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Abstract: This paper presents a novel and general analytical approach: the rational sine-Gordon
expansion method and its applications to the nonlinear Gardner and (3+1)-dimensional mKdV-ZK
equations including a conformable operator. Some trigonometric, periodic, hyperbolic and rational
function solutions are extracted. Physical meanings of these solutions are also presented. After
choosing suitable values of the parameters in the results, some simulations are plotted. Strain
conditions for valid solutions are also reported in detail.

Keywords: nonlinear Gardner and (3+1)-dimensional mKdV-ZK equations; conformable operator;
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1. Introduction

Fractional calculus appeared in the middle of the 17th century. However, it is now
attracting substantial interest from scientists due to its applications in many fields [1–6].
Many researchers have directed their studies to fractional calculus. Several different
definitions of fractional operators have been presented in the literature since the middle of
the 17th century. These operators play an important role in understanding the characteristic
properties of real-world problems. One of the most significant operators of the fractional
derivatives is the Caputo operator [7,8]. This operator satisfies the basic rules of classical
calculus. In this regard, Brzezinski presented the comparisons of fractional definitions [9].
Youssef and his team applied the Haar wavelet to extract the solutions of Poisson’s Equation
in [10]. Eslami and his team observed the general features of the Wu–Zhang system,
including a conformable operator [11]. The fundamental properties of hepatitis E virus
were observed via the Caputo–Fabrizio operator in [12]. Many important models and their
deep properties were investigated by using a conformable operator in [13–32].

In this paper, firstly, we consider the nonlinear Gardner equation containing a con-
formable operator in the following form [33–37]:

uγ
t (x, t) + 6[u(x, t)− λ2u(x, t)2]ux(x, t) + uxxx(x, t) = 0, t ≥ 0, 0 < γ ≤ 1, (1)

where λ is a nonzero real number, u(x, t) is a dependent function of x and t, the terms
uux and u2ux are used to represent the nonlinear wave, and uxxx is used to explain the
spreading of waves. Equation (1), formed by combining KdV and mKdV equations, is used
to describe the interior shallow water solitary waves.

Fractal Fract. 2021, 5, 238. https://doi.org/10.3390/fractalfract5040238 https://www.mdpi.com/journal/fractalfract

https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-5134-4431
https://orcid.org/0000-0002-4448-898X
https://orcid.org/0000-0003-4085-3625
https://doi.org/10.3390/fractalfract5040238
https://doi.org/10.3390/fractalfract5040238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract5040238
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract5040238?type=check_update&version=1


Fractal Fract. 2021, 5, 238 2 of 15

Secondly, the nonlinear (3+1)-dimensional mKdV-ZKE containing a conformable
operator given by [38]

uγ
t (x, y, z, t) + pu(x, y, z, t)2ux(x, y, z, t) + uxxx(x, y, z, t) + uxyy(x, y, z, t) + uzzx(x, y, z, t) = 0, (2)

is studied. In Equation (2), t > 0, 0 < γ ≤ 1 and also p is a nonzero real number.
u(x, y, z, t) is a dependent function of x, y, z and t, the term u2ux is used to represent the
nonlinear waves, and uxxx is used to explain the spreading of waves.

The rest of the paper is organized as follows. In Section 2, we give some definitions
and theorems related to the conformable operator. In Section 3, we present the general
properties of the rational sine-Gordon expansion method (RSGEM). In Section 4, we
apply the RSGEM to the nonlinear Gardner and (3+1)-dimensional mKdV-ZK equations
including a conformable operator to obtain analytical solutions such as periodic, singular,
trigonometric, and traveling solutions. Section 5 contains the discussion and physical
meanings of the results reported in this paper. Finally, we present a conclusion along with
ideas about future work regarding this framework in Section 6.

2. General Properties of Conformable Operator

This section presents the definition and theorem about the conformable operator
as follows [7].

Definition 1. Given a function f : [0, ∞) −→ R, then the conformable operator definition of f (t)
order α is defined as

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

for all t > 0, α ∈ (0, 1). If f is α-differentiable in (0, a), a > 0, and limt→0+ f (α)(t) exists, then
we define
f (α)(0) = limt→0+ f (α)(t).

