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Abstract: In the present paper, the Karhunen–Loève eigenvalues for a sub-fractional Brownian
motion are considered. Rigorous large n asymptotics for those eigenvalues are shown, based on
the functional analysis method. By virtue of these asymptotics, along with some standard large
deviations results, asymptotical estimates for the small L2-ball probabilities for a sub-fractional
Brownian motion are derived. Asymptotic analysis on the Karhunen–Loève eigenvalues for the
corresponding “derivative” process is also established.
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1. Introduction

The eigenproblem for a centered stochastic process X = (X(t))t∈[0,1] over a probability
space (Ω, F , P) with covariance function K(s, t) = E[X(s)X(t)] consists of finding all pairs
(λ, ϕ) satisfying the equation

Kϕ = λϕ (1)

in L2([0, 1]), where the corresponding linear operator is defined by the following:

(Kϕ)(t) ,
∫ 1

0
K(s, t)ϕ(s)d s, ∀t ∈ [0, 1]. (2)

If K(s, t) is square integrable, then K : L2([0, 1]) → L2([0, 1]) is self-adjoint, positive
and compact. Hence, the eigenvalues {λn} for the operator K are nonnegative and con-
verge to zero after being arranged in decreasing order. The corresponding normalized
eigenfunctions {ϕn} form a complete orthonormal basis in L2([0, 1]).

In addition, if (X(t))t∈[0,1] is a square-integrable process with zero mean and continu-
ous covariance, there exists a Karhunen–Loève expansion(cf. [1]). More precisely, it admits
a representation over [0, 1] as a uniformly L2(Ω)-convergent series:

X(t) =
∞

∑
n=0

√
λnξn ϕn(t), (3)

where {ξn} are orthonormal (i.e., E[ξ jξk] = δjk) random variables in L2(Ω) with zero mean.
Since the Karhunen–Loève expansion is an influential tool in analyzing the properties of
stochastic processes, {λn} are also called Karhunen–Loève eigenvalues for (X(t))t∈[0,1].

There are many applications relevant to the eigenproblems for stochastic processes:
asymptotics of the small ball probabilities(cf. [2]), sampling from heavy tailed distribu-
tions(cf. [3]) and so on.

On most occasions, such kinds of eigenvalues and eigenfunctions are notoriously hard
to find explicitly. One exception is for the standard Brownian motion B = (Bt)t∈[0,1], where
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λn =
1

(n + 1/2)2π2 (4)

and
ϕn(t) =

√
2 sin(n + 1/2)πt (5)

hold for n = 0, 1, 2, · · · . This problem can be easily solved by reducing (1) to a simple
boundary value problem for an ordinary differential equation (cf. [1]).

A widely used extension of Brownian motion is fractional Brownian motion BH =
(BH(t))t∈[0,1]. Its covariance function is as follows:

KH(s, t) =
1
2
(s2H + t2H − |s− t|2H), (6)

where H ∈ (0, 1) is called its Hurst exponent. The case H = 1
2 corresponds to Brownian

motion. There are some important properties of fractional Brownian motion. For examples,
it has self-similarity and stationary increments (cf. [4]). The eigenproblem of fractional
Brownian motion is discussed in several papers (cf. [5,6]).

The author in [5] used the functional analysis method, and obtained the asymptotics
of the eigenvalues for fractional Brownian motion. The following is just a rephrasing of
one of his results:

Theorem 1 (J. C. Bronski, 2003). For the fractional Brownian motion with Hurst exponent
H ∈ (0, 1), its Karhunen–Loève eigenvalues satisfy the following large n asymptotics:

λn =
sin(πH)Γ(2H + 1)

(nπ)2H+1 + o(n−
(2H+2)(4H+3)

4H+5 +δ) (7)

for every δ > 0, where Γ denotes the usual Euler gamma function.

The authors in [6] converted the eigenproblem for fractional Brownian motion into an
integro-algebraic system by using Laplace transform, and solved it by taking the inversion
of the Laplace transform. Some other processes derived by Brownian motion, such as
Brownian bridge (cf. [7]), the Ornstein–Uhlenbeck process (cf. [8]), etc., can be solved in a
similar way. Compared to [5], the profile of the eigenpair analyzed with the method in [6]
is more complete and accurate.

Similar to the fractional Brownian motion, the sub-fractional Brownian motion also
presents the properties of self-similarity and long-range dependence (when the Hurst
exponent H > 1

2 ). Different from the fractional Brownian motion, there is an additional
term |t + s|2H in its covariance, and the increment is not stationary as a result. From
this point of view, it was expected that the idea in [6] could also work for sub-fractional
Brownian motion. However, it seems that it does not work for sub-fractional Brownian
motion because of the loss of some translation structure.

Consequently, the main results in this paper are based on the idea in [5]. It should be
pointed out that there are some flaws in [5]. To some extent, the results (see Remark 2 in
Section 5) in this paper are supplements and corrections of the ones in [5].

This paper is organized as follows. In the next section, the asymptotics of eigenvalues
for sub-fractional Brownian motion and its derivative process are stated. As an application
of those results, the small ball estimates for sub-fractional Brownian motion are presented
in Section 3, but its proof is omitted since it is just a duplication of the one in [5]. Some
technical lemmas are presented in Section 4. Section 5 concludes with the details of the
proofs of the main results.
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2. The Main Results

Sub-fractional Brownian motion(sfBm) BH
sub = (BH

sub(t))t∈[0,1] is a centered long-range
dependence Gaussian process. Like fractional Brownian motion, its covariance function is
as follows:

KH
sub(s, t) = s2H + t2H − 1

2
[(s + t)2H + |s− t|2H ] (8)

with an exponent H ∈ (0, 1). The case H = 1
2 also corresponds to Brownian motion. To

some extent, sfBm is intermediate between Brownian motion and fractional Brownian
motion (cf. [9]). This is reflected in the nonstationarity and correlation of the increments
and the covariance of the non-overlapping intervals. The increments on non-overlapping
intervals are more weakly correlated than fractional Brownian motion, and the covariance
decays polynomially at a higher rate.

