correlation function [20] is

RC
α,β(x1, x2) = Rα,β(r) = (1 + rα)−

β
α , r ≥ 0, α ∈ (0, 2], β > 0. (16)

The special case with α = 2 corresponds to the well-known Cauchy model [22]. The
generalized Cauchy random field will be hereafter referred to as Cauchy random field
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following the nomenclature in [23]. The correlation function corresponding to Dagum
random field is given as follows [23]:

RD
α,β(x1, x2) = Rα,β(r) = 1− (1 + r−β)

− α
β , r ≥ 0, α ≤ β, β ∈ (0, 2]. (17)

The fractal dimension (D) and the Hurst parameter (H) are related to (n, α, β) when
α ∈ (0, 2] and β ∈ (0, 2) as follows:

D = n + 1− α

2
, H = 1− β

2
, (18)

where n = 2 for a 2d system. The special case when α = 2− β corresponds to a self-affine
fractal. The power spectral density of the Cauchy random field is given in [24], and that
of the Dagum random field is given in [25]. In the current study, the Cauchy and Dagum
random fields are generated for various combinations of α and β. We used the so-called
circulant embedding method [26] to generate the random fields in R software.

2.4. Cellular Automata

The cellular automaton (CA) method is a computational approach first proposed by
John von Neumann [27]. Leamy [28] studied inplane elastodynamics using a physics-based
rectangular-celled CA in an idealized linear elastic medium. Later Hopman et al. [29]
extended this method to study arbitrary-shaped two-dimensional geometries. The applica-
tion of CA to the anti-plane shear elastodynamic problem is studied by Xian et al. [30]. The
rectangular-celled CA yields discrete equations which are mathematically equivalent to
that of the centered-difference finite difference method. In CA, the computational domain
is discretized into cells and the material properties are assigned to each cell making it
convenient to introduce randomness to the shear modulus field.

Following [28,30], the CA formulation for anti-plane shear forces at cell (i, j) is
given below:

Ftop
z = (w∆x)σtop

yz = (w∆x) c i,j+1uz − i,juz

∆y
(19)

Fbottom
z = (w∆x)σbottom

yz = (w∆x) c i,juz − i,j−1uz

∆y
(20)

Fright
z = (w∆y)σright

xz = (w∆y) c i+1,juz − i,juz

∆x
(21)

Fle f t
z = (w∆y)σle f t

xz = (w∆y) c i,juz − i−1,juz

∆x
(22)

where ∆x and ∆y are cell sizes in x and y directions, respectively; w is the width in the z
direction; and c is the shear modulus value at cell (i, j). The balance of linear momentum
equation for the cell (i, j) is given below:

Fexternal
z + (Fright

z + Ftop
z − Fle f t

z − Fbottom
z ) = 0 (23)

The cell (i, j) with its von Neumann neighbors and the corresponding forces acting on it
are shown in Figure 1.

Based on this method, we are concerned with solving BVPs under the uniform displace-
ment and uniform traction boundary conditions (Equations (4) and (5)). The displacement
values can be directly assigned to the boundary cells. The traction values can be assigned
by applying equivalent forces at the centers of boundary cells.
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(a) (b)
Figure 1. (a) A cell (i,j) and its von Neumann neighbours for cellular automaton discretization. (b)
neighbor forces and the external force acting on cell (i,j).

3. Numerical Results and Discussion

The anti-plane elastostatic behavior resulting for various Cauchy and Dagum shear
modulus random fields at successively increasing δ are reported in this section. The δ
values considered are δ = 1, 5, 9, 31, 93, and 279. The combinations of α and β in Cauchy
and Dagum random fields considered in this study are given in Table 1.

Table 1. Different combinations of α and β in Cauchy and Dagum random fields. (A, B, C), (AC, BC, CC), and (AD, BD, CD)
are the coefficients in the stretched exponential, the Cauchy function, and the Dagum function, respectively. SSE, SSEC, and
SSED are the error sums of the squares corresponding to the stretched exponential and Cauchy and Dagum functions’ fits,
respectively.