A conformable operator satisfies some properties given in the following theorem.

Theorem 1. Let β ∈ (0, 1] and f , g be β-differentiable at point t > 0. Then,
(1) Tβ(a f + bg) = aTβ( f ) + bTβ(g), for all a, b ∈ R;
(2) Tβ(tp) = ptp−β foll all p ∈ R;
(3) Tβ(χ) = 0, for all constant functions f (t) = χ;
(4) Tβ( f g) = f Tβ(g) + gTβ( f );

(5) Tβ(
f
g ) =

gTβ( f )− f Tβ(g)
g2 ;

(6) If f is differentiable, then Tβ( f )(t) = t1−β d f (t)
dt .

3. General Properties of RSGEM

In this section, we introduce the general properties of RSGEM. Before presenting the
RSGEM based on the sine-Gordon equation, we need to investigate the sine-Gordon equation.

3.1. The Sine-Gordon Equation

The sine-Gordon equation is given by [39–41]

uxx − utt = m2 sin(u), (3)

where u = u(x, t), m is a nonzero real number. Applying the wave transformation given as
u = u(x, t) = U(ξ), ξ = µ(x− ct) to Equation (3) yields

U′′ =
m2

µ2(1− c2)
sin(U), (4)
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where U = U(ξ), U′′ = d2U
dξ2 , and c is the velocity of the wave. After some calculations,

we obtain

(
U′

2
)2 =

m2

µ2(1− c2)
sin2(

U
2
) + r, (5)

where r is an integral constant and a nonzero real number. Taking r = 0, w(ξ) = U(ξ)
2 and

a2 = m2

µ2(1−c2)
, Equation (5) becomes

w′ = a sin(w). (6)

In (6), if a = 1, we reach
w′ = sin(w). (7)

Solving (7) by using the separating variable method

dw
dξ

= sin(w)⇒ 1
sin(w)

dw = dξ,

we obtain the following two important properties:

sin(w) = sin(w(ξ)) =
2peξ

p2e2ξ + 1
| p=1 = sech(ξ), (8)

cos(w) = cos(w(ξ)) =
p2e2ξ − 1
p2e2ξ + 1

| p=1 = tanh(ξ). (9)

where p is a nonzero real number.

3.2. The RSGEM

RSGEM is the generalized version of the sine-Gordon expansion method (SGEM). Let
us consider the nonlinear partial differential equation given by

P(u, ux, ut, uxx, utt, u2, · · · ) = 0. (10)

If we apply u = u(x, t) = U(ξ), ξ = µ(x− ct) into Equation (10), we get the following
nonlinear ordinary differential equation (NODE):

N(U, U′, U′′, U2, · · · ) = 0, (11)

where U = U(ξ), U′ = dU
dξ , U′′ = d2U

dξ2 . The test function of solution formula for
Equation (11) is considered as [42]

U(ξ) =
∑n

i=1 tanhi−1(ξ)[Aisech(ξ) + Citanh(ξ)] + A0

∑m
j=1 tanhj−1(ξ)[Bjsech(ξ) + Djtanh(ξ)] + B0

. (12)

Integrating Equations (8) and (9) into Equation (12), it can be rewritten in the follow-
ing form:

U(w) =
∑n

i=1 cosi−1(w)[Ai sin(w) + Ci cos(w)] + A0

∑m
j=1 cosj−1(w)[Bj sin(w) + Dj cos(w)] + B0

, (13)

where A0, Ai, Ci, B0, Bj, Dj are nonzero real numbers to be determined later. It is known that
the rational functions are more general than normal polynomial functions with SGEM. If we
consider the solution function as the rational function, this means that we have one more
parameter. This parameter produces more different solutions to the model studied. Putting
Equation (13) into Equation (11), we can obtain the values of λ, µ, A0, Ai, Ci, B0, Bj, Dj.
When we integrate these values of parameters into Equation (12), we find the solutions
of Equation (10).
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4. Applications of RSGEM

This part applies the RSGEM to the Equations (1) and (2) to obtain some traveling wave
solutions such as periodic, trigonometric, traveling, complex and hyperbolic solutions.

