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Abstract: The purpose of this research paper is first to propose the generalized weighted-type frac-
tional integrals. Then, we investigate some novel inequalities for a class of differentiable functions
related to Chebyshev’s functionals by utilizing the proposed modified weighted-type fractional inte-
gral incorporating another function in the kernel F(8). For the weighted and extended Chebyshev’s
functionals, we also propose weighted fractional integral inequalities. With specific choices of @(9)
and F(0) as stated in the literature, one may easily study certain new inequalities involving all
other types of weighted fractional integrals related to Chebyshev’s functionals. Furthermore, the
inequalities for all other type of fractional integrals associated with Chebyshev’s functionals with
certain choices of @(#) and F () are covered from the obtained generalized weighted-type fractional
integral inequalities.
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1. Introduction

In [1], for two integrable functions Z; and Z; on [v1, 3], the Chebyshev functional
and the weighted Chebyshev functional are respectively proposed as:

T(21,2) = ([ z(de), M

1

1 & 1 & 1
21(0) 22 (0)do — / Z1(0)d
oo L, A2 — ([ " Zi()e) ;-

and:

T(21, 22, m) = / fu(e)de / fi(e)21(0)22(e)de — / fn(e)Z1(e)de / hi(e)22(0)de, (2)
J U1 JU1 J U1 JU

where the function 7 is positive and integrable on [v1,v;]. In the study of probability
and statistical problems, (2) has several applications. In addition, the functional (2) has
applications in the domain of integral and differential equations. Readers may refer
to [2-4].

For two differentiable functions Z; and Z;, Dragomir [5] defined the inequality
below as:

/ / 02 b2 2 v2 2
| T(21,22m) 1| 2011 251 [ [ me)de [ ePmiedde— ( [ omie)de) ],
1 1

01
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where 27, Z) € Lo (v1,v2) and 71y is integrable and a positive function on [v1,v;]. Using
various methodologies, the researchers investigated the functionals (1) and (2) and dis-
covered some notable inequalities. Readers are advised to see the works of [6-12]. Very
recently, Srivastava et al. [13] investigated the Chebyshev inequality via the general family
of fractional integral operators.

Elezovic et al. [14] proposed the inequality below for the weighted Chebyshev functional:

V2 (U2 141 4 7
Tz 2 | < 5 (7 [Cmem@ e [ 2i0 1 do| acar)

(/ [ m@m@1e-c17 1 [ 2300 1o | dcaz )

s hznz ([ [ memnee-c7 7 a), ®

=

where Z], € Lp([vlrUZ])r Zé € Lq([vlrUZ])r v.q,r > 1, %"’% =1, %‘F% =1, and
141=1

In [9], the authors established the following fractional integral inequality for the
Chebyshev functional (2) by:

2| I ()T 21 22(0) — I%m 21(0) L 11 22(0) |

Z] z
SW/ / (60— 0)*1(6 — 0)*Jg — ¢l (@) ({)dode,

where Z] € LP([0,00(), Z} € L1([0,00]), p,q > 1, % + % =1.
In [15,16], the extended Chebyshev functional was presented as:

12, 2o 1) = [“Hi(de [ (@210 Z2(0de + [ m(e)de [ Hi(0)Z1(0) Z2(0)de

—/Z:Z 11 (e)21(0)de /?2 h’l(e)Zz(Q)de—/: 1 (0)Z1()de /TZ 11 (0) 22(0)do. @

This paper is organized as follows:

The generalized weighted-type fractional integral inequalities connected to the func-
tionals (1) and (2) are discussed in Section 2. We propose some generalized weighted-type
fractional integral inequalities connected to (3) and (4) in Section 3. Finally, in Section 4, we
give the concluding remarks.

We recall the following results from [17] as follows:

Definition 1. Suppose that the function ¥ : [0,00) — [0, 00) satisfies the conditions given below:

[ \F(Q‘\’)de, 5)
et

) < Qiﬁé‘),u <v, )
|ﬁg)_igNgsw_mig[;gzgzl @®)

where P, Q, S > 0, independent of u, v > 0. If ¥ (v)v" is increasing for some & > 0 and % is
decreasing for some B > 0, then Y satisfies (5)—(8).
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Here, we define the following generalized weighted-type fractional integral operators.