In this paper, the eigenproblems for the following two operators are studied:

(KH
sub ϕ)(t) =

∫ 1

0
(s2H + t2H − 1

2
[(s + t)2H + |s− t|2H ])ϕ(s)d s, (9)

(K̃H
sub ϕ)(t) =

∫ 1

0
H(2H − 1)(|s− t|2H−2 − (s + t)2H−2)ϕ(s)d s (10)

The operator in (9) for H ∈ (0, 1) is related to sfBm itself, and the one in (10) for
H ∈ ( 1

2 , 1) corresponds to the formal derivative of the sfBm. In fact, the operator K̃H
sub

determines the correlation structure of Wiener integrals of square-integrable deterministic
functions through the following formula:

E[
∫ 1

0
f d BH

sub

∫ 1

0
g d BH

sub] =
∫ 1

0
f (t) (K̃H

subg)(t)d t. (11)

To the best of the authors’ knowledge, those eigenproblems have not been rigorously
considered before. Borrowed the idea from [5], rough asymptotics of eigenvalues of
sub-fractional Brownian motion are derived as follows.

Theorem 2. The Karhunen–Loève eigenvalues of sub-fractional Brownian motion with exponent
H ∈ (0, 1) satisfies the following:

• Case 0 < H < −1+
√

74
8 :

λn =
γH

n2H+1 + o(n−
(2H+2)(4H+3)

4H+5 +δ) (12)

for every δ > 0 and n� 1;
• Case −1+

√
74

8 ≤ H < 1:

λn =
γH

n2H+1 + O(n−3) (13)

for every n� 1, where γH = 2 sin(πH)Γ(2H+1)
π2H+1 .

Specifically, given an orthonormal basis in L2([0, 1]), the operator KH
sub in (9) over

L2([0, 1]) is of a representation as a linear operator over `2, which is essentially an infinite-
dimensional matrix. Asymptotic analysis on matrix elements is performed, based on some
technical lemmas, some of which (see Lemma 3) are improvements of the ones in [5].
Afterward, Theorem 2 is obtained in terms of the theory of compact operators. However,
the asymptotics in Theorem 2 are rough by simple observation or through numerical
simulation, although the details of the simulation are not provided here.

Next, the conclusion is about the eigenvalues of the derivative process of sub-fractional
Brownian. Unlike [6], the case H ∈ (0, 1

2 ) is skipped.
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Theorem 3. The Karhunen–Loève eigenvalues of the derivative process of sub-fractional Brownian
with H ∈ ( 1

2 , 1) satisfy the following:

λn =
κH

n2H−1 + o(n−
2H(4H−1)

4H+1 +δ) (14)

for every δ > 0 and n� 1, where κH = 2 sin(πH)Γ(2H+1)
π2H−1 .

3. An Application: Small L2-Ball Estimate

The small ball estimate is an interesting topic in probability theory, and also has
important applications in statistical mechanic models. It yields estimates of the probability
that some stochastic process X = (X(t))t∈[0,1] will lie inside a ball of radius ε in a certain
given norm || · ||. As for the L2([0, 1])-norm, if X is a centered Gaussian process with
continuous covariance, there holds the following:

||X||2L2 =
∫ 1

0
X(t)2 d t =

∞

∑
n=0

λnξ2
n, (15)

where {ξn} are i.i.d. N(0, 1) random variables. As pointed out in [5], a crucial quantity to
derive the small ball estimate for fractional Brownian motion is the following determinant:

DH(λ) =
∞

∏
n=0

(1 + 2λλn) (16)

which is a variant of the Fredholm determinant of KH .
Now, the small L2([0, 1])-ball estimate of sfBm is carried out. Let DH

sub(λ) be the
corresponding determinant with respect to sfBm. Note that the dominant terms of the
eigenvalues of sfBm(see Theorem 2) are just twice the ones of fractional Brownian motion
(see Theorem 1) when n� 1. Through a slight modification of the proof of Corollary 1 in
Appendix C of [5], the logarithmic asymptotics of DH

sub(λ) read as follows:

Lemma 1. There holds the following:

• Case H ∈ (0, −1+
√

74
8 ):

log(DH
sub(λ)) =

(4 sin(πH)Γ(2H + 1))
1

2H+1

sin( π
2H+1 )

λ
1

2H+1 + o(λ
4H+4

(4H+5)(2H+1)+δ
) (17)

for every δ > 0 and λ� 1;
• Case H ∈ [−1+

√
74

8 , 1):

log(DH
sub(λ)) =

(4 sin(πH)Γ(2H + 1))
1

2H+1

sin( π
2H+1 )

λ
1

2H+1 + O(λ
2H−1
2H+1 ) (18)

for every λ� 1.

Thereafter, the small L2([0, 1])-ball estimate of sfBm can be directly established by
using standard large deviations calculation and de Bruijn’s exponential Tauberian theorem
(cf. [10]), which is exactly the same procedure as the one in [5].

