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Abstract: This manuscript investigates an extended boundary value problem for a fractional panto-
graph differential equation with instantaneous impulses under the Caputo proportional fractional
derivative with respect to another function. The solution of the proposed problem is obtained
using Mittag—Leffler functions. The existence and uniqueness results of the proposed problem are
established by combining the well-known fixed point theorems of Banach and Krasnoselskii with
nonlinear functional techniques. In addition, numerical examples are presented to demonstrate our
theoretical analysis.

Keywords: fixed point theorems; impulsive condition; boundary value problems; existence theory;
fractional differential equation

1. Introduction

Fractional differential equations (FDEs) have recently gained prominence and at-
tention as a way to describe applications in a variety of domains, including chemistry,
mechanics, fluid systems, electronics, electromagnetics, and other domains. The study
of FDEs encompasses everything from the theoretical aspects of solution existence to the
methodologies for discovering analytic and numerical solutions (see [1-5]). In both the
physical and social sciences, impulsive differential equations have become essential mathe-
matical models of phenomena. These equations are applied to describe the evolutionary
processes that change their state abruptly at a certain moment. This problem has piqued the
interest of researchers due to its rich theory and relevance in a wide range of scientific and
technological disciplines, including mechanics, ecology, medicine, biology, and electrical
engineering, (see [6-9]).

One form of well-known nonlinear delay differential equation has recently
been investigated:

x'(t) = ax(t) + bx(ut), te[0,T], T >0,
x(0) =x9, n€(0,1), abeR.

)
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Equation (1) is called the pantograph equation. Ockendon and Tayler [10] have researched
that there have been a wide range of applications in numerous disciplines of applied
sciences and engineering—this is used to model various current processes and phenomena
that are dependent on earlier ones (see [11-17] and the references cited therein for several
works). The existence, uniqueness, and different kinds of Hyers—Ulam stability of solutions
for nonlinear FDEs via impulse terms or non-impulse terms drew a lot of attention from
researchers. For example, in 2013, Balachandran and co-workers [18] used fractional
calculus and fixed point theorems to investigate the existence of solutions for nonlinear
pantograph equations:

{ D% (t) = f(t,x(t),x(ut)), ac (0,1, telo,1],
x(0)=x, x€R, ue(01),

2

where ¢D* denotes the Caputo fractional derivative of order « and f € C([0,1] x R?,R).

The investigated impulsive FDEs are not reliant on constant coefficients after reading
the previous publications listed. The impulsive fractional boundary value problems (BVPs)
with constant coefficients have received little attention. In physics, however, impulsive
FDEs with constant coefficients have a stronger foundation and play an important role.
Hooke and Newton laws are employed in mechanics to explain the behavior of particular
materials under the influence of external forces. Certain researchers propose revising the
classical Newton’s law, which is considered a generalized Nutting’s law, in order to change
some possible modification qualities. On the other hand, a mass-spring-damper system
is frequently exposed to short-term perturbations (an external force) that are sudden and
manifest as instantaneous impulses involving the associated differential equations. In 2014,
the author [19] established certain necessary conditions for the existence of a solution to an
impulsive fractional anti-periodic BVP with constant coefficients of the form:

C@’t";x(t) +Ax(t) = f(t,x(t), teT =IT\{ty,...,tu}, T :=101],
Ax(ty) =yr, k=1,2,...,m, 3)
x(0)+x(1) =0, y;€R,

where A > 0, CD‘tﬁ denotes the Caputo fractional derivative of order « € (0,1),

fec(JxRR), thekfixed impulsive time t satisfy 0 = g < t] < ... < tyy < tyq1 = 1,
and Ax(t) = x(t) — x(t,) denotes the jump of x(t) at t = t;. The existence results of
solutions were investigated by helping Lipschitz and nonlinear growth conditions. In
addition, Mittag—Leffler functions attributes and computational formula are employed
to construct examples. Based on the Banach contraction principle and Krasnoselskii’s
fixed point theorem, Zuo and co-workers [20] developed existence theorems for impul-
sive fractional integro-differential equations of mixed type with constant coefficient and
anti-periodic boundary conditions in 2017:

O x(t) +Ax () = f(1,x(0), Kx(1), Sx(1), 1€ T =T\t tu),
Ax(tk) :Ik(x(tk)), k:1,2,...,m, (4)
x(0)+x(1) =0, A >0,

where I, € R, f € C(J xR4R), J = [0,1], Ax(ty) = x(t)) — x(t;),
x(tf) =lime g+ x(t +€), x(t; ) = x(t;) represent the right and left hand limits of x(t) at
t = ty, respectively, K and S are linear operators. In 2020, Ahmed and co-workers [21] estb-
lished the existence and uniqueness of the solution for the impulsive fractional pantograph
differential equation with a more broader anti-periodic boundary condition of the form:
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o5 x(t) + Ax(t) = F(t,x(t),x(ut), t€ T =T\{t,..., b},
Ax|t:tk(0) = Ik(x(tk)), k= 1,2,...,711, (5)
ax(0) +bx(1) =0, a>b>0, pe(0,1),

where C©6‘+ denotes the Caputo fractional derivative of order a, f € C(J x R?,R),
Ax|i—y, = x(t;7) — x(t;), with x() and x(t;) representing the right and left limits
of x(t) at t = t;. Using Banach’s and Krasnoselskii’s fixed point theorems, they es-
tablished the existence and uniqueness of the solution for impulsive problem (5). We
recommend manuscripts [22-28] and the references given therein for contemporary papers
on impulsive FDEs on existence, uniqueness, and stability. The qualitative feature of
non-impulsive/impulsive FDEs is increasingly being studied in research.

Recently, Jarad and co-workers [29] constructed a novel brand of fractional operators
builded from the modified conformable derivatives. After that, Jarad and co-workers
formulated the proportional fractional calculus and shown certain features of the pro-
portional fractional derivatives and fractional integrals of a function concerning another
function. The kernel achieved in their consideration contains an exponential function and
is function dependent (as specified in Section 2) in [30,31]. The proportional fractional
operators have been applied to FDEs with and without impulsive conditions (see [32-38]).
For more interesting work on FDEs, we refer to read [39-46] and references cited therein.
Few works have been published on impulsive Caputo proportional fractional BVPs using
function via proportional delay term, to the author’s knowledge.