4.1. RSGEM to the Gardner Equation Including a Conformable Operator

Considering the wave transformation formula given as

u(x, t) = U(ξ), ξ = αx− κ

γ
tγ, (14)

where α and κ are nonzero real numbers, we convert Equation (1) into NODE given by

α3U′′′ − κU′ + 3α(U2)′ − 2αλ2(U3)′ = 0. (15)

Integrating (15) with respect to ξ yields

α3U′′ − κU + 3αU2 − 2αλ2U3 = 0. (16)

In (16), the integral constant is zero. Especially, if we take n = m in (13), by the balance
principle, we have

U(w) =
A1 sin(w) + C1 cos(w) + A0

B1 sin(w) + D1 cos(w) + B0
. (17)

where A1 6= B1, C1 6= D1, A0 6= B0 in the same time. Substituting (17) into (16), the
following solutions are obtained.

Case 1. If A0 = −C1, B0 = − 2C1
α2 + D1, B1 =

A2
1+C2

1−α2C1D1
α2 A1

, λ = 1
α , κ = α3, we get

u1(x, t) =
α2 A1

A1 + (−C1 + α2D1)e
αx− tγ

γ α3
. (18)

Figure 1 shows 3D and 2D graphs of (18) under the suitable values of parameters.

Case 2. When A1 = 0, A0 = −C1, B0 = − C1
2α2 + D1, B1 = 0, λ = −

√
− C1

α2 +4D1

2
√
−C1+4α2D1

and

κ = 4α3, it gives

u2(x, t) =
−C1 + C1tanh(αx− 4tγ

γ α3)

−C1
2α2 + D1 + D1tanh(αx− 4α3

γ tγ)
. (19)

Figure 2 presents 3D and 2D graphs of (19) under the suitable values of parameters.

Case 3. Taken as A1 = − i
√

2
√

α6+α3κ−2κ2
√

B2
0−D2

1
3α , C1 = D1

3α (α
3 + 2κ), A0 = (α3+2κ)B0

3α ,

B1 =
i(α3+2κ)

√
α6+α3κ−2κ2

√
B2

0−D2
1 − 3
√
−α6(α6+α3κ−2κ2)(B2

0−D2
1)√

2(α6+α3κ−2κ2)
, λ = − 3

√
α(α3+κ)

√
2
√

(α3+2κ)2
, we obtain

u3(x, t) =
τB0
3α −

i
√

2
√

α6+α3κ−2κ2
√

B2
0−D2

1
3α sech(αx− tγ

γ κ) + τD1
3α tanh(αx− tγ

γ κ)

B0 +
sech(αx− tγ

γ κ)(iτχ − 3
√
−α6χ(B2

0−D2
1))√

2(α6+α3κ−2κ2)
+ D1tanh(αx− κ

γ tγ)

, (20)

where τ = α3 + 2κ, χ =
√

α6 + α3κ − 2κ2
√

B2
0 − D1

0. We plot the several graphs of (20) as
Figures 3–5.

Case 4. Considering A0 = C1, B0 = 2C1
α2 −D1, B1 =

A2
1+C2

1−α2C1D1
α2 A1

, λ = −
√
−C1+α2D1√
−α2C1+α4D1

,

κ = α3, we find

u4(x, t) =
α2 A1[cosh(αx− α3

γ tγ) + sinh(αx− α3

γ tγ)]

A1 cosh(αx− α3

γ tγ) + A1 sinh(αx− α3

γ tγ) + C1 − α2D1
. (21)
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It is observed that the breath surfaces of (21) are presented in Figure 6.

Case 5. It is selected from the algorithm that when D1 = 2C1
α2 , A0 = −C1, B0 = 0,

B1 =
A2

1−C2
1

α2 A1
, λ = 1

α , κ = α3. These coefficients produce

u5(x, t) =
α2 A1

A1 + C1 cosh(αx− α3

γ tγ) + C1 sinh(αx− α3

γ tγ)
. (22)

With the suitable values of parameters in (22), the graphs are plotted in Figure 7.