Theorem 4. For 0 < ε � 1, the small ball probability P(||BH
sub||

2
L2 ≤ ε) of a sub-fractional

Brownian motion satisfies the following:

• Case H ∈ (0, −1+
√

74
8 ):
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log(P(||BH
sub||

2
L2 ≤ ε)) = −H

(
2 sin(πH)Γ(2H + 1)

((2H + 1) sin( π
2H+1 ))

2H+1

) 1
2H

ε−
1

2H + o(ε−
4H+4

(4H+5)2H +δ
)

(19)
for every δ > 0;

• Case H ∈ [−1+
√

74
8 , 1):

log(P(||BH
sub||

2
L2 ≤ ε)) = −H

(
2 sin(πH)Γ(2H + 1)

((2H + 1) sin( π
2H+1 ))

2H+1

) 1
2H

ε−
1

2H + o(ε−
2H−1

2H )

(20)

Remark 1. The proofs of Lemma 1 and Theorem 4 are almost the same as the ones in [5], except for
some constants. It is necessary to emphasize the derivation of the number −1+

√
74

8 . It comes from
the classified discussion (namely, the derivations of (81) and (82)) in the proof of Theorem 2.

4. Technical Lemmas

Some lemmas will be used in the proofs of the main results; they should be illus-
trated firstly.

Lemma 2. Letting a be a real number, there holds the following:∫ 2

1
ua cos(ωu)d u =

2a sin(2ω)− sin ω

ω
+ O(

1
ω2 ), (21)∫ 2

1
ua sin(ωu)d u = −2a cos(2ω)− cos ω

ω
+ O(

1
ω2 ) (22)

for ω � 1.

Proof. It is necessary to prove the first identity since the second could be proved in a
similar way. Noticing that

1
ω

∫ 2

1
d(ua sin(ωu)) =

2a sin(2ω)− sin ω

ω
(23)

it implies the following:∫ 2

1
ua cos(ωu)d u =

2a sin(2ω)− sin ω

ω
− a

ω

∫ 2

1
ua−1 sin(ωu)d u. (24)

Combining with the second mean value theorem for Riemann integrals, the desired
result is obtained.

Lemma 3. If a ∈ (0, 1), there holds the following:

∫ 1

0
xa−1 cos(ωx)d x =

Γ(a) cos(π
2 a)

ωa +
sin ω

ω
+ O(

1
ω2 ), (25)∫ 1

0
xa−1 sin(ωx)d x =

Γ(a) sin(π
2 a)

ωa − cos ω

ω
+ O(

1
ω2 ) (26)

for ω � 1.
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Proof. It is sufficient to prove the first identity. The proof of the second identity is similar
to the first one. First, by changing of variable in integration, the following can be deduced:∫ 1

0
xa−1 cos(ωx)d x =

1
ωa

(∫ +∞

0
ta−1 cos t d t−

∫ +∞

ω
ta−1 cos t d t

)
. (27)

On the one hand, by using contour integration, it is easy to verify the following:∫ ∞

0
ta−1 cos t d t = Γ(a) cos(

π

2
a). (28)

On the other hand, by using the integration by parts and the second mean value
theorem for Riemann integrals, the following is valid:∫ ∞

ω
ta−1 cos t d t =−ωa−1 sin ω− (a− 1)

∫ ∞

ω
ta−2 sin t d t

=−ωa−1 sin ω + O(ωa−2).
(29)

The proof is completed.

Next, two lemmas are taken from [11].

Lemma 4 (Porter and Stirling). If T, K are compact and K is self-adjoint, then the eigenvalues of
T∗KT satisfy the following:

|λn(T∗KT)| ≤ min
j∈{1,··· ,n}

∣∣λj(K)
∣∣ λn−j+1(T∗T). (30)

Lemma 5 (Porter and Stirling). If K1, K2 are compact and self-adjoint, then we have the following:

λn(K1 + K2) ≤ min
j∈{1,··· ,n}

∣∣λn−j+1(K1)
∣∣+ ∣∣λj(K2)

∣∣. (31)

5. Proofs of the Main Results

Throughout this section, the eigenfunctions {ϕn} in (5) are chosen as an orthonormal
basis in L2([0, 1]). Therefore, any bounded linear operator K over L2([0, 1]) is one-to-one
corresponding to the operator A over `2 with the same operator norm. The linear operator
A over `2 is essentially an infinite-dimensional matrix (Am,n), whose element is given by
the following:

Am,n =
∫ 1

0

∫ 1

0
K(x, y)ϕm(x)ϕn(y)d x d y. (32)

Actually, such kind of mapping K to A is a topologically isomorphism. It implies
that, if K is compact (Hilbert–Schmidt, etc.) in L2([0, 1]), then A = (Am,n) is also compact
(Hilbert–Schmidt, etc.) in `2 and vice versa.

For the sake of simplicity, denote the following in the sequel:

m∗ = (m +
1
2
)π, n∗ = (n +

1
2
)π, m, n = 0, 1, 2, · · · (33)

Now, the eigenfunctions for Brownian motion could be rewritten as follows:

ϕn(t) =
√

2 sin (n∗t), n = 0, 1, 2, · · · . (34)

It is ready to prove the main results in this paper.
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5.1. Proof of Theorem 2

Here, the eigenproblem is KH
sub ϕ = λϕ. The proof is finished in five steps. In the

first four steps, H ∈ ( 1
2 , 1) is imposed temporarily, but this condition is dropped off

in Remark 3.
Step 1. Obviously, for the operator KH

sub in L2([0, 1]), there exists a linear operator
AH

sub = ((AH
sub)m,n) in `2 with the same operator norm, whose element is as follows:

(AH
sub)n,m =

∫ 1

0

∫ 1

0
2
[

x2H + y2H − 1
2

(
(x + y)2H + |x− y|2H

)]
sin(n∗x) sin(m∗y)d x d y. (35)

It is easy to see that for every m, n = 0, 1, 2, · · · , there holds the following:

(AH
sub)n,m =

2H(2H − 1)
n∗m∗

∫ 1

0

∫ 1

0
(|x− y|2H−2 − (x + y)2H−2) cos(n∗x) cos(m∗y)d x d y. (36)

by utilizing the integration by parts since H > 1
2 . Splitting the right hand side of (36) into

two integrals, the linear operator AH
sub has a decomposition AH

sub = 2A− A(1), where their

corresponding elements share the same relations, i.e., (AH
sub)n,m = 2An,m − A(1)

n,m for every
m, n = 0, 1, 2, · · · .