The existence and uniqueness results of the solutions for the following nonlinear
impulsive pantograph fractional BVP under Caputo proportional fractional derivative
concerns a particular function are considered in this manuscript:

CPk@’;‘ki'l”kx(t) + o Ax(t) = f(t,x(t),x(ut)), te T,
Ax(te) = x() —x(t,) = oe(x(t)), k=1,2,...,m, (6)
px(0) +nx(T) = 7,

where CPk@fﬁ'tpk denotes the Caputo proportional fractional derivative operator with
k
respect to another increasing differentiable function y; of order 0 < a; < 1 with 0 <

ok <Lt e Ji=(terr)] €T =0T, k=01,....m J = T\{ti,ta,..., tm},
O=to<h < - <ty<tyy1=T,0<u<1,A>0f€cC(JxR%R), ¢ € C(R,R),
k=1,2,...,m x(t]) =lim._ o+ x(t +€), x(t, ) = x(t), B, 17, v € R, and

m+1 pi_q-1

B+1 H e Pi-1
i=1

(wi—l(ti)_‘/’i—l(ti—l))ED‘Fl (= A(ia () — lpifl(tifl))ai_l) £ 0.

The goal of this manuscript is to use the fixed point theorems of Banach and Krasnosel-
skii to investigate the existence and uniqueness of solutions to the impulsive problem (6).
The following are the main points of this manuscript:

(i) We consider a new impulsive pantograph differential equations with Caputo propor-
tional fractional derivative concerning a certain function.

(ii) Under the Caputo proportional fractional derivative, we explore more broader pro-
portional BVPs with constant coefficients.

The development of qualitative analysis of impulsive fractional BVPs is encouraged in
this manuscript. Notice that the significance of this discussion on the manuscript is that
the problem (6) generates many types, including mixed types of impulsive FDEs with
boundary conditions. For instance, if we set py = 1 in (6), then we have the Riemann-
Liouville fractional operators [2] with i (t) = t, the Hadamard fractional operators [2] with
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Pr(t) = logt, the Katugampola fractional operators [47] with ,(t) = t#/u, p > 0, the
conformable fractional operators [48] with y(t) = (t —a)"/u, u > 0, and the generalized
conformable fractional operators [49] with g, (t) = t#*?/(u + ¢), respectively. In addition,
several other special cases can be derived as well. To the best of the author’s knowledge,
there are some papers that have established either impulsive fractional BVPs [33-35] and
few papers focused on impulsive Caputo proportional fractional BVPs with respect to
another function via proportional delay term.

The remainder of the manuscript is organized in the following manner. Section 2
introduces some key concepts and lemmas linked to the major findings. We also present
certain definitions of well-known fixed point theorems and construct the formulas for the
solution involving Mittag—Leffler functions with the linear impulsive problem. We use
Banach’s and Krasnoselskii’s fixed point theorems to analyze the existence and uniqueness
of solutions for the impulsive problem (6) in Section 3. Finally, examples are provided to
demonstrate the validity of our primary findings in Sections 4 and 5 contains the conclusion
of our findings.

2. Preliminaries

This part introduces the generalized proportional fractional derivatives and fractional
integral notations, definitions, and preliminary facts that will be utilized throughout the
manuscript. For more details, (see [30,31,50,51]).

Let Jy := [to, 1], J1 = (1, t2], -+ Tm-1 = (tm—1,tm), Tm = (tm, T], and let us
denote by PC(J,R) = {x : J — R : x(t) is continuous everywhere except for some #; at
which x(t) and x(t, ) = x(t) exist, k = 1,2,...,m} the space of piecewise continuous
functions on the interval J. It is clear that PC(J,R) is a Banach space equipped with
the norm [|x||p¢ = sup, ;{[x()[}. Let the norm of a measurable function o : J — R be

defined by
1/q
([ lemas) ", 1<q<m,

H‘T”L‘?(]) =
inf sup |x(t)| p, gq=oo.

mes(J)=0 teg\T

Then L9(J,R) is a Banach space of Lebesque-measurable functions ¢ : J — R with
o llzacz) < oo

Definition 1 ([30,31]). Take p € [0,1] and let the functions ko, x1 : [0,1] x R — [0, 00) be
continuous such that for all t € R we have

lim x1(p,t) =1, lim xo(p,t) =0, Um x1(p,t) =0, lim xo(p,t) =1,
p—0T p—0+ p—1- o—1~

and x1(p,t) # 0,0 € [0,1), ko(p,t) # 0, p € (0,1]. Let y(t) be a continuously differentiable and
increasing function. Then, the proportional differential operator of order p of f with respect to 1 is
defined by
10
PDYE(t) = ko, ) (1) +x0(p, Dy
In particular, if k1 (p,t) = 1 — p and ko(p, t) = p, we obtain

f/(t)
y(t)

Definition 2 ([30,31]). Tuke &« € C, Re(x) > 0, p € (0,1], ¢ € C'([a,b]), ¢’ > 0. The
proportional fractional integral of order a of the function f € L'([a, b]) with respect to another
function  is defined by

POV = (1- p)f(E) +p
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prat oy L [P e (p(h)—y(s)) _ a1 /
TR0 = S e (w(6) = ()" )9/ (5)ds,
where T(-) is the (Euler’s) Gamma function defined by T'(a) = [;”s* le~5ds, s > 0.

Definition 3 ([30,31]). Tuke « € C, Re(a) > 0, p € (0,1], ¢ € C([a,b]), ¢'(t) > 0. The
Riemann-Liouville proportional fractional derivative of order w of the function f € C"([a, b]) with
respect to another function  is defined by POV f(t) = PDUVET =% £(1) or

P V() = ppl?(w—) /ut "7 PO (1) — ()" f()9 (5)ds,

where n = [Re(a)] 4 1, [Re(w)] represents the integer part of the real number a and

ey — PP Y .. PP

n times

Definition 4 ([30,31]). Takex € C, Re(a) > 0,p € (0,1], ¢ € C([a,b]), ¥'(t) > 0. The Caputo
proportional fractional derivative of order « of the function f with respect to another function ¥ is
defined by CPDYV f(t) =PI} Y0V £ (¢) or

't p-1

wortf( = prgn—a) [T OO 0y — p(s)) "D ) ().

Next, we provide some properties of the classical and generalized Mittag—Leffler
functions E, (-) and E, 4(-), which is used throughout in this paper.