Definition 2. The generalized weighted-type fractional integral operators, both left and right sided,
are respectively defined by:

CY(F(0) - F(e

(Zzn.z)e - e [ “LE T Wa@r @@ <t ©

and:

(Zzi z)e =@ [T TE LT Da@F @z@in>0 )

Remark 1. 1. If we consider ¥ (F(0)) = F(60), the fractional integrals (9) and (10) reduce to
the following:

0
(3Z0+21)(0) =@ (0) [ @(0)F(e) Z1(0)do, 01 <,

01

and:
F -1 2 /
(370-21)(0) =@7'(0) | @(0)F' (@) Z1()d0, 02 > 6,
respectively.

2. If we consider F(0) = 0, the fractional integrals (9) and (10) reduce to the following,
respectively:

(220:2) @) =0760) [ TP g) 2 (q)dg,m <,

0 6 — 0
and:

2 ¥(0—0)

00 @(e)Z1(0)do, v > 0.

(2Z0r-2:)(0) =™ @) |

3. If we consider ¥(F(0)) = f_((i);, the fractional integrals (9) and (10) reduce to the
following, respectively (see [18]):

-1
(275,20)0) = S [ (70 - o) (o) F @210 or <,

and:

-1 0y
(22 2)© = 5 [M (@ - FO) e@F (2o >0,

where k, € C with R(x) > 0.
4. If we consider F(0) = 6 and ¥ (F(0)) = %, the fractional integrals (9) and (10) reduce
to the following:

-1
(035 21)(6) = 2 (6) /09(9 —0)* '@(0)Z1(g)do, vy < 9,
and:

(075, 2)(0) = 2

/:2(0 - Q)K_l(D(Q)Zl(Q)dQ, vy >0,
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respectively.
5. If we consider F(0) = In6 and ¥ (F(0)) = (lrn(i%"/ the fractional integrals (9) and (10)
reduce to the following weighted Hadamard fractional integrals:

1 9
(ot 21)(0) = T [ o=y o) Z:(0) % o1 <,
and:
1 -
(aZ5, 20)(0) = T [ e~ o) 0@ 21(0) %, 02 > 0

6. If we consider F(0) = 0" and ¥ (F(0)) = %, 1 > 0, the fractional integrals (9) and (10)

reduce to the following weighted Katugampola fractional integrals,

—1 . _ k=1
(0Z5,21)(6) = wr(K()e) /:<9'7 . QW) w(Q)Zl(@Qﬁqu, v <6,

and:

-1 vy o Kk—1
(wIz’szl)(G) — @r(K(f) /9 <Q'7 ] 9’7) (@(Q)Zl(g)eilgn, vy > 0.

7. If we consider F(0) = 6 and ¥(F(0)) = %exp(—l_TWG), n € (0,1), the fractional
integrals (9) and (10) reduce to the following weighted fractional integrals,

(w131+31)(9) = w—;(e) /: exp(—lnﬂ(@ - Q))‘O(Q)Zl((’)/ 01 <6,
and:
@ '(6)

(oThh-21)(0) = =

/6”2 eXp(_lﬂﬂ(Q - 9)>6@(Q)Z1(Q)de, vy > 6.

Furthermore, one can derive the weighted form of conformable fractional integrals introduced
by [19-22].

The following special cases can be easily obtained by applying the conditions on @(6)
and Y(F(6)).

Remark 2. 1. If we consider @(6) = 1 and ¥ (F(0)) = F(0), the fractional integrals (9) and
(10) reduce to the following:

0
(7Zo+2:)(0) = | Fl0)Z1(e)do,01 <0,
1
and:
F 2
(PZu-21)(0) = [ Fl@)Z1(0)do,02 > 6,
respectively.