Step 2. It is worth mentioning that the linear operator A = (Am,n) in `2 with its
elements of the forms

An,m =
H(2H − 1)

n∗m∗

∫ 1

0

∫ 1

0
|x− y|2H−2 cos(n∗x) cos(m∗y)d x d y (37)

which was discussed in [5]. There exists a decomposition A = D + O, where the linear
operators D and O are corresponding to infinite-dimensional matrices, whose elements are
respectively a leading order diagonal piece and a higher order off-diagonal piece of (Am,n).
Accurately speaking, according to the proof of Theorem 1 in Appendix A in [5], there holds
the following:

Dn,m =

(
sin(πH)Γ(2H + 1)

n∗2H+1 + O(
1

n2(H+1)
)

)
δn,m, (38)

On,m =
cos(πH)Γ(2H + 1)

n∗m∗(n∗ + (−1)n+m+1m∗)

(
1

n∗2H−1 + (−1)n+m+1 1
m∗2H−1

)
+ O(

1
n2m2 ) (39)

for m, n� 1, where On,n = 0 for every n = 0, 1, 2, · · · .

Remark 2. By applying Lemma 3 above, it is accidentally found that the remainder order of Dn,n
in [5] (or see (38) above) is not correct, while (56) is the right one instead.

In order to obtain the exact rate of convergence of O, (39) could be rewritten as follows:

On,m =


cos(πH)Γ(2H+1)

n∗m∗(n∗−m∗) ( 1
n∗2H−1 − 1

m∗2H−1 ) + O( 1
n2m2 ) m + n even

cos(πH)Γ(2H+1)
n∗m∗(n∗+m∗) ( 1

n∗2H−1 +
1

m∗2H−1 ) + O( 1
n2m2 ) m + n odd.

(40)

It is sufficient to discuss the case of m > n� 1 because of the symmetry with respect
to the subscripts m and n in (37). Whenever m + n is even or not, it is clear that the
following holds:

1
n∗m∗(n∗ ±m∗)

(
1

n∗2H−1 ±
1

m∗2H−1 ) = ±
1

m∗2n∗2H
1± ( n∗

m∗ )
2H−1

1± n∗
m∗

(41)

which leads to the following (the notation f � g means f and g are the same order
of magnitude):

On,m �
1

m2n2H , m > n� 1 (42)
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by noticing the boundedness of f (t) = 1±t2H−1

1±t in t ∈ (0, 1).

Step 3. It is time to deal with the linear operator A(1) = (A(1)
n,m), whose element is

as follows:

A(1)
n,m =

2H(2H − 1)
n∗m∗

∫ 1

0

∫ 1

0
(x + y)2H−2 cos(n∗x) cos(m∗y)d x d y, (43)

Simply decompose A(1) into A(1) = D(1) + O(1) as done in Step 2, where D(1)
n,m ,

A(1)
n,mδn,m, and O(1)

n,m , A(1)
n,m − D(1)

n,m.

Step 3.1. To calculate the elements of A(1) = (A(1)
n,m), firstly divide the square [0, 1]×

[0, 1] into two sub-domains I1, I2 (see Figure 1), where I1 represents the triangle enclosed
by the lines x = 0, y = 0 and x + y = 1; I2 is the triangle enclosed by x = 1, y = 1 and
x + y = 1. It leads to the following:∫ 1

0

∫ 1

0
(x + y)2H−2 cos(n∗x) cos(m∗y)d x d y

=

(∫∫
I1

+
∫∫

I2

)
(x + y)2H−2 cos(n∗x) cos(m∗y)d x d y.

(44)

Through the change of variables,{
u = x + y
v = x− y,

(45)

it maps I1 and I2 to J1 and J2 respectively. By the changing of variables in the double
integration, it implies the following:

2
∫ 1

0

∫ 1

0
(x + y)2H−2 cos(n∗x) cos(m∗y)d x d y

=

(∫ 1

0
d u

∫ u

−u
+
∫ 2

1
d u

∫ −u+2

u−2

)
u2H−2 cos(n∗(

u + v
2

)) cos(m∗(
u− v

2
))d v.

(46)

It is convenient to denote two integral terms on the right hand side of (46) by Q1
n,m

and Q2
n,m.

x

y

I1

I2

u

v

J1 J2

Figure 1. Domains for calculating A(1)
n,m.
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Combined with the formulae for trigeometric functions, it implies the following:

Q1
n,m =

1
2

∫ 1

0
u2H−2 d u

∫ u

−u

(
cos(

m∗ + n∗

2
u− m∗ − n∗

2
v) + cos(

m∗ − n∗

2
u− m∗ + n∗

2
v)
)

d v, (47)

Q2
n,m =

1
2

∫ 2

1
u2H−2 d u

∫ −u+2

u−2

(
cos(

m∗ + n∗

2
u− m∗ − n∗

2
v) + cos(

m∗ − n∗

2
u− m∗ + n∗

2
v)
)

d v. (48)

Substituting the above identities into A(1), it can be deduced the following:

A(1)
n,m =

H(2H − 1)
n∗m∗

(
Q1

n,m + Q2
n,m

)
. (49)

Step 3.2. Since the singularity among the integrands in A(1)
m,n only occurs at (0, 0),

it seems that the contribution of Q1
m,n should be much greater than the one of Q2

m,n.
[id=ADD,comment=appending]. To see it, the following integral identities are needed.
They are mainly based on Lemma 2 and Lemma 3.