Lemma 1 ([50,51]). Let a € (0,1), B > 0 be arbitrary constants. Then the functions E, and E“’/g
are nonnegative functions, and for any z < 0, By (z) < 1, E, g(z) < 1/T(B), where the classical
and generalized Mittag—Leffler functions E, and K, g are defined by

(e )
n Zi’l

= z
E =) — d E =) ———, zcR.
«(2) ngjf(zxn+1) and Eqp(2) n;OF(DU’lJr,B) :
Moreover, for any A < 0 and 1y, T € J, we have the following property:

Eparp(A(P(12) — lli(ﬂ))a) — Egasp(A(p(m) — 1/)(&1))“) as T — T,

where Ey(0) = 1 and B, 5(0) = 1/T(B). In Addition, Wang and co-workers [50] provide a
possible calculational formula of E 1 (—z) as follows:

1+ Z
(—z) = i 2> 0. @)

E ,
1+ 7z + (m—2)22 -

1
2

Definition 5. A function x € PC(],R) is said to be a solution of problem (6) if it satis-
fies the equation CF'k@‘xk"p"x(t) + o Ax(t) = f(t,x(t),x(ut)) a.e on J' and the condition

Ax(ty) = x(57) — x(t, ) or(x(t)), k=1,2,...,m,and Bx(0) + yx(T) = .
Lemma 2. Let g : J — R be a continuous function. The function x is given by
K(t) = xe'n POV ( M)~ 9(@)")
oo [T OO (i) — () Ban (= 200~ 9(5)) (o) ().
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x(t) = {e P

is a solution of the linear Caputo proportional fractional proportional differential equation with
constant coefficients of the form:

Con™x(t) + p"Ax(t) = g(t), te(a,T], 0<a<l,
x(a) =x5, x, €R.

Proof. It is easy to derive by direct calculation. Please see Example 3.2 in [31]. O

The following lemma is used to create an equivalent integral equation for the impulsive
problem (6). For the sake of calculation in this manuscript, we set the notation:

S (ty, 1) = e =0 (g (1) ()7, ®

where t,, t, € {to, 11, .. tm, T}and c € {ag, 1, .., 0m}.
From (8) with 0 < e Pn (Ip”(t”) w”(t“)) <1,for0<t; <t, <T,weobtain

1

6, (1, £a) | < [P ()~ "’"““)\(wnab)—w(ta))f13 ($nty) — pu(ta)) " 9)

Lemma 3. Suppose that o € (0,1), o € (0,1], ¢ € C(J,R) with ¢, > 0 for t € TJ,
k=0,1,...,m heC(J,R),and Q) # 0. The function x € PC(J,R) is given by

(‘Pk( )= 1Pk(tk)) Eak( _ )t(l/Jk(t) _ l/’k(tk»ak) }{ |"Y

*772 ( i /Z D (i, 8) By (— A(Wic1(t) — $im1(5)) ™"V h(s)y)_y (s)ds

+q01

m+1  Pji-1
1>H€p’1( 1)~ ))E (= A (i) — i (k1))

j=i+1

/ O3 (T, 5) By (= A (¢ (T) = ¢m<s))”"”)h<s>¢;1<s>ds] (10)

He A (e ) B (1) - (e ))"‘"”1

fi @ X1 /
<£1 B (B (= A1 (1) = i1 (9) V) ()

L b - (t .
) 1—[ o P (#’, 1(t) %71(%1)) Eaj,1(*)\(¢j—1(tj) 1I7j1(tj1))ajl)}

+p;1:k 5 B (= A (9400) = 3)) B s

m+1 pj_

Qi=ptn[[e
i=1

= (it )_"’H(t"*l))Eaiil (= A(pica (k) — ia(tio1))™ 1), (A1)

is a solution of the impulsive problem:
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ot Pix(t) + i Ax(t) = h(t), te (0, T\ {tito... tu},
Ax(te) = x(7) — x(t,) = gr(x(t)), k=1,2,...,m, (12)
Bx(0) +nx(T) = 1.

Proof. Assume that x is a solution of (12). We consider the following several cases.
For t € [0,¢1), in view of Lemma 2, we have,

x(t) = xoe po (1/)0() lPO(fo)) (7)L(¢O(t) 7#]0(0))0‘0)
s fo e 0D () o)
X]Eﬂloﬂo( - A(llﬂo(f) - EL’O(S))NO)h(S)l%(S)ds

In particular, for t = t;, we obtain,

lXo*l

x(tl) = Xpe PO (1[10( ) l[Jo(tO)) ]an( — /\(lpo(fl) — lP(](O))lXO)
+p%0 /tl "ty (o) =40) (¥o(t1) — ¢o(s))
XEDCO ao( (IIJO(tl) IPO(S))aO)h(S)lp(/)(S)dS

For t € [t1,t,), we have

w0 = xtep) e PONO) B (A0 - a()”)
_|_i /tepiyll(llﬂl( =11 ( S)) (¢1() llJl(S))lX171

Pl
X By (— A(1() — 91(5)) ) h(s) i (s)ds

Using the impulsive condition in (12), x(t]") = x(t;) + ¢1(x(t1)), we obtain

s [xoe i () to) Eay (= A(go(t1) —1/70(0))“0)]

et ()= wl(tl))Eal(*/\(lPl(f)*4’1(’51))“1)

1o h 5 * (yo(t1)—to(s)) B ag—1
sl e (o) — 4o(s)

+

X Bagao (— A (Wo(t1) — o(s)) ™) n(s)pp(s)ds + <P1(X(f1))1
el (O g (A (g (1) — 1 (1))
+% /tf i (n0-n) ($1(8) — pa(s)) "
X Bay o (= A1 () — 91(5)) "V h(s) 9 (s)ds

For t € [tp, t3), in the same previous process, we obtain
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x(t) = (i) el (RO-wal) ]Eocz(_)‘(%(f)—ll’z(tz))az)+p}‘2/tep%’zl(%(t)4’2(5))

2 Jh

($2() = 92(5)) "2 gy (— A(2(t) — 2(5)) ) (s)ph(s)ds
= [x(t2) + ga(x(t2))] €T OO B (A (ga(s) - (1))

+p132 :e%zl(”“)”’“”) (92(8) = 92(5))™ Eugan ( — A(92(8) — 92(s))™2)(s)ph(s)ds

_ xO{e % (%(fl) lPo(to)) e S (%(tz) %(tl))an(—)\(lPo(tl) —l/Jo(O))le)

XBa, (= A(91(t2) — 91(£1))") } {e 2= (h2(t)- wz(tzDEM( —A(a(t) — ¥a(t2))™) }
S [ IO (1) — () By~ A (12) ~ ()" () )

+{
Po

+¢1<x<t1>>]e () B (1) — (1))

g [T OO (4 1) 1 (9) 1 B, (— A1) — 1 (5))

P vh

+§92(x(f2))1 }{ B (RO gy %(tz))‘”)}

tom B RO () — ga(6) " B~ A(82(0) ~ 29) M.