Case 6. If it is selected as A1 = −
√

A0−α2B0
√

A2
0−C2

1√
A0

, D1 = B0C1
A0

, κ = − α3

2 + 3αA0
2B0

, λ = −
√

B0
√

3A0+α2B0
2A0

, B1 =
−A

5
2
0 B0
√

A0−α2B0
√

A2
0−C2

1+
√

α4 A3
0B4

0(A0−α2B1)(A2
0−C2

1)

A3
0(A0−α2B0)

, we have

u6(x, t) =
A0 −

√
A0−α2B0

√
A2

0−C2
1√

A0
sech[αx− κ

γ tγ] + C1tanh(αx− κ
γ tγ)

sech(αx− κ
γ tγ)ϑ

A3
0(A0−α2B0)

+ B0[1−
sech(αx− κ

γ tγ)
√

A2
0−C2

1√
A0
√

A0−α2B0
+

C1tanh(αx− κ
γ tγ)

A0
]

, (23)

where ϑ =
√

α4 A3
0B4

0(A0 − α2B0)(A2
0 − C2

1) and A0 − α2B0 > 0 for valid solution.

Case 7. Taking D1 =
C1(−A2

0+A2
1+C2

1)

α2(−A2
0+C2

1)
, λ = − 1

2

√
(4A2

0−A2
1−4C2

1)(A2
0−A2

1−C2
1)

α2(A2
0−C2

1)
2 ,

B0 =
A0(A2

0−A2
1−C2

1)

α2(A1
0−C2

1)
, B1 =

(−A2
0+A2

1+C2
1)(−2A2

0+A2
1+2C2

1)

α2 A1(A2
0−C2

1)
, κ = α3 − 3α3 A2

1
2(−A2

0+A2
1+C2

1)
gives the

other breath solution

u7(x, t) =
α2 A1(cosh(αx− κ

γ tγ)A0 + A1 + sinh(αx− κ
γ tγ)C1)(A2

0 − C2
1)

θ(−2A2
0 − cosh(αx− κ

γ tγ)A0 A1 + A2
1 − sinh(αx− κ

γ tγ)A1C1 + 2C2
1)

, (24)

where θ = −A2
0 + A2

1 + C2
1 . Figures 8 and 9 present some simulations of (24).

Figure 1. Three and two-dimensional surfaces of (18).
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Figure 2. Three and two-dimensional surfaces of (19).

Figure 3. Three-dimensional graphs of imaginary and real part of (20).

Figure 4. Contour graphs of imaginary and real part of (20).

Figure 5. Two-dimensional graphs of imaginary and real part of (20).
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Figure 6. Three and two-dimensional surfaces of (21).

,

Figure 7. Three and two-dimensional surfaces of (22).

Figure 8. Three-dimensional and contour surfaces of (24).
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Figure 9. Two-dimensional surface of (24).

4.2. RSGEM for the mKdV-ZK Model with Conformable

This part applies RSGEM to the Equation (2) to extract some traveling wave solutions.
The wave transformation formula is defined as

u(x, y, z, t) = U(ξ), ξ = αx + βy + θz− k
γ

tγ, (25)

where α, β, θ, k are nonzero real numbers and 0 < γ ≤ 1. Putting Equation (25) into
Equation (2), the following NODE is obtained:

− kU′ +
pα

3
(U3)′ + (α3 + αβ3 + αθ2)U′′′ = 0. (26)

Integrating (26) twice with respect to ξ and getting to the zero for both integral
constants, we obtain

− 3kU + pαU3 + 3(α3 + αβ2 + αθ2)U′′ = 0. (27)

Specially, if we take n = m = 1, we have

U(w) =
A1sin(w) + C1cos(w) + A0

B1sin(w) + D1cos(w) + B0
. (28)

By substituting (28) into (27), we find the following solutions of (2).

Case 1. Considering A1 = − iC1
√

B2
0−B2

1−D2
1

B0
, A0 = C1D1

B0
, p =

3kB2
0

αC2
1

, θ =

√
−2k−α(α2+β2)√

α
,

we find

u1 =
C1

(
D1 − isech(αx + βy− k

γ tγ + θz)
√

B2
0 − B2

1 − D2
1 + B0tanh(αx + βy− k

γ tγ + θz)
)

B0

(
B0 + sech(αx + βy− k

γ tγ + θz)B1 + D1tanh(αx + βy− k
γ tγ + θz)

) , (29)

where B2
0 − B2

1 − D2
1 > 0 for a valid solution. Taking some values of parameters under the

strain conditions, we plot its surfaces in Figures 10–12.