To calculate Q2
n,m, the order of

∫ 2
1 u2H−2 sin(m∗u)d u needs to be estimated. By setting

a = 2H − 2 and ω = m∗, Lemma 2 gives the following:

∫ 2

1
u2H−2 cos(m∗u)d u =

(−1)m+1

m∗
+ O(

1
m2 ), (50)∫ 2

1
u2H−2 sin(m∗u)d u =

22H−2

m∗
+ O(

1
m2 ) (51)

for m� 1. Based on the same idea, the order of the remainder term can be improved. For
example, the following is true for m� 1:∫ 2

1
u2H−1 cos(m∗u)d u =− 2H − 1

m∗

∫ 2

1
u2H−2 sin(m∗u)d u− (−1)m

m∗

=
(−1)m+1

m∗
+ O(

1
m2 )

(52)

Moreover, there holds the following:

1
m∗ − n∗

∫ 2

1
u2H−2(sin(m∗u)− sin(n∗u))d u =

1
m∗ − n∗

(
22H−2

m∗
− 22H−2

n∗

)
+ O(

1
mn

) (53)

for m > n� 1.
By setting a = 2H − 1 and ω = m∗, the two identities in Lemma 3 are turned into the

following: ∫ 1

0
x2H−2 cos(m∗x)d x =

Γ(2H − 1) sin(πH)

m∗2H−1 +
(−1)m

m∗
+ O(

1
m2 ), (54)∫ 1

0
x2H−2 sin(m∗x)d x = −Γ(2H − 1) cos(πH)

m∗2H−1 + O(
1

m2 ). (55)

for m� 1, in order to calculate Q1
n,m.

On the one hand, it is mentioned in Remark 2 that the asymptotics in (38) are not
correct. As a matter of fact, using Lemma 3, the correct ones can be deduced. That is, the
diagonal part of the matrix corresponding to fractional Brownian motion can be revised as
follows:

Dn,n =
sin(πH)Γ(2H + 1)

n∗2H+1 +
(−1)n

n∗3
+ O(

1
n4 ) (56)

for n� 1.
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On the other hand, by using the integration by parts (see the proof of Lemma 3) and
the second mean value theorem for Riemann integrals, the following is valid:∫ 1

0
u2H−1 cos(m∗u)d u =

(−1)m

m∗
+

Γ(2H) cos(πH)

m∗2H + O(
1

m3 ), (57)

for m� 1. Furthermore, there holds the following:

1
m∗ − n∗

∫ 1

0
x2H−2 sin(m∗x)d x = −Γ(2H − 1) cos(πH)

m∗ − n∗
(

1
m∗2H−1 −

1
n∗2H−1 ) + O(

1
mn

) (58)

for m > n� 1.
Step 3.3. Calculate Q1

n,m and Q2
n,m in the case of m > n � 1. Firstly, using the

fundamental theorem for Riemann integrals in (47), it implies the following:

Q1
n,m =

1
m∗ + n∗

∫ 1

0
u2H−2(sin(m∗u) + sin(n∗u))d u

+
1

m∗ − n∗

∫ 1

0
u2H−2(sin(m∗u)− sin(n∗u))d u

(59)

which gives the following:

Q1
n,m =− Γ(2H − 1) cos(πH)

m∗ + n∗
(

1
m∗2H−1 +

1
n∗2H−1 + O(

1
m2 ) + O(

1
n2 ))

− Γ(2H − 1) cos(πH)

m∗ − n∗
(

1
m∗2H−1 −

1
n∗2H−1 ) + O(

1
mn

)

(60)

in terms of Lemma 3 (see (55) and (58)). Observing that for m > n� 1,

1
m∗ + n∗

(O(
1

m2 + O(
1
n2 )) = O(

1
mn

) (61)

it means that

Q1
n,m =− Γ(2H − 1) cos(πH)

m∗ + n∗
(

1
m∗2H−1 +

1
n∗2H−1 )

− Γ(2H − 1) cos(πH)

m∗ − n∗
(

1
m∗2H−1 −

1
n∗2H−1 ) + O(

1
mn

)

(62)

i.e., the order of Q1
n,m is the same as m−1n−(2H−1).

Next, the goal is to calculate Q2
n,m. It is clear that the following holds:

Q2
n,m =

(−1)m+n+1

m∗ + n∗

∫ 2

1
u2H−2(sin(m∗u) + sin(m∗u))d u

+
(−1)m+n+1

m∗ − n∗

∫ 2

1
u2H−2(sin(m∗u)− sin(n∗u))d u

(63)

which leads to the following:

Q2
n,m =

(−1)m+n+1

m∗ + n∗
(

22H−2

m∗
+

22H−2

n∗
+ O(

1
m2 ) + O(

1
n2 ))

+
(−1)m+n+1

m∗ − n∗
(

22H−2

m∗
− 22H−2

n∗
) + O(

1
mn

)

(64)

in terms of Lemma 2 (see (51) and (53)). After all, it gives the following:

Q2
n,m = O(

1
mn

) (65)

which verifies that the contribution of Q2
n,m is smaller than the one of Q1

n,m.



Fractal Fract. 2021, 5, 226 11 of 17

Since

O(1)
n,m = A(1)

n,m =
H(2H − 1)

n∗m∗
(

Q1
n,m + Q2

n,m

)
(66)

for m 6= n, O(1)
n,m is the same order as m−2n−2H for m > n� 1.