Repeating the previous process, for t € [ty try1), k =0,1,2,...,m, we have

x(t) = {xol‘[ep’f’zl a0 GD) B (g (8) — g (1))
+

k t; pim1l Q q—
;(mlftle’“(% 00 (g (1) — a(6)

z 1

X By iy (= Ao (k) — $ima(s)) ) (s)pi_y (s)ds + §0i(x(ti))> (13)

k P/l

< I e U g A - ga() “)}

j=i+1

) { B O B (—a o - wkuk))“k)} b L [ 0n)

[
X () = (5)) ™ By (= A(i(8) — ()™ ) (s) i (5)ds.

From the boundary condition, Bx(0) + #x(T) = v, it follows that
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1 m 1 t; PicaT1l( 01—
X = Q{v—n2<mlf/f’“ W00 (1) = a9

l

X By iy (= Ao (k) — pica(s)) ") h(s) gy (s)ds + (Pi(x(fi))>

m+1 Pji-1—
1) =1 (k1) -
x [T e (26911 4-0) By (= A1 (t) — -1 (1)) "7")

j=i+1

T pm-1 _ —
o [ D) (g (1) — )

X Eay ( - /\(lpm(T) - IPM(S))“m)h(S)lP;n(S)dS}/

where () is defined by (11). In the last step, we insert the value xj into (13) to obtain (10).
Conversely, it is easy to show by direct computation that the solution x(t) is given
by (10) fulfills the impulsive problem (12) with the boundary conditions. O

3. Existence Analysis

This section investigates some sufficient conditions for the existence and uniqueness
of a solutions to the impulsive problem (6) using Banach’s and Krasnoselskii’s fixed
point theorems.

In view of Lemma 3, we define an operator Q : PC(J,R) — PC(J,R) as

(Qx)() = { ‘i (l-n0) Eak<—A<¢k<t>—w(m))“k)}{[v

-1 Z ( i 1 / ) CDIXI 1 tz,S Eﬂéiq,ﬂépl(_/\(lpifl(ti) _¢i71(5))ai7])Fx(s)¢§71(S)ds

l

T S —0: .
"‘4’1 ) H e Pj-1 (l[J] ) lp]—l(t]—l))Eajil( (#7] 1( ) 1/)] 1(] 1))111‘71)

j=i+1

- Zm /tT @5 (T, 8) By (= A (T) — 1pm(s))“”’)1-"x(s)1p£n(s)ds] (14)

1 K et o
y [Q He i () —via (o) Ea, o (= A(ic1(ti) — $ica(tizg))™ )]

k
Z( 7. 1/ D (1, 9)Bay_y g (= AWy () — i1 (s)) ™) Fe(s) 9l (s)ds

Pi-1—
+oi(x > [T o ()10 By (= A (-1 (t) — i (- 1))““)}

bt [ By~ A~ i(5)) ) Fels g )
Pk Tt

where Fy(t) = f(t,x(t), x(ut)). Notice that Q has fixed points if and only if the impulsive
problem (6) has solutions.

3.1. Uniqueness Property
Theorem 1. Let f € C(J x R, R) and ¢, € C(R,R) fork =1,2,...,m. Assume that

Hypothesis 1 (H1). there exists a constant Ly > 0 such that |f(t,x1,y1) — f(t, x2,¥2)| <
Lq(Jx1 — x2| 4+ |ly1 —w2l), forallt € T, x;, y; € R, i =1,2.
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Hypothesis 2 (H2). there exists a constant Ml; > 0 such that | ¢y (x) —
eachx,ye R k=1,2,...,m

Then, the impulsive problem (6) has a unique solution on J if

Pr(y)| < My|x —y|, for

|’7|) LN (i (t) — ;1 (tq))" y
(1+ Q) (2 ! 1:21 P T (a1 1) +mMy | <1. (15)

Proof. Before proving this theorem, we convert the impulsive problem (6) into x = Qx
(a fixed point problem), where the operator Q is defined by (14). It is clear that the fixed
points of the operator Q are solutions of the impulsive problem (6).

Let sup,c 7 |f(¢,0,0)| := Ny < coand Ny = max{[¢x(0)|,k = 1,2,...,m}. Next, we
set By, :== {x € PC(J,R) : ||x|| <r1} with
<1+ M) Ny Yt (s —piae0)™ ) Ll
[e] 1 =1 p 111"(111 1+1) 2 [e]
r 2 ) . (16)
(yio1(t)—pia(ti0) ™

\77\ +1
1—( |Q|)<2]le;"1 + mM,

Clearly, By, is a bounded, closed, and convex subset of PC(J,R). The argument of the
proof is separated into two steps:

Step 1. We show that OB,, C B,,.
For any x € B,,, we have

P; 1 T(a, 1+1)

(o)1) < { ‘5 (-t HE (= M) = i) ™) }{[w
+17] Z( i /t B D75 (£ 8) | By gy (= A(ica(8) = i-1(5))™ )| [Fa(5) 91 (s)ds
m+l | P N
+qoz-<x<tz->>|> T (@) (A2 () = wya(51))
j=i+
0 (1,9 [Evmn (A (lT) — ()™ <s>|¢:n<s>ds] )
x [|1| Im—[e%: (s ))‘ E“i1(_/\(11bi—1(ti)_lpi—l(ti—l))ai1)]
i=1
k t; N .
+Y (1 L1 59)| [Bay s (= A1) = 9119 IOl ()
i=1 \Pi—1 7t
k Pj 1~ . t‘fl
+¢f<X<ff>>|> 1T e D g gy ) - gy 1>)“)}
j=i+
o / [ (1,5) [ By (= A (5(8) = ()™ | IFe(s) 94 (5)eds

Applying Lemma 1 and (9) with 0 < e oo (pile) (o)

0<p;i<1,i=0,1,...,m, we have

<1l forany0<v<u<T,
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(@)l < |’r|+17121<p%1r1() [ (lpi1<tz~>—wi1<s>)‘”‘1‘1|Px<s>¢2_1<s>ds+|¢i<x<ti>>|>
tolls [ (1) - ¢m<s>>“"’1|Fx<s>|¢,’n<s>ds] )
+Z< s (tpil(ti)—wil(s))“f-l1|Fx<s>|¢;1<s>ds+¢i<x<ti>>|>
oty o (D) = ) ) ¥ ()