Case 2. If A1 = iC1, B1 = iD1, A0 = C1D1
B0

, p =
3kB2

0
αC2

1
, θ =

√
−2k−α(α2+β2)√

α
, we obtain

u2 =
C1

(
D1 + B0(isech(αx + βy− k

γ tγ + θz) + tanh(αx + βy− k
γ tγ + θz))

)
B0

(
B0 + D1(isech(αx + βy− k

γ tγ + θz) + tanh(αx + βy− k
γ tγ + θz))

) , (30)

where −2k− α(α2 + β2) > 0 for a valid solution.
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Case 3. If A0 = − A1D1√
−B2

0+B2
1+D2

1
, C1 = − A1B0√

−B2
0+B2

1+D2
1
, p = − 3(α2+β2+θ2)(−B2

0+B2
1+D2

1)

2A2
1

,

k = − α(α2+β2+θ2)
2 , we extract

u3 =
A1

(
− sinh(αx + βy + θz + tγα(α2+β2θ2)

2γ

)
B0(

cosh(αx + βy + θz + tγα(α2+β2θ2)
2γ )B0 + B1 + sinh(αx + βy + θz + tγα(α2+β2θ2)

2γ )D1

)
τ

−
A1

(
cosh(αx + βy + θz + tγα(α2+β2θ2)

2γ )D1 +
√
−B2

0 + B2
1 + D2

1

)
(

cosh(αx + βy + θz + tγα(α2+β2θ2)
2γ )B0 + B1 + sinh(αx + βy + θz + tγα(α2+β2θ2)

2γ )D1

)
τ

,

(31)

where τ =
√
−B2

0 + B2
1 + D2

1, and also, −B2
0 + B2

1 + D2
1 > 0 for a valid solution.

Case 4. In case of selecting A1 = 0, B1 = 0, A0 = C1D1
B0

, p =
3kB2

0
αC2

1
, θ =

√
−k−2α(α2+β2)√

2
√

α
,

Equation (2) has the following hyperbolic function solution:

u4 =
C1D1 + C1B0tanh(αx + βy− k

γ tγ + θz)

B2
0 + B0D1tanh(αx + βy− k

γ tγ + θz)
, (32)

where C1 6= 0, B0 6= 0, D1 6= 0 for a valid solution.

Case 5. If we consider A1 = −
√

A2
0 − C2

1 , B1 = 0, B0 = C1D1
A0

, p = − 3(α2+β2+θ2)D2
1

2A2
0

,

k = − α(α2+β2+θ2)
2 , we obtain

u5 =
A2

0 − A0sech(αx + βy− ktγ

γ + zθ)
√

A2
0 − C2

1 + A0C1tanh(αx + βy− ktγ

γ + zθ)

D1C1 + D1 A0tanh(αx + βy− ktγ

γ + zθ)D1
, (33)

where A2
0 − C2

1 > 0 for a valid solution.

Case 6. When A0 = −
√

3
√

kD1√
p
√

α
, A1 = − i

√
pαC2

1−3k(B2
1+D2

1)√
p
√

α
, B0 = −

√
p
√

αC1√
3
√

k
, β = −

√
−2k−α(α2+θ2)√

α
, we find

u6 =

(
3
√

k(
√

3
√

kD1 + isech(αx− ktγ

γ + θz− Ξy)ω−√p
√

αC1tanh(αx− ktγ

γ + θz− Ξy))
)

(√
3pαC1 − 3

√
3
√

k
√

p
√

αsech(αx− ktγ

γ + θz− Ξy)(B1 + sinh(αx− ktγ

γ + θz− Ξy)D1)
) , (34)

where ω =
√

pαC2
1 − 3k(B2

1 + D2
1), Ξ =

√
−2k−α(α2+θ2)√

α
for a valid solution. In Figures 13–15,

several simulations are plotted.