2. If we consider @(0) = 1 and F(6) = 0, the fractional integrals (9) and (10) reduce to the
following, respectively (see [23]):

Yo —
(72 21)(0) = /Ul é_QQ)Z](Q)dQ,Ul <9,
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and:

(IIUZ,Zl)(Q) _ /9”2 ‘Y(QQ__GG)Zl(Q)dQ, vy > 0.

3. If we consider @(0) = 1 and Y(F(0)) = %, the fractional integrals (9) and (10)

reduce to the following, respectively (see [24,25]):
1 9 _
(7Z52:)0) = 1 [ (FO) = F(@) ' Flo)Z1(0)do, 01 < 6,
F(K) U1

and:

(FT5-21)0) = 75 [ (Fl@) = FO) ' F @ 2,02 >,

where x, € C with R(x) > 0.
4. If we consider @(0) =1, F(0) = 0 and ¥ (F(0)) = %, the fractional integrals (9) and
(10) reduce to the following (see [24,25]):

(3§1+Zl)(9) S /9(9 —0)"121(0)do,v; < 6,

I(x) Jo,
and:
~K 1 2 xk—1
(35,-21)(6) = W/@ (e —0)"""Z1(0)do,v2 > 6,
respectively.

5. If we consider @(0) =1, F(0) =In0 and ¥(F(0)) = (%;K, the fractional integrals (9)

and (10) reduce to the following weighted Hadamard fractional integrals (see [24,25]):

1 _ do
" Z 9:—/19—1 1z ()% 0,
( U1+ 1)( ) F(K) ‘(Jl(n nQ) 1(@) Q Ul <

and:
K _ 1 22 _ x—1 d@
(Z5,-21)(0) = e /9 (Ino —1n0)* ' Z(0) o’ vy > 6.

6. If we consider @(0) =1, F(0) = 6", and ¥ (F(0)) = %, n > 0, the fractional integrals

(9) and (10) reduce to the following Katugampola [26] fractional integrals, respectively,

. R A do
(I‘ulzl)(e) = F(K) /Ul( 17 > Zl(@)gli_ﬂ, (%] < 9,

and:

, 1ol -6\ do
@2) O = [ (557) B0 m>e.

7. If we consider @(0) = 1, F(0) = 0, and ¥ (F(0)) = %exp(—l%e), 7 € (0,1), the
fractional integrals (9) and (10) reduce to the following weighted fractional integrals,

(#2) 0 =1 [Cep(-1 L0~ o)) 21(0), 01 <0,
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and:

1 3 1—

i — n

(IUZ_Zl) (0) = 5/9 exp(—ﬂ(g - 9))Zl(g)dg, vy > 6.
Similarly, (9) and (10) will lead to the fractional integrals defined by [19-22].

2. Generalized Weighted-Type Fractional Integral Inequalities via
Chebyshev’s Functional

Here, we develop weighted-type generalized fractional integral inequalities via Cheby-
shev’s functional.

Theorem 1. If the two functions Zy and Z, are differentiable on [0, o) with Z], Z} € Lo ([0, c0[)
and we suppose F is positive and increasing on [0, oo[ and its derivative is continuous on [0, o0/,
then the following inequality holds:

| (f11+1)(9)(£z;ﬁ+2122)(9) ( Il+zl)(9)(le+32(9)) |

<12 ol 25 o [(Z2200) 0 (57200%) — ((22240)) ], (11)

where (IL‘EJF )(0) is defined by:

(Zzra)o o [ LD =T Dot 7 (g0 <o

Proof. Let us define:

H(o,¢) = (21(0) — 21(£))(22(0) — 22(0)); 0, ¢ € (v16). (12)