From (Hy ) and (Ha), we can compute that
EO)] < 76,30, x(u0) = F(1,0,0) | +1£(1,0,0)] < 2Ll +8,, (19
" 9ex(80)] < [o(x(0)) — 90} + 91(0)] < M ] + Nz @)
Inserting (19) and (20) into (18), we have
(@] < 1[I+l |Z<H‘1”r'('“?; 7 (wz-_1<ti>wi_1<s>>“f1‘1w;_1<s>ds+M1|x|+Nz>
+NEALERD [ ) - ¢m<s>)“’“¢;1<s>ds]
3 (ZH"”'F'('“T; [ i) = 90 s+ 10 ] +N2>
W [ D) = ) (01
= o B IO 1 b+ )

V(i () — i (tg) 5 L
N M N
+; PEI 1+1) (2L x| +Na) + (M ] + o)

- m m+1( 4’1 ( ))061‘71 .
_ <1+| |><2L > ’11"(ucl_1+1) + M1>||x||

Inl ) L (i () — i (i)™ ol
1+ (Nli; Ty ) e s

Then, ||Qx|| < rq, implies that, QB,, C By,.
Step 2. We show that Q is a contraction.
For any x, v € B,, and for each t € J, we obtain
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|(Qx)(t) — (Qu)(t)]
{ P (g () -t

e Pk
m 1 ti
Sl ( /
{l z; ;7 i

x| Fe(s) = Fy(s) |91 (s)ds + | i (x(t:)) — fPi(y(fi))l)

1

IN

w (= A (9 (8) = Pe(t)™)

}

Ea; v (= AW (t) = 9ia(s))™ )

q>?61711 (til S)

m+1 | Pi-1~ Nt 1 (F
x li[ e (4 =#100) a1 (= AWa(t) — (k1))
j=i+1
L 1080 (1,5) [Ba (= A (T) = (1)) \Px<s>—Py<s>r¢;1<s>ds]
g l|;2 ﬁeplp’i] (hsttd=pi-aC) ai (= AWica (k) — i (h21))" ) ]
i=1
k 1 b X
+Z< ai,1/ CDllal(t S) Eﬂéi_plxi_l(_/\(#)i*l(ti)_lpifl(s))l )
i=1 \Pj—1 “ti1
X |Ex(s) — Fy(s) |i_1(s)ds + @i (x(t;)) — (Pi(y(ti))|>
k| o (g w (
x T1 e it a6 —atin) Eny o (= AM@i-1(t) = $-1(t-1))" ) }
=it

+i/t\q>"‘k(t 5)|
ka f k \*7

Eapar (= A(r(t) = 9i(s))™ )| [Fe(s) — Fy(s) [ (s)ds

Applying Lemma 1 and (9) with 0 < ¢ p o (90 —i(0))

0<p;<1,i=0,1,...,m wehave

<1l forany0<ov<u<T,

|(Q )(t) = (Qy) ()]
ti a;_1—1 /
9] [|’7| Y. (M /ti (pica(ti) — iza(s))™" | Fe(s) — Fy(s)|i_1(s)d

-1

IN

Hoi(x(t) - ¢'<y<t'>>|> bl T (1)~ ()™ ) — B[ (5)s
i i i i pﬁ{”l“(zxm) . Yy m

m t . /
L <pr1<1> L @)~ 4ia () 7 Eels) — B[4 (9)d

1
o' T (@m)

+gi(x(t)) — (Pi(y(ti))|> + /tT (9 (T) = ()™ [Bx(s) = By (s) [y, (s)ds

From (H;) and (H;), one has
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(1+

]

1of

|(Qx)(t) —(Qy)(t)]
9] [|’7| 2 <a,]r(m /t]_ti] (i (t;) — 1/’1‘—1(5))“1‘_171‘/’1/'71(5)‘15 2Ly [|lx =yl

IN

0y ) + o [ (g (T) — ()™ e 2 —
1 y po;lmr(“m) . m m m 1 y

" Z (Ilr(“zl) /t,-; (i1 () — $i1(5))™ 7 )y (s)ds 2Ly |lx — |

=yl ) 4 ok [ (uT) — )™ gl (5)as 22— )
eyl ) + S [ (D)= 9 ()™ s 2~y

Ml(’%l (Yia(ti) — ¢i—1(ti—1))aille+li>

|Q| pll 11"(ai,1 +1)
m+1 ( 1/71 ( ))"‘i—l
+ 2L + mM —
L Ilr(“i_lﬂ) 1 mMy | [lx =y
|’7|) Al (i1 (t) — pica (tio1)) !
21, + mM x—vy|.
(i X wr<ai_1+1> =l

By (15), the operator Q is a contraction map. According to Banach’s fixed point
theorem, we can conclude that the impulsive problem (6) has a unique solution. O

3.2. Existence Property

Lemma 4 (Generalized Arzela—Ascoli theorem, Theorem 2.1, [52]). Let E be a Banach
space, J = [0,T] and M C PC(J,R). If the following assumptions are satisfied: (i)
M is a uniformly bounded subset of PC(J,R); (ii) M is equicontinuous in (ty,tri1), k =
0,1,...,m, where ty =0, t,nq = T, (iii) Its t-sections M(t) = {x(t) : x € M,t €
T\ttt p, M(ED) = {x(7) : x € Mand M(t;) = {x(t, ) : x € M}} are rel-
atively compact subsets of E, then M is a relatively compact subset of PC(J,R).

Lemma 5 (Krasnoselskii’s fixed point theorem [53]). Let D be a closed, convex, and nonempty
subset of a Banach space E, and let Q1 and Qy be operators such that: (i) Qix + Qpy € D
whenever x, y € D; (ii) Q1 is compact and continuous; (iii) Qp is a contraction mapping. Then
there exists z € D such that z = Q1z + O»z.

The existence result is based on Krasnoselskii’s fixed point theorem

Theorem 2. Let f : J X R2 — R and o :R—=R k=1,2,...,m, be continuous functions.
Assume the assumption (Hp) holds and the following assumptions are satisfied:

Hypothesis 3 (H3). there exists a function { € L1 (J,RT), (0 < g < ap < 1), k =
0,1,...,m+1, exists,and w € C(J, [0, 00)) is a nondecreasing function satisfying the following
inequality | f(t, x(s), x(pus))| < ¢(t)w(||x]]), forallt € T, x € PC(J,R).