Case 7. If A0 =
√

3
√

kD1√
p
√

α
, A1 = iC1, B0 =

√
p
√

αC1√
3
√

k
, B1 = iD1, β = −

√
−2k−α(α2+θ2)√

α

results in

u7 =

√
3
√

kD1√
p
√

α
+ C1

(
isech(αx− ktγ

γ + θz− Ξy) + tanh(αx− ktγ

γ + θz− Ξy)
)

√
p
√

αC1√
3
√

k
+ D1

(
isech(αx− ktγ

γ + θz− Ξy) + tanh(αx− ktγ

γ + θz− Ξy)
) , (35)

where Ξ =

√
−2k−α(α2+θ2)√

α
. Figures 16–18 present the graphs of (35).
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Case 8. Coefficients such as A0 =
√

3
√

kD1√
p
√

α
, A1 = 0, B0 = −

√
p
√

αC1√
3
√

k
, B1 = 0, β = −

i
√

k+2α3+2αθ2
√
−pαC2

1+3kD2
1√

−2pα2C2
1+6kαD2

1
produce

u8 =

3
√

3
√

kD1√
p
√

α
− 3
√

kC1tanh(αx− ktγ

γ + θz− iy
√

k+2α3+2αθ2
√
−pαC2

1+3kD2
1√

−2pα2C2
1+6kαD2

1
)

√
3
√

p
√

αC1 − 3
√

kD1tanh(αx− ktγ

γ + θz− iy
√

k+2α3+2αθ2
√
−pαC2

1+3kD2
1√

−2pα2C2
1+6kαD2

1
)

. (36)

Figure 10. Three-dimensional graphs of imaginary and real part of (29).

Figure 11. Contour graphs of imaginary and real part of (29).

Figure 12. Two-dimensional graphs of imaginary and real part of (29).
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Figure 13. Three-dimensional graphs of imaginary and real part of (34).

Figure 14. Contour graphs of imaginary and real part of (34).

Figure 15. Two-dimensional graphs of imaginary and real part of (34).
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Figure 16. Three-dimensional graphs of imaginary and real part of (35).

Figure 17. Contour graphs of imaginary and real part of (35).

Figure 18. Two-dimensional graphs of imaginary and real part of (35).

5. Discussion and Physical Meanings

By using RSGEM, we found some traveling wave solutions of the nonlinear Gardner and
(3+1)-dimensional mKdV-ZK equations including a conformable operator. These solutions are
in the forms of the rational, hyperbolic, periodic, trigonometric, complex and mixed hyperbolic
function solutions. Figure 1 symbolizes the exponential surfaces of (18) when D1 = 1.5,
α = 0.2, C1 = − 0.5, A1 = 0.32, γ = 0.99,−50 < x < 50, 0 < t < 150 for 3D and
t = 0.21 for 2D. Figure 2 represents the hyperbolic function graphs of (19) when D1 = 1.5,
α = 0.2, C1 = −0.5, γ = 0.99,−50 < x < 50, 0 < t < 150 for 3D and −150 < x <
150, t = 0.21 for 2D. Figure 3 explains the 3D graphs in −35 < x < 35, 0 < t < 35, and
Figure 4 investigates the 2D with −13 < x < 13, t = 0.1. Figure 5 represents the contour
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surfaces with 0 < t < 35 of the complex hyperbolic function solution of (20) if it is selected
as D1 = 0.5, α = −0.65, C1 = 0.1, B0 = 2, γ = 0.99, κ = −0.2. Figure 6 presents the 3D
and 2D graphs of the hyperbolic function solution of (21) for D1 = 1.5, α = 0.2, C1 = 0.5,
A1 = −2, γ = 0.5, t = 0.5,−150 < x < 150, for 3D and 0 < t < 150, −150 < x < 150
for 2D solutions. Figure 7 is used to explain the 3D and 2D hyperbolic function solution
of (22) for α = 0.2, C1 = 0.5, A1 = 2, γ = 0.99, 0 < t < 150− 50 < x < 50, for 3D and
t = 0.12− 150 < x < 150 for 2D solutions. Figures 8 and 9 symbolize the singular wave
distributions of (24) under the α = 2, A0 = 7, C1 = −0.2, A0 = 2, γ = 0.5, 0 < x < 50,
50 < t < 50,−50 < x < 50, 0 < t < 50, and t = 1 for 2D. Figures 10–12 are plotted
to observe the 3D, 2D and contour surfaces of the mixed hyperbolic function solution of
(29) under C1 = 0.3, D1 = 0.12, B0 = 3, α = 4, β = 3, γ = 0.5, k = 0.3, z = 1.5, y = 2.5,
θ = 3.4, B1 = 0.13,−20 < x < 20,−10 < t < 10 for 3D and t = 0.01 for 2D solutions.
Figures 13–15 are plotted to explain 3D, 2D and contour surfaces of the mixed complex
hyperbolic function solution (34) under the terms of C1 = 0.3, D1 = 0.12, α = 1.4, γ = 0.5,
k = 0.3, z = 1.5, y = 2.5, θ = 1.4, A0 = 1.3, p = 2, B1 = 1.2,−20 < x < 20, −160 < t < 20,
− 20 < x < 20,−40 < t < 40 for 3D, and, −40 < x < 40,−50 < t < 10,−20 < x < 20