α β D H A B C SSE AC BC CC SSEC

1 1 2.5 0.5 0.24 0.34 0.005 2.5 × 10 −6 0.46 0.34 2.3 2.1 × 10 −6

1 1.8 2.5 0.1 0.24 0.46 0.003 2.2 × 10 −5 0.11 4.60 0.16 1 × 10 −6

1 0.2 2.5 0.9 0.50 0.05 −0.090 2.7 × 10 −5 0.12 0.53 0.35 3.9 × 10 −5

0.2 1 2.9 0.5 0.25 0.60 0.002 3.7 × 10 −6 25.36 0.22 8.11 7.5 × 10 −6

1.8 1 2.1 0.5 0.25 0.27 0.001 9.4 × 10 −7 0.17 0.69 0.82 2.7 × 10 −5

0.2 0.8 2.9 0.6 0.24 0.58 0.003 2.2 × 10 −5 14.88 0.23 7.33 1.2 × 10 −5

0.6 0.8 2.7 0.6 0.23 0.37 0.008 2.8 × 10 −5 1.11 0.23 3.59 5.6 × 10 −6

0.6 1.4 2.7 0.3 0.24 0.48 0.004 2.4 × 10 −5 1.90 0.29 4.36 1.4 × 10 −5

(a) Cauchy random fields

α β D H A B C SSE AD BD CD SSED

0.2 0.4 2.9 0.8 0.22 0.45 0.012 4.9 × 10 −5 2.35 0.58 0.056 8.5 × 10 −5

0.2 0.6 2.9 0.7 0.23 0.51 0.007 3.7 × 10 −5 2.43 0.75 0.055 6.5 × 10 −6

0.2 0.8 2.9 0.6 0.24 0.52 0.004 3.3 × 10 −5 0.76 0.90 0.187 2.3 × 10 −5

0.4 0.8 2.8 0.6 0.24 0.42 0.006 3.1 × 10 −5 0.54 0.75 0.273 8.7 × 10 −6

0.6 0.8 2.7 0.6 0.23 0.36 0.006 2.1 × 10 −5 0.66 0.60 0.215 4.5 × 10 −6

1 1 2.5 0.5 0.24 0.32 0.004 3.3 × 10 −6 0.22 0.64 0.821 4.9 × 10 −6

1 1.8 2.5 0.1 0.25 0.42 0.002 6.4 × 10 −6 0.15 0.95 1.33 5.8 × 10 −8

0.6 1.4 2.7 0.3 0.24 0.44 0.003 2.6 × 10 −5 1.18 0.81 0.119 6.3 × 10 −6

(b) Dagum random fields

The apparent shear modulus responses, 〈st
δ〉 and 〈cd

δ〉, were obtained after applying
CA for a large number of random field realizations corresponding to each (α, β, δ). The
number of realizations was increased until the mean and the standard deviation of the
apparent shear modulus responses did not change considerably with a further increase
in the number of realizations. For all (α, β, δ), the ensemble average of all the realizations
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was set to 5, and the standard deviation was set to 1. After obtaining the apparent shear
modulus responses, the scaling data were calculated for all (α, β, δ) using Equation (14).
Then, a stretched exponential fit to the scaling data was employed following the studies
conducted in [2,14]:

g(·, δ) = A exp(−δB) + C (24)

Cauchy and Dagum-type functions, as defined below, are also postulated as possible
fits to the scaling data.

g(RC
α,β, δ) = AC

(
1 + δBC

)−CC
(25)

g(RD
α,β, δ) = AD

(
1−

(
1 + δ−BD

)−CD
)

(26)

All the fit coefficients in Equations (24)–(26) were obtained using the Curve Fitting
Toolbox in MATLAB and are shown in Table 1, which uses the method of least squares.

3.1. Cauchy Random Field Responses

The mesoscale apparent shear modulus responses for the case of Cauchy random
fields are shown in Figure 2. It can be observed that for all (α, β, δ), the inequalities
of Equation (10) are satisfied. The mesoscale, δ, at which the values of 〈cd

δ〉 and 〈cn
δ 〉

approximately converge is within the range of δ values considered for all (α, β), except for
when (α = 1, β = 0.2). For the cases with α = 1 and varying β, the δ at which convergence
occurred increased as the β value decreased. For the case with β = 1 and varying α, the δ
values at which convergence occurred for the cases with α = 1 and α = 1.8 are similar and
are far greater than that for the case with α = 0.2. Note that a higher α indicates a lower
fractal dimension and a higher β indicates a lower Hurst parameter and vice versa. These
results qualitatively suggest that the δ at which convergence occurs increases as the Hurst
parameter increases. Similarly, the δ at which convergence occurs increases as the fractal
dimension decreases.