¥(F(0) - F(o)
F(0) = F(o)

respect to ¢ over (v1,60) and employing (9), we have:

gy [P YEE) - F @)
@ 0) | = e, QT (@H(e e

The product of (12) by @~ 1(8) @(0)F'(0) and then integrating with

=(3TE212:)(0) - 200) (5T8 1 22) (0) - 22(0) (5T 21) (0) + 21(0) 22(0) (5 TH1) (0). (13)
: : ~1.gy Y(F(O) = F(8)) o\ £
Again, conducting the product (13) by @~ 1(6) 70 —F0) @(¢)F'({) and then

integrating with respect to { over (v1,0), we have:

o) [ [ IS TV IEE =20 2 g)a(o0@) (@) Hg oz

2((fz 1+1) (9)(f1“’+zlz2) 0) — (fI‘Y+Zl) (9)( I‘F+22)(9)) (14)

On the other side, we also have:
¢, ,
=[] #)Zh)axy (15)
Since Z{(x), Z5(y) € Leo([0,0]), therefore we have:

g g
| H(o,Q) I<] /Q 2] (x)dx | /Q 2y <] 2] o]l 2 o (0= 0%  (16)
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Therefore, it can be written as:

gy [0 HEFO) = Flo) ¥(FO) = () ,
o0 [ | e e —Fe) T @e@F ©)o) | Hiet) | dods

<12l 2 w2 [ [ TEOZDITO =T 507 @0()

(
0)  F(0)—F()
x(* — 200 + {*)do dg.

From (17), we obtain:

gy [0 [OEFO) = F0) ¥FO) - F©) 5 :
o0 | [ e Fe = Fe @Qe@F ©2@) | Hed) | dods

<2 2 ol 24 o [(2220) 0)(5T2.07) — (220 ).

Hence, from (14) and (18), we obtain the required proof. [

(17)

(18)

Corollary 1. If the two functions Zy and Z; are differentiable on [0, 00) with 21, Z} € Leo([0,00[)
and we let F be a positive and increasing function on [0, 0o and its derivative be continuous on

[0, 00|, then the following inequality holds:
| H(l)(FI;I;+le2) 6) — (717‘,‘;+Zl)(9)<717‘£+22)(9) |
2
< 2 lloll 25 1 [ (72 6) - (72X ,0) ],

where T1(1) is defined by:

Theorem 2. If the two functions Z1 and 2, are differentiable, both have variations in same sense
on [0, 00), and we let hiy be a positive function on [0, 00). Suppose that F is positive and increasing
on [0, 00[ and its derivative is continuous on [0, 00[. Let Z{, Z} € Loo([0, 00[), then the following

inequality holds:

0< (FZm ) (0) (ZTh 121 22) (0) - (2T 21 ) (0) (T 1 22) (0)

<11 2] llo | 28 Il [(ZZ24m) (0)(ZZ,6%: ) 60) — (£ 0m1) ()]

Proof. Define:

H(e,Z) = (Z21(0) — Z21(0))(22(0) — 22(8)); 0, T € (v16),6 > 0

=21(0)22(0) — 21(0) 22(0) — 21(¢) 22(0) + 21(£) 22(0)-

By Theorem 2, Z; and Z, fulfil the hypothesis; therefore, we have:

H(e,¢) > 0.

(19)

(20)
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Taking the product on both sides of (20) by @~ (6 )T(};( )) };(Q()))) @(0)F (o)1 (0)
(v1,0) and:

and, then, taking the integration of both sides with respect to ¢ over

o(0) [ YO =) o ) p(gim(@ e 0o

F(9)—F(e)
=(ZTXm2122)(6) - Z2(0) (5T 21)(0) - 22(0) (3T 1 22) (0)

+21(0)20)(3 vﬁhl)( )>o.

1

(21)

Again, taking the product of (21) by 0_1(9)\}[(]‘__72((9?_;éi))w(g)f’(g)hl(g), then

taking integration with respect to { over (v1,0) and using (9), we obtain:

20) [ [ IED =T IEE =2 21 g)a(0) 7 @0 (@ (m (@) (e Dieds

(fzgﬁml) () (gszzlzz) (6) — (gzgﬁjzlzl) 0) (£I§1+hlzz)(e) > 0. (22)
From (16), it becomes:
@*2(9) F(0) — F(0) ¥(F(6) — F(2)) 1 '
T A I A m)_ 7o F @@ F Qe@m(@n (@) | Hiel) | dodg
||Z’ ||oo||Z’ oo @2(8) Q)) Y(£O) - F(2)) r /
LRSS T TR T g @e@m @m @
x (¢ — 20 + %) dod. (23)
Consequently, it can be written as:
F(0) — F(0) ¥(F(6) — F(2)) 1 '
) (9 o) 7O —F@) ° @e@F @)e@)mem(C) | Het)|dods
2
<2 || 2 ||l £ ||oo [(ZzXm) 0) (T2 0% ) (0) — (SZgem ) (0)]- 4)

According to (22) and (24), we obtain the desired proof. O

Setting Theorem 2 for @ = 1, we obtain the following new result.
Corollary 2. If the two functions 2 and Z; are differentiable, both have variations in the same

sense on [0,00) and hy is a positive function on [0,00). Suppose that F is a positive and increasing
function on [0, co[ and its derivative is continuous on [0,00. If Z{, 2} € Le([0,00(), then the

following inequality holds:
0< (szhl)(e)(fIthzlzz) 6) — ( hlzl)(r)(szhle)(e)
) @) (720 ) (0) — (Tzgem(e)) .

FrY
¥,

FTY
IZ)1+

S EANE-A N
Remark 3. By considering h1(6) = 1 in Theorem 2, we obtain Theorem 1. Similarly, taking

@(0) =1, F(0) =0and ¥(F(0)) = ?K) we obtain the result of Dahmani [27].
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3. Generalized Weighted-Type Integral Inequalities Associated with Weighted and
Extended Chebyshev Functionals

In this section, we construct certain weighted-type generalized fractional integral
inequalities.

Theorem 3. If the two functions 2y and Z, are differentiable on [0,00), hy is a positive and
integrable function on [0,00). Let F be positive and increasing on [0, 00[ and its derivative be
continuous on [0,c0[. If Z] € LFP([0,00]), Z5 € LI([0,c0[), p,q,v > 1 with %—0—% =1,

% + % =1land !+ % =1, then the following weighted fractional integral inequality holds:

2| (fzz‘,ﬁ+h1)(9)(ffz‘,ﬁ+hlzlzz)(9) (fzvl+hlzl)(9)(£L‘§+h122)(9) |

(12 [ / 2D 2 o7 0 F @a@m(em@)

<lg—g "7 deC)

(1205 @@ [ [ TER TN ITD =T r1g)0(0) 7 @0 @m@h (@

<lo—g |77 dod)”

<1121 2l 2o( [ [ TEHTDITD T rg)a() 7 @o@m@m @

x| |"'7 dodg). 25)

Proof. Let us define

H(o,¢) = (Z1(0) — 21(0))(22(e) — Z1(8)); 0, ¢ € (v10)
=Z1(0)22(0) — 21(0)22(0) — 21() 22(0) + 21(£) 22(0)- (26)

Conducting the product of (26) by @~1(6) T.(;zg)—_;(gg))) F'(0)@(0)h1(0), then in-

tegrating with respect to ¢ over (v1,6) and using (9), we obtain:

oo [ TR rgatemotie e
=(ZZ8m212,)(0) - 22(0) (3T 21) (0) — 210 (TLh i1 22) (0) + 21D 22(0) (5T o1 ) (0). @)
Again, taking the product of (27) by w_l(B)T(]‘__;;é?)__‘;g)) F'()@(Z)h1(Z), then

integrating with respect to { over (v1,60) and using (9), we have:

2o [ [ TGO =T 5 gateim (@) F e @m (e, Odeds
—2(fz 1+h1> 0 )(£I;£+h12122> (6) — (gthlzl) () (gz;mlzz) 6). (28)
On the other side, we also have:

= /;) /; Z1(u) Z5(v)dudo. (29)

By employing the Holder inequality, we have:

| Z1(0) - 22(0) s|e—<;|3'|/;|z{<u> P du |7 (30)
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and:

1re 1
| Z2(0) — Z2(0) |<| e = | |/C | Z5(0) " do |1 (31)
Thus, H can be estimated as:
141 Q , 1 Q , 1
| H(g,0) |<|o—2¢ |7 q\/é | 2] (u) |Pdu|p|/§ | Z) Pdo . (32

Hence, from (28) and (32), it follows that:

2| (]:Iz‘)ﬁ-&-hl)(g)(fz;ﬁ_i_h]ZlZZ) (0) — (5Z8mz1) (0) (5T m =) (0) |
o f [ 5 (Féf;) 2O (o @17 0@ (@) | o) | dodt

= Y(F(0) = F (D) 7 :
<a2(0) [/ 1 [ N I ) P @e(om(@F (a0 (@)
<lo=2 17| [T 2 1 au | 11 24 1 do | ddz @)
By employing the Holder inequality for the double integral for (33), we obtain:
2| (fIth)(@)(FI%JlZlZz)(9) - (£Iz‘)11+hlzl>(9)<£Iz‘711+h122)(6) |

. "y F(0) ¥(F(8) = F(©) :
<@ 2(6)( /vl [ I D= ) P @e@m@F @a(@)n@)

1

gt [? L r
< le=g 17| 71 200 P du |7 dod)

<[ RIS TAITR T 2 galgm 1 @@m@)

1
py

/+ 7
xle-g 7 q|/ | 24(0) 1o |7 dodg)” 4
Now, utilizing the following relations:
0 Q
|/é | Zj(u) |7 du |<|| 2] ||b and \/é | Z5(0) |7 do |<|| 23 |10, (35)

then (34) becomes,

|(fI;‘1+h1)<>(f ‘thzlzz)(e) ( Y . 2)(0) (528 1 22) (6) |

(12100 [ /U DI P @em @ @an @)
<o 21777 doag)’ (11 241 @ /l/vl
< F (@)@ (o)h (@) F ()@@ (@) | ¢~ 77 dodg)” (36)

From (36), we have:
2| (fIth)(e)(fIthlez) ( I;};+hlzl) ( Ivl+h122) 0) |

<11 21l 2 Iy o2 [ [ TEOZIYTH - FH)

/+/

xF'(0)@(0) F'($)@(Z)h (e)h (L )IQ éI” 7 dedg,
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which completes the required result. O

If we consider @(#) = 1 in Theorem 3, the following new result can be obtained.

Corollary 3. If the two functions 21 and Z, are differentiable on [0, 00) and if hy is integrable
and a positive function on [0, c0), and we let F be a positive and increasing function on [0, co|
and its derivative be continuous on [0, o[, if Z{ € LP([0,00[), Z} € L([0,00]), p,q,7 > 1 with
% + pl =1, % + % =1,and % + % =1, then the following inequality holds:

2| (fz;ﬁ+h1)<9>( fI;I’ lezlzz) (6) = (7ZX 1 20) (0) (7T m22) 6) |

e F@)¥FO) = F@) 11 1
<(z1 /Ul / o0 7 T @F Om@m(©)

xlo-g |’ ngdg)

x| |77 dgdg)”
<l 21yl 231 [ [ 2ESTONIED =T 215 gy (om0

143
< o=V dodg).

Remark 4. If we consider @(0) =1, F(0) = 6 and ¥ (F(0)) = % in Theorem 3, we arrive at

the inequality established by Dahmani et al. [28].

Remark 5. Furthermore, if we consider @ =1, F(0) = 6 and ¥ (F (0)) = 6 in Theorem 3, then
we obtain the inequality (3) on [0, 0].