for contour graph and t = 0.2 − 10 < x < 10, − 15 < x < 15 for 2D graph. Figures 16–18
introduce the singular wave properties of (35) under the values of C1 = 0.2, D1 = 0.12,
α = 1.4, γ = 0.5, k = −3, z = 1.5, y = 2.5, θ = 1.4, p = 2,−60 < x < 20, −60 < t < 20, for
3D graphs and −40 < x < 40,−50 < t < 10,−60 < t < 50 for the contour surface, as well
as t = 0.1, − 15 < x < 15 for the 2D graph.

6. Conclusions

In this paper, we have successfully applied RSGEM to the nonlinear Gardner and (3+1)-
dimensional mKdV-ZK equations including a conformable operator. We extracted some
solutions such as complex, rational, exponential, complex hyperbolic and mixed complex
function solutions. We have chosen suitable values of the parameters, and some graphical
simulations are also plotted. Necessary strain conditions are also reported in detail. When
we consider these results and Figures 1–18, it may be observed that these solutions are
used to explain the wave distributions for the governing models. Moreover, it is observed
that these findings produce the estimated behaviors of models. When we compare these
solutions with [38], it may be seen that these are new wave function solutions.

In this paper, we considered n = m = 1 in particular. If we consider other equalities of
n and m, this will produce more sophisticated solutions to the models studied. This newly
presented method can be also used to find many entirely new traveling, singular and com-
plex solutions to the nonlinear partial differential equations arising in real-world problems.
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9. Brzeziński, D.W. Comparison of Fractional Order Derivatives Computational Accuracy—Right Hand vs Left Hand Definition.

Appl. Math. Nonlinear Sci. 2017, 2, 237–248. [CrossRef]
10. Youssef, I.K.; El Dewaik, M.H. Solving Poisson’s Equations with fractional order using Haarwavelet. Appl. Math. Nonlinear Sci.

2017, 2, 271–284. [CrossRef]
11. Eslami, M.; Rezazadeh, H. The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo

2016, 53, 475–485. [CrossRef]
12. Khan, M.A.; Hammouch, Z.; Baleanu, D. Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Math. Model.

Nat. Phenom. 2019, 14, 311. [CrossRef]
13. Rezazadeh, H.; Tariq, H.; Eslami, M.; Mirzazadeh, M.; Zhou, Q. New exact solutions of nonlinear conformable time-fractional

Phi-4 equation. Chin. J. Phys. 2018, 56, 2805–2816. [CrossRef]
14. Osman, M.S.; Korkmaz, A.; Rezazadeh, H.; Mirzazadeh, M.; Eslami, M.; Zhou, Q. The unified method for conformable time

fractional Schroodinger equation with perturbation terms. Chin. J. Phys. 2018, 56, 2500–2506. [CrossRef]
15. Feng, Q. A new approach for seeking coefficient function solutions of conformable fractional partial differential equations based

on the Jacobi elliptic equation. Chin. J. Phys. 2018, 56, 2817–2828. [CrossRef]
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