Then, the impulsive problem (6) has at least one solution on J if

&j-1—49
> i(ll)z 1 — i 1(t; l)) Il liminf w(ry )_|_ mM, | < 1. (21)

o M w; L7(J) r2—+e0 19
(550) o T () >
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Proof. Let us define a suitable B,, = {x € PC(J,R) : ||x]| < rp}. Obviously, B, is a

bounded, closed, and convex subset of PC(J,R), for each r, > 0. Next, we define the
operators Q; and @, on By, fort € J as

(Qix)(t)
_ {emﬁ;kl (pe(t)— ¢k(fk)) B (— A(e(t) — 1Pk(tk))lxk> }{ ['Y

n 1 ti N q i1 !
1) (P“” O (1) By (= A (1) — i1 (5)) )Fx(s)lpi—l(s)ds>
i=1 ji—1 “ti-1

m41  Pji-171
i1 ()~ i1 (tj-1) -
x [ e (v 1) By (= AWjoa(t) = 9j-1(-1))57)
j=i+1

7 T o Xm /
Plrxr;” / q)T';”(T’S)]E“mr“m ( - A(lpm(T) - lpm(s)) )Fx(S)lﬁm(S)ds

7

k
g [(12 116 " (s =icat) Euyy (= Mgt )—¢i—1(ti—1))ail)}
k o i
Z ( @1 / ;5 1 (ti,s Elxl 10 1( (lpi—l(ti) _wi—l(s)) Il)Fx(S)lP;l(S)dS)
i=1 Pl 1 tiq

- f 7 ) Ea, (— Mo (t) —¢j-1<tj-1>>”‘“>}
]1+

b [ O Bayy (— A0) — (5)) ™) Fels) g (5)ds
P Tt

and
(Qax)(t)
pr—1 _ N m
= {e Pk (lpk(t) lpk(tk)) Eak(_/\(lpk(t) _lpk(tk)) k)}{ |:_ I Zq)l(x(fl))
i=1
m+1  Pi-177 b o (t
x [T e (Brat=pra-) Eo; o (= A(yj-1(t)) ll’j—l(tj—l))ajl)]
j=i+1
k  piq-1
) [;2 Hepp"*l (ot =piat) By (= A(ioa(t) — 1/%'—1(151'—1))“"])]
i=1
k P]l () iy (b .
+,-; ]Il—Le fi-1 (%f (t) = (4 )) E(xj,l(_)\(lpjfl(tj) —llfj71(tjf1)) j- )}

Note that Q@ = Q1 + Q.

Step 1. We show that 3 > 0 with Q;x + Qy € By; foreach x, y € By

Suppose by contradiction that for any r, > 0 there exist x,, ¥, € B,z and t,, € J
such that |(Qaxr, ) (tr,) + (Qu1xr,) (tr,)| > 12.

By using Lemma 1, (9), and (H3) with the Holder inequality, for any x € B;,, we have
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3 (8, 5)|

Eai,1,o¢,-,] ( - )\(wi—l(ti) — i (s))aiil)

| Fx(5) [ (s)ds

/ ti
tiq

= r(uclm/t ($i-1(t) — $i-1()) " E(s)w(r2) )4 (s)ds
! i Sl Rl .\
= r(1></ (Yia(t) = 9i- <>)W¢£_1<s>ds> ( /t,1<c<s>w<r2>)qu>

(lpifl(ti) - 1/Ji,1(ti71))“f—1*q

w(r2). (22)

By direct calculation with Lemma 1, (9) and (20), we have

M

rn < [(Q1xr,)(tr) + (Qayn)(tr,)]
< { Elxm(*)\(lpm(trz)*ll’rn(tm))km)

ot (9 try) —m (1)

+17] Z ( i /:] dD?‘fll(ti,S)’ Eu; iy (— AW (t) — pi1(s)™ ) Fy, (s) ¢§1(s)ds>
el plil () —ta (s B

y H o Fi1 (%71(;) Pj-1(t )) aj,l(_)\(lpjfl(tj) —1/7]‘71(1‘]’71)) ]71)
=i
LI 1080 (1,9) B (= A0 (T) = ()" || B 9] <s>ds]

P (g (6) i (t1))

]Ea, 1( (4’1 ( ) Pi (1 1))% 1)

|

Fy, (s)

mlle™
+i(:1/

£

) (8, 9)|

1—

Ea; s (— AWia(t) — i1())5 )

¢f—1(5)d5>

plzl

p]l

(wj—l(tj)*lpj—l(tj—l))

. -Hl e Eo,y (= A(j-1(t) — j-a(-1)) ) }
J=t

+ 1 /t,z‘cpﬂnl(t S)| E (_/\( (t )_ ( ))am F ( ) , ( )d
pt’rénm b m \*12s W, Xm 1lJm o llJm S ) xr, S s)ds

+{ e Pm (lpm(trz) ‘Pm(tm)) szm(_ A(¢m(tr2) _ Qbm(tm))lxm) }{ [|17| Z ‘q)i(yrz(ti))‘

i=1

m+1 | Pi-171

X Ii[ e Pinl (910t =9 1(t-1) aj,l(—)\(lpjfl(tj) _1Pj71(tj71))aj71) ]
j=i+1

X Ll Im—[ epl;,':l (V’: 1(t)—pia (i )) ]E‘Xi—l(_ /\(l/’ifl(ti) _ 1/’1‘71(151;1))%71) 1

i=1

i l9i(y )| 1—[ pjpjll ( (tj)*ilfj—l(tj—l))
1 72

j=i+1

By ( —A(gia(ty) - le—l(fj—l))aj’l)

}

m . ; %174
< '7'+<1+|'7|> o Wl Wl -y ot it 1) ).
ATV TIOAE () ey
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Dividing both sides in the above inequality by r, and taking the lower limit as
79 — +00, we obtain

m . N — 1 . &i-1—19
1< (1+ lnl) g Wit = W)™ e mine 902 |

Q . i1— o L7( e
AT (7“’1‘1 q) p; 7 T (1) j) : ?

q

which contradicts (21). Then, there exists r, > 0 so that Q1x + Qyy € B;,, for x, y € By,.
Step 2. We show that Q) is a contraction mapping on B;,.
Foreacht € J and x, y € B,,, we have

[(Qax)(t) — (Qay)(t)]
{ S (o (1)1 ‘

m m+1
x{[|17|§|§0i(x(ti))_4’i(y(ti))| ﬁ e

j=it1

IN

IEl’ém ( - )\(ltbm(T) - wm(tm))lxm)

}

-1
p]pjil <¢j1(tj)_¢j1(tjl))’

X |Eay oy (= Agpj-1(t) — ¢j-1(tj- 1))%1)1
% 1 Im—[e I (lP: 1(t )—wil(til))' By (= A(iq(t )_lPi—l(ti—l))aiil)
Q] i3
3l x(t)) = pu(yie)| TT Je Fir (i )“”“““))‘
i j=it1
X |Ea; o (= Mepj1(t) — ¢j-1(tj- 1)) }

< (1 + ||17|)mM[1||x -y
By setting €* = (14 (|y|/|Q]))mM; with (21), we obtain 0 < €* < 1 and
|Qax — Qoyllpe < €*||x — yl|. Then, Q, is a contraction mapping.