In order to quantitatively understand these results, the scaling data are plotted for all
combinations of (α, β), along with the corresponding stretched exponential fits and the
Cauchy function fits in Figures 3 and 4, respectively. The coefficients, A, B, and C, of the
stretched exponential fits for the scaling data, are given in Table 1a. The higher B’s value
is, the quicker is the convergence, and the above-mentioned qualitative inferences are in
line with the change in B value with (α, β). The coefficients of Cauchy function fits, AC, BC,
and CC, are also given in Table 1a for reference. The residual error comparison between the
stretched exponential fit and the Cauchy function fit shows that the Cauchy function fit is
better than the stretched exponential fit in five out of the eight cases.

3.2. Dagum Random Field Responses

The mesoscale apparent shear modulus responses for the case of Dagum random
fields are shown in Figure 5. It can be observed that for all (α, β, δ), the inequalities of
Equation (10) are satisfied. Convergence occurs within the range of δ values considered for
all (α, β). For the cases with α = 0.2 and varying β, the rate of convergence with respect to δ
is higher for the case with a larger β value. For the case with β = 0.8 and varying α, the rate
of convergence with respect to δ is higher for the case with a smaller α value. Analogously
to the case of Cauchy random fields, the Dagum random field results qualitatively suggest
that a larger β and a smaller α indicate a higher rate of convergence with respect to δ.
The scaling data are plotted for all combinations of (α, β), along with the corresponding
stretched exponential fits and the Dagum function fits in Figures 6 and 7, respectively. The
coefficients, A, B, and C, of the stretched exponential fits for the scaling data, are given
in Table 1b. The above-mentioned qualitative inferences are in line with the change in B
value with (α, β). The coefficients of Dagum function fits, AD, BD, and CD are also given in
Table 1b for reference. The residual error comparison between the stretched exponential fit
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and the Dagum function fit shows that the Dagum function fit is better than the stretched
exponential fit in five out of the eight cases.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 2. Apparent shear modulus responses corresponding to Cauchy random fields for various
combinations of (α, β, δ).
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Figure 3. The scaling function g(RC
α,β, δ) as a function of δ and the corresponding stretched exponen-

tial fit.

Figure 4. The scaling function g(RC
α,β, δ) as a function of δ and the corresponding Cauchy function fit.

Five out of the eleven combinations of (α, β) are common in Cauchy and Dagum
random fields considered in the current study (see Table 1). It can be observed that for
each (α, β), the convergence is a bit quicker for the corresponding Cauchy random field
response than that of the Dagum random field response, which is evident from the B values
given in Table 1. However, note that for the same α, β, the differences between the Cauchy
random field response and the Dagum random field response are not very different. These
results suggest that the random shear modulus fields having a particular (D, H) may be
modeled either by Cauchy or Dagum random fields without significant difference in the
anti-plane response.



Fractal Fract. 2021, 5, 255 10 of 13

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 5. Apparent shear modulus responses corresponding to Dagum random fields for various
combinations of (α, β, δ).



Fractal Fract. 2021, 5, 255 11 of 13

Figure 6. The scaling function g(RD
α,β, δ) as a function of δ and the corresponding stretched exponen-

tial fit.

Figure 7. The scaling function g(RD
α,β, δ) as a function of δ and the corresponding Dagum function fit.

4. Conclusions

In this article, the length scale effect on the apparent shear modulus values within
the context dictated by the Hill–Mandel macrohomogeneity condition was studied. The
effective shear modulus for a random microstructure was bounded above and below by
the apparent responses of stochastic boundary value problems under uniform displace-
ment and the uniform traction boundary conditions, respectively. The microstructural
randomness was introduced through Cauchy and Dagum stochastic models which can
both capture and separate fractal and Hurst effects. A varied set of (α, β) in both Cauchy
and Dagum random fields were studied at each mesoscale δ. A physics-based cellular
automaton was used to obtain the apparent shear modulus responses of the stochastic
boundary value problems for all (α, β, δ). Major results include:

(i) The obtained scaling data show that the mesoscale δ at which the effective shear
modulus response is strongly dependent on the choice of parameters varies with α and β.

(ii) It was found that for a fixed α, the rate of convergence with respect to δ increases
with an increase in β. For a fixed β, the rate of convergence with respect to δ increases with
a decrease in α.

(iii) The scaling data of the corresponding Cauchy and Dagum random field responses
were found to be approximated better by Cauchy-type and Dagum-type functions, respec-
tively, than by a stretched exponential function which works very well in white-noise-type
random media.
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The methodology of the current work can be extended to study the scale-dependent
bounds in media represented by tensor random fields without assuming local isotropy.
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