Step 3.4. Calculate Q1
n,m and Q2

n,m in the case of m = n � 1. At first, (47) can be
transformed into the following:

Q1
m,m =

∫ 1

0
u2H−1 cos(m∗u)d u +

1
m∗

∫ 1

0
u2H−2 sin(m∗u)d u (67)

which gives the following:

Q1
m,m =

(−1)m

m∗
+

cos(πH)

m∗2H (Γ(2H)− Γ(2H − 1)) + O(
1

m3 ) (68)

by virtue of (57) and (55). Secondly, the following is valid:

Q2
m,m = −

∫ 2

1
u2H−1 cos(m∗u)d u + 2

∫ 2

1
u2H−2 cos(m∗u)d u +

1
m∗

∫ 2

1
u2H−2 sin(m∗u)d u (69)

which implies the following:

Q2
m,m =

(−1)m+1

m∗
+ O(

1
m2 ) (70)

by using (50)–(52). Since

D(1)
m,m = A(1)

m,m =
H(2H − 1)

m∗2
(

Q1
m,m + Q2

m,m

)
(71)

it implies the following:

D(1)
m,m =

(H − 1) cos(πH)Γ(2H + 1)
m∗2H+2 + O(

1
m4 ) (72)

i.e., D(1)
m,m is the same order as m−2H−2 for m� 1.

Step 4. Summarize all asymptotic information for Asub. Noting that Asub = 2A− A(1)

and A(1) = D(1) + O(1), Asub has also a decomposition Asub = Dsub + Osub, just like the
linear operator A in Step 2, if Dsub = 2D− D(1) and Osub = 2O−O(1) are set.

The orders of the elements of Asub are as follows. As for the diagonal piece, com-
bined (56) with (72), it gives the following:

(Dsub)m,m =
2 sin(πH)Γ(2H + 1)

m∗2H+1 +
(−1)m

m∗3

+
(H − 1) cos(πH)Γ(2H + 1)

m∗2H+2 + O(
1

m4 )

(73)

for m� 1. As for the off-diagonal piece, noticing (42) and (66), it implies the following:

(Osub)n,m �
1

m2n2H (74)

for m > n� 1.
Indeed, it is easily found (See Remark 3) that the results for the orders of the elements

of Asub are still true for H ∈ (0, 1) since every function on both sides of (73) and (74) is
holomorphic in (0,1).
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Step 5. It is clear that Dsub is self-adjoint, positive and compact in `2. For any fixed
β ∈ (0, 1), Dβ

sub is well-defined by the spectral decomposition theorem. Hence, Osub can be
turned into the following:

Osub = Dβ
subÔsubDβ

sub, (75)

where
Ôsub = D−β

subOsubD−β
sub. (76)

The order of the elements of D−β
sub is mβ(2H+1) for m � 1, so the order of the ones

of Ôsub is n(2H+1)β−2m(2H+1)β−2H for m > n � 1. If β ∈ (0, 1
2 ), the elements of Ôsub

are square summable. Therefore, Ôsub is a Hilbert–Schmidt operator (and thus compact).
The eigenvalues of Ôsub are square summable, and thus (arranged in order of decreasing
magnitude) satisfy the following: ∣∣∣λn(Ôsub)

∣∣∣ . n−
1
2 . (77)

Given any δ ∈ (0, 1
2 ), by setting β = 1

2 − δ, the following is true:

|λn(Osub)| =
∣∣∣λn(Dβ

subÔsubDβ
sub)

∣∣∣ ≤ ∣∣∣λn−j(Ôsub)
∣∣∣∣∣∣λj(D2β

sub)
∣∣∣

.n−
1
2 n−2β(2H+1) = n−2H− 3

2+(4H+2)δ

in terms of Lemma 4. Since δ ∈ (0, 1
2 ) is arbitrarily chosen, the above inequality can be

rewritten as follows:
|λn(Osub)| . n−2H− 3

2+δ. (78)

Now, Lemma 5 yields the following:

λn(Asub) ≤ |λn−nα(Dsub)|+ |λnα(Osub)|

≤ γH

n2H+1 (1 +
nα

n− nα
)2H+1 + O((n− nα)−3) + O(n−α(2H+ 3

2−δ))

=
γH

n2H+1 (1 + (2H + 1)
nα

n− nα
+ O(

n2α

(n− nα)2 ))

+ O((n− nα)−3) + O(n−α(2H+ 3
2−δ))

=
γH

n2H+1 + O(n−2H−2+α) + O(n−3) + O(n−α(2H+ 3
2−δ))

(79)

by setting K1 = Dsub, K2 = Osub and j = nα. Letting 2H + 2 − α = α(2H + 3
2 )(i.e.,

α = 2H+2
2H+ 5

2
) and making use of the arbitrariness of δ ∈ (0, 1

2 ), it implies the following:

λn(Asub) ≤
γH

n2H+1 + o(n−
(2H+2)(4H+3)

4H+5 +δ) + O(n−3). (80)

There are two error terms in the above inequality. It is necessary to merge them
together. Obviously, the orders of the error terms need to be compared, which leads to the
following two cases:

1. If (2H+2)(4H+3)
4H+5 < 3 (i.e., 0 < H < −1+

√
74

8 ), there holds the following:

λn(Asub) ≤
γH

n2H+1 + o(n−
(2H+2)(4H+3)

4H+5 +δ); (81)

2. If (2H+2)(4H+3)
4H+5 ≥ 3 (i.e., −1+

√
74

8 ≤ H < 1), there holds the following:

λn(Asub) ≤
γH

n2H+1 + O(n−3). (82)
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Repeating the above argument with K1 = Asub, K2 = −Osub gives the following:

1. If 0 < H < −1+
√

74
8 , there holds the following:

λn(Asub) ≥
γH

n2H+1 + o(n−
(2H+2)(4H+3)

4H+5 +δ); (83)

2. If −1+
√

74
8 ≤ H < 1, there holds the following:

λn(Asub) ≥
γH

n2H+1 + O(n−3). (84)

The proof is completed.

Remark 3. During processing the proof of Theorem 2, H ∈ ( 1
2 , 1) is imposed. In fact, An,m(see (35))

is holomorphic with respect to the variable H in (0, 1), and so are Dn,m and On,m. Moreover, the first
three terms on the right hand side of (73) are holomorphic in H ∈ (0, 1), and so is the remaining
term in (73). In terms of the principle of analytic continuation, (73) is still valid for H ∈ (0, 1).
The same argument works for the off-diagonal piece in the case of H ∈ (0, 1).