Step 3. We show that Q; is compact and continuous on By,.

From the property of continuity of f implies that Q; is also continuous. Next, we
show that Q; is compact. By the same process as in the first part of Theorem 1, which
implies that Q1 (B,,) is uniformly bounded on PC(J,R). We will show that Q;(B,,) is an
equicontinuous on Ji, fork =1,2,...,m.

Let S = J x B and f* = sup,. ; |F:(t)| = SUP (4 (1) x (ut))es |f (£, x(t), x(pt))|. Then,
forany ty < 71 < T2 < tg4q, we have
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[(Q1x)(12) — (Q1x)(T)|

|
1

P!

o (M O0) e (a(g(t2) — gult)™) =30 ) B (i) — () ™)

m 1 t;
N+l Y (e [
i=1 tiq

Piq

}

Eus v 1 (— Ao (t) — ¢im1(s)) )

@1 (8, 5)|

IFx(S)lle1(S)d5>

m+1 | P11y N '
% li[ o Aot i) #i) Ea; (= Mjoa(t) — ¢j-1(t-1))"")
=i
T
L0009 B (200 = ) o 0

1 k| pica-? ) =i (b .
X [Q| H i (1/’ 1(t) =i (t 1)> Ey, ( — )\(l,bi_1(ti) — i1 (ti—l)) 1)
i=1

|

IFx(S)|¢f1(S)dS>

}

]E“i—l/“i—l ( - )‘(I/Jifl(ti) - lpifl(s))aiA)

Ea, oy (= A($i-1(t) — j-1(t-1)) ")
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O (2 B (— AB(T2) — ()™ o))

e
Pk £

[k O (11, 5) B g ( — A1) — () ™) Ex (5) L (5)dbs

IN

Il

[e]
Iyl 3 — () (i) - tpz_l(ti_l))“fl)}
(Q Z; a, 11’(041 1) +l.; 0T (- +1)

g [ O 2 9B (M) — 91(6) ) Fes) (o)
Or

Eay (= AW (t2) = () ™) = By (= Awe(t1) — 91 (8))™)

i

o O (0 By (= A () — 9uls)) ™) Fe) ()
Pr
o [ O B (= A () — 9005 )

- 1k /fk ‘DZ" E"‘k”‘k (gbk(Tl)—lpk(s))“k)Fx(s)gb;C(s)ds

i

m+1 . &i-1 k Xi—1
o <||g||z(wz 1) — i ()™ g (i) — i ))) )}

0T (o1 +1) i=1 p; 71F(”‘1—1 +1

o [ O By (- MW7) — 91l5) ™ 5}

IN

B, (= A(e(t2) = i(t))™) = Ea (= A((t1) — 9e(t))™)

+P“kr 108 () = @ s s d”pak?(ak) [ () = (5) " i)

+F]’:‘/ ((72) = ()™ (B (= A (1 (72) — () ™) = Eugm (= A(e(70) — 1(5)) ™) |9 (s)ds
A
: { e (= A(Pr(2) = (1)) ™) = By (= A1) — pu(8))™) }{H
] " (ioa (8) — i (i)™ & (ioa(f) — ia(tic)) "‘1>}
+f (IQI Z P T (g +1) Xi pz (w1 +1)

pkkr(]:H)‘ ($r(22) — (7)™ + (Pr(m2) — (1)) ™ — (gr(m) — e(ti))™

f{“’“ /t (x(m2) — lpk(s))ak_l B e (= A(96(12) = $1(5))™) = B, (— A(9r(11) = () ™) |9 (5)ds.

A

By (ii) as in Lemma 1, which implies that Eq, a, ( — A (1 (t) — g (s))™*) is continuous on
t € J,and then By, o ( — A (P (t) — l/Jk(S))ak) is uniformly continuous on t € J; therefore,
for any € > 0, there is a sufficiently small § > 0 such that, for iy, 7, € J with |o — 17| <6,
we obtain

Eagq (— A(0(2) = ic(t0))™) — B (= A(¢6(11) —lPk(fk))'Xk)’ < < 5
(Pe(T) — Pe(te)) >
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Let & (2 —ag)/(2(1 —ag)) and & = (2 — ag)/ag. Thus, & > 1, & > 1, and
1/¢1 4+ 1/¢2 = 1. By using the Holder inequality, we obtain

/t:l ($1(2) — ()™ By (= A (9(12) — 9(5)™) — Eugy (— A((11) — 9(5)) ™) |94 (5) s

2(1-ay)

< [[" et - o)V o]
x [/: <E“kr“k( —AMW(r2) — ¥(5))™) = Eapy (— A1) — lpk(s))“k)> ‘ l/’ilc(s)dS] o
o SRR ST
< [} e —wn™ s ﬁ( e %) yL(s)ds
o N (r(T) — (b)) 7
I % g 221:;:)
< | 20(m) — ¢u(t) * —2(yu(m) —lPk(Tl))2] €.
< .

Then
[(Q1%)(2) — (Q1x)(T1)]
< { Eu (= A(t2) — ¢e(t) ™) — By (= A(yrc (1) — re(t6)) ™) } {m
L <|17| "il (i1 (t:) — i (ki)™ : (pi_a(t;) — 1/%'1(&1))“”) }

- + -
ol 5 P T (iq +1) i o T (aiq + 1)

+M‘2(¢k(ﬁ) — (1)) + (Yr(2) — Pe(t) ™ = (ge(m1) — re(te)) ™
2(1-ap)
+fT*k 2(Pe(2) — Yie(te)) 2 —2(¢u(12) — ¢k(71))2] o €50, as 7 - 1.
Pk Xk

Hence, Q; is equicontinuous on J;. Combining the above processes, and the PC(7,R)-
type Arzela-Ascoli theorem (Lemma 4 in the case E = R), we conclude that Q; : B,, — B,
is compact and completely continuous; therefore, it now follows by Lemma 5 that the
problem (6) has at least one solution. O

4. Numerical Examples

This section presents three examples to illustrate our results.