Theorem 4. If the two functions Z, and Z; are differentiable on [0, c0) and if hy and 1} are
integrable and positive functions on [0, c0), we let JF be positive and increasing on [0, o[ and its
derivative be continuous on [0, 00, and iff Z{ € LFP([0,00]), Z5 € LI([0,c0[), p,q,+ > 1 such
that % + % =1, % —+ % =land 1 + % = 1, then the following weighted fractional integral
inequality holds:

2| (B2 1) (0) (BT 21 22) (0) - (ZT o 21) (0) (D2 11 22) (6)
—(£I§+hgzl)(9)<fzg+hlz2) (6) + (SZ.1) (0) (5T 11212 6) |

(121070 [ /vl o= DD =T D) (g)a(o) 7 (D)0 (@14 (0
<o—g |77 dodg)’

(1215 @@ [ [ TER =TT =T g0 @o@m @@
<o~ |77 dodg)”

SEANETERUIN| Fel I P Qe e (@m0 0)



Fractal Fract. 2021, 5, 232 12 of 14

Proof. Conducting the product of (27) by @~ *(6) T.(;é(;)—.;g)) F ()@ (2)H(2), then

integrating with respect to { over (v1,0) and using (9), we obtain:

oo [ [ TED=FONIEO =) 51(g)0 o) (007 (000 @) (e Do s
= (zm) 0 (fzvl+hlzlzz) (0) - (578, mz:) 0) (578 1122) (0)
—(FzXmz) (0) (T2 22) (0) + (T2 1) (0) (ST 1 212, (6). 7

Using (32) in (37), we obtain:
[ (FZm) 0 (52 mZi22) (0) = (BT 20 ) (0) (HZ8 .15 22) (0)
—(Zzhmz) ) fIthzz)(e) +(Z2hm) 0) (528 hi2122) 6) |
(

2o [ [ HERZIIED T (goieim (o) @e@m (@) | He.t) | dodt

gy [0 [FEFO) = Flo) ¥(FO) - F©) 5 : :
<00 [ | “ro—rw - @Q2@m@F ©a@H @)

141 Q , 1 Q , 1
rEdrar |/C | Z}(u) |Pdu|p|/€ | 25(0) |7 do |7 dodg. (38)

The desired proof can be easily obtained by applying a similar procedure as used in
the proof of Theorem 3. [

If we consider @ = 1 in Theorem 4, then we obtain the following new result.

Corollary 4. If the two functions Z1 and 2, are differentiable on [0,c0) and if hy and h} are
integrable and positive functions on [0,00), we let F be an increasing and positive function on
[0, 0] and its derivative be continuous on [0,00(, and if Z] € LP([0,00[), Z} € L([0,00),
p,q,r > 1such that % + % =1, % + % = land % + rl, =1, then the following fractional integral
inequality holds:

2| (fzz‘,ﬁ+h’1)(9)(fzz‘,ﬁ+hlzlzz) 6) — (fI;I;+hlzl) (9)(f1;‘1+h’132)(9)
—(fz;fﬁh’zl)(e)(fzgﬁmlzz) () (JTI;I;+ /) (71;‘;+h12122) 0) |

(12t [ [ TEOFDIEO = FED 1) 1 gyt 0

< lg—g "7 deC)

(121 [ [ LD FDIFO =T p1i5) gy mi o)

1+3 v
xlo—¢ |77 dodg)

<l 21yl 231 [ [ 2ESTONIED =T 215 gy o0

N
—
e
~—
|
N
—
oy
~—

Tt
x[o=¢ |7 7 dedg )
Remark 6. By considering 1} (0) = h1(0) in Theorem 4, we obtain Theorem 3.

Remark 7. If we consider @(0) =1, F(0) = 0 and ¥(F(0)) = ( ) in Theorem 4, then we are
led to the result of Dahmani [28].
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4. Concluding Remarks

By utilizing the proposed weighted-type generalized fractional integral operator,
we established a class of new integral inequalities for differentiable functions related to
Chebyshev’s, weighted Chebyshev’s, and extended Chebyshev’s functionals. The obtained
inequalities are in more general form than the existing inequalities, which have been pub-
lished earlier in the literature. Our result’s exceptional cases can be found in [5,11,12,27-30].
Furthermore, for other types of operators addressed in Remarks 1 and 2, certain new in-
tegral inequalities connected to Chebyshev’s functional and its extensions given in the
literature can be easily obtained. One may investigate certain other types of integral
inequalities by employing the proposed operators in the near future.
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