5.2. Proof of Theorem 3

Following the lines in the proof of Theorem 2, it is easy to justify Theorem 3. Here, the
sketch of its proof is given, and the different parts from the steps in the proof of Theorem 2
are emphasized. Step 3.2. in the proof of Theorem 2 is skipped since the technical lemmas
are exhibited there.

Formally speaking, the covariance function K̃H
sub is the “mixed partial derivative” of

KH
sub. From the point of view of the general white noise theory (cf. [4]), the sfBm is the

integral process of the one related to K̃H
sub in a rigorous sense since the following holds:

∫ s

0

∫ t

0
K̃H

sub(x, y)d x d y = KH
sub(s, t) (85)

if H > 1
2 . Hence, it is reasonable to study the eigenproblem K̃H

sub ϕ = λϕ.
Step 1. The matrix element related to the linear operator K̃H

sub becomes the following:

(Ãsub)n,m = 2H(2H − 1)
∫ 1

0

∫ 1

0
(|x− y|2H−2 − (x + y)2H−2) sin(n∗x) sin(m∗y)d x d y. (86)

By splitting the right hand side of the above identity into two integrals, (Ãsub)n,m has a
decomposition (Ãsub)n,m = 2Ãn,m − Ã(1)

n,m, where Ãn,m corresponds to the part of fractional
Brownian noise (cf. [5,6]).

To calculate Ãn,m, through imitating the method in [5], [0, 1]× [0, 1] can be represented
by a parallelogram V1 minus two triangles V2 and V3 (see Figure 2), where V1 is enclosed
by the lines y = 0, y = 1, y− x = 1 and y− x = −1; V2 is enclosed by x = 0, y = 0 and
y− x = 1; and V3 is enclosed by x = 1, y = 1 and y− x = −1.

= −
V1 V2

V3

Figure 2. Domains for calculating Ãn,m.
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By denoting

R̃1
n,m =

∫∫
V1

|x− y|2H−2 sin(n∗x) sin(m∗y)d x d y (87)

R̃2,3
n,m =

∫∫
V2∪V3

|x− y|2H−2 sin(n∗x) sin(m∗y)d x d y, (88)

it’s clear that
Ãn,m = H(2H − 1)(R̃1

n,m − R̃2,3
n,m). (89)

By changing the variables u = y − x, v = y in double integral, the following can
be deduced:

R̃1
nm =

∫ 1

0
sin(m∗v) sin(n∗v)d v

∫ 1

−1
|u|2H−2 cos(n∗u)d u. (90)

To calculate R̃2,3
n,m, first of all, perform the mapping V3 to V2 by changing variables

x′ = 1− x, and y′ = 1− y. Then, the integral over this region is greatly simplified under
the change of variables u = x + y, v = x− y, which gives the following:

R̃2,3
n,m =

(−1)m+n+1

2

∫ 1

0
u2H−2 d u

∫ u

−u
cos(n∗

u− v
2

+ (−1)m+nm∗
v + u

2
)d v.

To calculate Ã(1)
n,m, two sub-domains I1, I2 are chosen as is done in Step 3.1. of

Section 5.1. Designating

Q̃1
n,m =

∫∫
I1

(x + y)2H−2 sin(n∗x) sin(m∗y)d x d y (91)

Q̃2
n,m =

∫∫
I2

(x + y)2H−2 sin(n∗x) sin(m∗y)d x d y (92)

it gives the following:
Ã(1)

n,m = 2H(2H − 1)(Q̃1
n,m + Q̃2

n,m). (93)

Step 2. Now, it is time to extract diagonal and off-diagonal information from (Ãsub)n,m.
By setting (D̃sub)n,m = (Ãsub)n,mδn,m, and (Õsub)n,m = (Ãsub)n,m − D̃n,m, a decomposition
(Ãsub)n,m = (D̃sub)n,m + (Õsub)n,m is obtained. Moreover, there hold the following:

(D̃sub)n,n =2H(2H − 1)(R̃1
n,n − R̃2,3

n,n − Q̃1
n,n − Q̃2

n,n), (94)

(Õsub)n,m =2H(2H − 1)(R̃1
n,m − R̃2,3

n,m − Q̃1
n,m − Q̃2

n,m), n 6= m. (95)

The details for handling the Ãn,m part are emphasized, but the ones for Ã(1)
n,m are

omitted, except for the conclusions.
Step 2.1. Calculate Ãn,m and Ã(1)

n,m in the case of m > n � 1. Simple calculations
show the following:

R̃1
n,m = 0. (96)

R̃2,3
n,m =

(−1)m+n+1

m∗ + (−1)m+nn∗

∫ 1

0
u2H−2(sin(m∗u) + (−1)m+n sin(n∗u))d u. (97)
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Processing, as in Step 3 in Section 5.1, it is no trouble to verify the following:

Q̃1
n,m =− 1

2(m∗ + n∗)

∫ 1

0
u2H−2(sin(m∗u) + sin(n∗u))d u

+
1

2(m∗ − n∗)

∫ 1

0
u2H−2(sin(m∗u)− sin(n∗u))d u.

(98)

Q̃2
n,m =

(−1)m+n

2(m∗ + n∗)

∫ 2

1
u2H−2(sin(m∗u) + sin(n∗u))d u

+
(−1)m−n

2(m∗ − n∗)

∫ 2

1
u2H−2(sin(m∗u)− sin(n∗u))d u.