Example 1. Consider the following nonlinear impulsive Caputo proportional fractional BV Ps.

1 k+2
kil K2 2 2 (k+1\k3 cos(2t) |x ()] t 1 1
k+2 k+3 - — = - = =
o x4y (k+2> 0= \1T5xm T*a)) Tty

23
Ax(}) = ttan (x(3), )

2x(0) +3x(1) = 1.

Here,a =0,T=1,a, = (k+2)/(k+3), op = (k+1)(k+2), ¢ = t'/*2) k= 0,1,
A=2/5u=1/4, =21 =3, v = 1. From the given data, we obtain the constants
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Q ~ 2.84184 and Y (i1 (t) — i1 (tio1)) ™) /(0 'T(a;_1 + 1)) ~ 1.84709. For
uy,up, 01,03 € Rand t € [0,1], ehzwe

cos(2t)
16

If(t,ur,v1) — f(tug,v2)| < (|M1—M2|+|01—vz|),
1
|p(x1) — pr(x2)| < §|x1—x2|-

The assumptions (Hy )-(Hy) are satisfied with Ly = 1/16 and My = 1/8. Hence

m+1 (s Xi-1
( |’7’> 2L, Y (- 1“ “Yati) ) ~0s1sm <.
Q] i=1 ST (i +1)

Since, all assumptions of Theorem 1 are fulfilled, then (23) has a unique solution on [0, 1].

Example 2. Consider the following nonlinear impulsive Caputo proportional fractional BV Ps:

"*f@?’tﬁlx(twrs(k;l)wﬂf) _ T(lf(i)(tf)l +x(t>) t;é{ }

Ax(t) = 8+(t"()) k=1,2,

3x(0) +4x(1) = 2.

(24)

Here,a =0, T =1, ap = 2/(k+ k), px = (k+2)/4, ¢ = t¥+D) k =0,1,2, A = 1/5,
u=1/2, =231 =4, v =2 From the given data, we have the constant () ~ 3.48341. By
setting g = 1/6 < ay for k = 0,1,2, then Y (i1 (t:) — i1 (tim1)) 1) /(((iog —
q/(1—q) 7907 T (1)) ~ 4.25528. The assumption (Hz) is fulfilled, this implies that

(exnx(5))] < Bt (w1+1), e =Y, wiy=rn

Forany x1, x, € Rand t € [0,1], we have

1
lp(x1) — @r(x2)| < Z[x1 — x2].

So, My =1/8, ||| %(j) = V/2/16 and lim inf,, 40 w(r2)/12 = 1. Then, by (21), we obtain
L

om (1 1) (B O )y

@) 4 g\ 17q )2t T
| ‘ i=1 (ﬂx{ti) p;XI 11"(ai_1) 2 2

Then, € ~ 0.988395 < 1. Since, all the assumptions of Theorem 2 are fulfilled, hence (24) has at
least one solution on [0,1].

Example 3. Consider the following impulsive fractional differential equation with boundary conditions.

03

o)+ oa(t) =0, re (o) {;}

x(0) +x(1) =1.

Herea=0,T=1A=1/4,=n=o=1,and f(t,x(t), x(ut)) = 0. Clearly, all assumptions
of Theorem 1 are achieved. Then, (25) has a unique solution on [0, 1]. It follows Lemma 3 we obtain
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o= +2
1— e By (— (D)) (ep%oltzﬂ-za (- 1#*0)) re o,
-1 -1 0 ’ ’ ’
1+6@T0+‘)21T]Ea0( _ (}I)ko—‘rl)Eal(— (%)0614-2) 4 2
— -1 -1
x(f) - <1 _ eleTlEal ( _ (%)a1+2>>3%Ea0(_ (%)0{0-"—1) B
1 plPi(ti%)E ERE ORI AV 1 1
o ap+1 TER A m(—3lt=3)") ) telz 1
Te " 2 By (= (1)) B (= (3)")

Thanks (7) again, we can derive the numerical solution of (25) with the different of ay, py and Py (t)
as shown in Figures 1-3. In addition, the different values for () can be obtained corresponding to
the different values of ay, py, and Py (t) as shown in Table 1.

1.6

1.4 1

1.2 1

1.0

x(t)

0.8 1

0.6 1

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

t

2

Figure 1. The solution of Example (25) via a; = sin(z%%), ox = ]]g%, and ¢y (t) = tF1.

1.6
1.4
1.2
1.0
" _4\
0.6

0.4

x(t)

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 2. The solution of Example (25) via ay = %}’i—ié, ok = 7%3, and () = t5+3,
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1.6
1.4
1.2
1.0
% 0.8
0.6
0.4
0.2 |
50 02 0.4 056 0.8 1.0
t
Figure 3. The solution of Example (25) via a; = @, ok = e~VFH1 and Pr(t) = V1253,
Table 1. The values of ) for different values a, px, and 9 (¢) (k =0,1).
o Pk Pi(t) 0
I sin( ) kil pET 1.44637
I %42 — 3 1.30799
I VETL e~ VEFT Vet D243 1.032894

5. Conclusions

A variety of novel forms of fractional derivatives have recently been constructed and
employed to better describe real-world phenomena. The so-called generalized proportional
fractional derivatives are one of the most recently introduced fractional derivatives, which
is an extension of the classical Riemann-Liouville and Caputo fractional derivatives. In
this manuscript, the impulsive proportional fractional pantograph differential equations
with a constant coefficient and generalized boundary conditions were examined in this
manuscript. The Mittag—Leffler functions were utilized to present the solutions for the
proposed problem. The existence and uniqueness results are based on the well-known
fixed point theorems of Banach and Krasnoselskii. Finally, to guarantee the accuracy of
the results, three numerical examples illustrating the implementation of our important
conclusions have been provided. By the way, we have accomplished in showing certain
particular cases connected to the results as a result of our discussion of this study [18-21].
This research has enriched the qualitative theory literature on nonlinear impulsive fractional
initial /boundary value problems involving a specific function in future research such as
the linear Cauchy problem with variable coefficient or convergence analysis.
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