(99)

Using (51), (53), (55) and (58), it implies the following:

R̃1
n,m − R̃2,3

n,m − Q̃1
n,m − Q̃2

n,m

=
3(−1)m+nΓ(2H − 1) cos(πH)

2(m∗ + (−1)m+nn∗)
(

1
m∗2H−1 + (−1)m+n 1

n∗2H−1 )

+ (−1)m+n Γ(2H − 1) cos(πH)

2(m∗ − (−1)m+nn∗)
(

1
m∗2H−1 − (−1)m+n 1

n∗2H−1 ) + O(
1

mn
).

(100)

Using the same techniques as Step 3.3 with Lemma 3, it is obvious that R̃1
n,m − R̃2,3

n,m −
Q̃1

n,m − Q̃2
n,m�m−1n2H−1.

Step 2.2. Calculate Ãn,m and Ã(1)
n,m in the case of m = n � 1. It is easy to check the

following:

R̃1
m,m =

∫ 1

0
sin(m∗v) sin(m∗v)d v

∫ 1

−1
|u|2H−2 cos(m∗u)d u

=2(
Γ(2H − 1) sin(πH)

m∗2H−1 +
(−1)m

m∗
+ O(

1
m2 ))

(101)

R̃2,3
m,m =− 1

m∗

∫ 1

0
u2H−2 sin(m∗u)d u

=
Γ(2H − 1) cos(πH)

m∗2H + O(
1

m3 ).
(102)

Following the similar procedures as Step 3. in Section 5.1, there holds the following:

Q̃1
m,m =

1
2

∫ 1

0
u2H−1 cos(m∗u)d u− 1

2m∗

∫ 1

0
u2H−2 sin(m∗u)d u. (103)

Q̃2
m,m =

1
2m∗

∫ 2

1
u2H−2 sin(m∗u)d u +

1
2

∫ 2

1
u2H−1 cos(m∗u)d u−

∫ 2

1
u2H−2 cos(m∗u)d u. (104)

Using (50)–(52) and (57), it leads to the following:

R̃1
n,n − R̃2,3

n,n − Q̃1
n,n − Q̃2

n,n

=
2Γ(2H − 1) sin(πH)

n∗2H−1 − (2Γ(2H) + 3Γ(2H − 1)) cos(πH)

2n∗2H + O(
1
n2 ).

Step 2.3. Summarize the asymptotic information for the matrix elements of Ãsub. The
asymptotics for the diagonal piece of (Ãsub)n,m are as follows:

(D̃sub)m,m =
2Γ(2H + 1) sin(πH)

m∗2H−1 − (4H + 1)Γ(2H + 1) cos(πH)

2m∗2H + O(
1

m2 ) (105)
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if m� 1, and the ones for the off-diagonal piece are as follows:

(Õsub)n,m �
1

mn2H−1 (106)

if m > n� 1.
Step 3. Noticing that D̃sub is self-adjoint and positive, given any β ∈ (0, 1), Õsub

can also be written as Õsub = D̃β
subÔderD̃β

sub with Ôder = D̃−β
subÕsubD̃−β

sub. Since the or-

der of the elements of D̃−β
sub is mβ(2H−1) when m � 1, the order of the ones of Ôder is

m(2H−1)β−1n(2H−1)β−2H+1 when m > n� 1. If β ∈ (0, 1
2 ), it is easy to verify whether the

elements of Ôder are square summable. In fact,

∑
m>n

(Ôder)
2
n,m . ∑

m>n
m2(2H−1)β−2n2(2H−1)β−4H+2

=∑
n

n2(2H−1)β−4H+2
∞

∑
m=n+1

m2(2H−1)β−2

.∑
n

n4(2H−1)β−4H+1.

The square summability of Ôder is verified since 4(2H− 1)β− 4H + 1 ∈ (−4H + 1,−1)
when β ∈ (0, 1

2 ). Therefore, Ôder is a Hilbert–Schmidt operator (and thus compact). Using
Lemma 4, it is immediately obtained the following:

|λn(Õsub)| . n−2H+ 1
2+δ. (107)

Setting K1 = D̃sub, K2 = Õsub and j = nα in Lemma 5, it can be deduced the following:

λn(Ãsub) ≤
κH

n2H−1 + O(n−2H+α) + O(n−α(2H− 1
2−δ)). (108)

Choosing 2H − α = α(2H − 1
2 )(i.e., α = 2H

2H+ 1
2

), it implies the following:

λn(Ãsub) ≤
κH

n2H−1 + o(n−
2H(4H−1)

4H+1 +δ). (109)

Repeating the argument with K1 = Ãsub, K2 = −Õsub gives the following:

λn(Ãsub) ≥
κH

n2H−1 + o(n−
2H(4H−1)

4H+1 +δ). (110)

The proof is completed.

6. Discussion

Asymptotics for the Karhunen–Loève eigenvalues for a sub-fractional Brownian mo-
tion are proved, based on functional analysis method. However, those asymptotics are
too rough to be simulated since the magnitude of data storage for the discretization of the
corresponding eigenproblem is so huge, even for the small precision. The authors believe
that it is limited by the current method to obtain those asympotics. It was expected that
more accurate asympotics would be established if the idea in [6] could be applicable in
this case. In principle, a circumvention of loss of translation structure in this eigenproblem
should exist. To find an effective asymptotics method of analysis for the eigenproblem is
our next goal.

7. Comments

At first, the authors were inspired by the idea in [6] and tried to use that method
to solve the eigenproblem for sub-fractional Brownian motion. However, the algebraic
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structure of the Laplace transform of the eigenequation turned out to be different. Hence,
the authors thought that the method in [6] was possibly unapplicable in the case of sub-
fractional Brownian motion. In [12], the covariance of Brownian motion is considered a
“perturbation” of the one of fractional Brownian motion. It inspired the authors to consider
the term (s + t)2H in the covariance function to be a “perturbation” of the covariance of
fractional Brownian motion. It still did not work after the elementary trial. This could also
be an important part of our further research.
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