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Abstract: We introduce a new numerical method, based on Bernoulli polynomials, for solving
multiterm variable-order fractional differential equations. The variable-order fractional derivative
was considered in the Caputo sense, while the Riemann–Liouville integral operator was used to give
approximations for the unknown function and its variable-order derivatives. An operational matrix of
variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the
solution of the problem is sufficiently smooth, we approximated a given order of its derivative using
Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations
for the unknown function and its derivatives. Using these approximations and some collocation
points, the problem was reduced to the solution of a system of nonlinear algebraic equations. An
error estimate is given for the approximate solution obtained by the proposed method. Finally,
five illustrative examples were considered to demonstrate the applicability and high accuracy of
the proposed technique, comparing our results with the ones obtained by existing methods in the
literature and making clear the novelty of the work. The numerical results showed that the new
method is efficient, giving high-accuracy approximate solutions even with a small number of basis
functions and when the solution to the problem is not infinitely differentiable, providing better results
and a smaller number of basis functions when compared to state-of-the-art methods.

Keywords: fractional differential equations; numerical methods; variable-order fractional calculus;
operational matrix of variable-order fractional integration; Bernoulli polynomials

MSC: 34A08; 65L60

1. Introduction

In the last few decades, fractional calculus has attracted the attention of many scien-
tists in different fields such as mathematics, physics, chemistry, and engineering. Due to
the fact that fractional operators consider the evolution of the system, by taking the global
correlation, and not only local characteristics, some physical phenomena are better de-
scribed by fractional derivatives [1]. There are many definitions of fractional differentiation
and integration in the literature (for details, see, e.g., [2–5]). However, the most commonly
used are the definitions of the Caputo derivative and Riemann–Liouville fractional integral
operators. For new fractional derivatives with nonlocal and nonsingular kernels, with
applications in rheological models, we refer the reader to [6].

A recent generalization of the theory of fractional calculus is to allow the fractional
order of the derivatives to be dependent on time, i.e., to be nonconstant or of variable order.
In [7], the authors investigated operators when the order of the fractional derivative is
variable with time [8,9].
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The nonlocal properties of systems are more visible with variable-order fractional
calculus, and many real-world phenomena in physics, mechanics, control, and signal
processing have been described by this approach [10–13]. In particular, several applications
of variable-order fractional calculus are found in engineering mechanics; see [14] for
an application of variable-order fractional operators to model the microscopic structure
of a material, [15] for an application of the Riesz–Caputo fractional derivative of space-
dependent order in continuum elasticity, [16,17] for the nonlinear viscoelastic behavior of
fractional systems with variable time-dependent fractional order, and [18] for the use of
variable-order fractional calculus in the static response of nonlocal beams having either a
porous or a functionally graded core.

Obtaining analytic solutions for such fractional differential equations (FDEs) is, how-
ever, very difficult. Therefore, in most cases, the exact solution is not known, and one
needs to seek a numerical approximation. Therefore, many researchers have introduced
and developed numerical methods in order to obtain approximated solutions for this class
of equations. For example, in [19,20], Legendre polynomials were used to construct a
numerical solution for a class of multiterm variable-order FDEs, while [21] used Legendre
wavelets and operational matrices; References [22,23] used Chebyshev polynomials, re-
spectively of the second and fourth kinds; Reference [24] used Bernstein polynomials. The
book [25] showed the usefulness of numerical methods for approximating variable-order
fractional operators in the framework of the calculus of variations; the paper [26] adopted
Coimbra’s variable-order time-fractional operator, discussing the stability, convergence and
solvability of a numerical scheme based on Fourier analysis. Reference [27] implemented a
numerical method for solving a circulant Halvorsen system described by Caputo fractional
variable-order derivatives. For multivariable-order differential equations with nonlocal
and nonsingular kernels, we refer to [28], where a collocation method was developed based
on Chebyshev polynomials of the fifth kind.

Here, we considered the following general form of a multiterm variable-order FDE:

C
0 D

α(t)
t y(t) = F

(
t, y(t), C

0 Dα1(t)
t y(t), C

0 Dα2(t)
t y(t), . . . , C

0 Dαk(t)
t y(t)

)
, 0 < t ≤ 1, (1)

with initial conditions
y(i)(0) = yi

0, i = 0, 1, . . . , n− 1, (2)

where n is the smallest positive integer number such that for all t ∈ [0, 1], one has 0 <

α(t) ≤ n, 0 < α1(t) < α2(t) < . . . < αk(t) < α(t), and C
0 Dα(t)

t , C
0 Dα1(t)

t ,. . . , C
0 Dαk(t)

t are the
(left) fractional derivatives of variable-order defined in the Caputo sense. Problems of
the form (1) and (2) have a practical impact. Indeed, specific applications are found in
noise reduction and signal processing [29,30], the processing of geographical data [31], and
signature verification [32].

In recent years, Bernoulli polynomials have been shown to be a powerful mathematical
tool in dealing with various problems of a dynamical nature, e.g., for solving numerically
high-order Fredholm integrodifferential equations [33], pantograph equations [34], partial
differential equations [35], linear Volterra and nonlinear Volterra–Fredholm–Hammerstein
integral equations [36], as well as optimal control problems [37]. Here, we employ a
spectral method based on Bernoulli polynomials in order to obtain numerical solutions
to the problem (1) and (2). Our method consists of reducing the problem to a system of
nonlinear algebraic equations. To do this, we introduced an accurate operational matrix of
variable-order fractional integration for the Bernoulli polynomials’ basis vector. To the best
of our knowledge, this is the first time in the literature that such a method for solving a
general class of multiterm variable-order FDEs based on the Riemann–Liouville fractional
integral of the basis vector has been introduced.

The rest of this paper is organized as follows. In Section 2, some preliminaries
of variable-order fractional calculus are reviewed and some properties of the Bernoulli
polynomials are recalled. Section 3 is devoted to introducing the operational matrix of
variable-order fractional integration for Bernoulli polynomials. In Section 4, we present
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a new numerical method for solving the problem (1) and (2) by using the operational
matrix technique and collocation points. Section 5 is concerned with presenting an error
estimate for the numerical solution obtained by this new scheme. In Section 6, several
multiterm variable-order FDEs are considered and solved, using the introduced method.
Finally, concluding remarks are given in Section 7, where some possible future directions
of research are also pointed out.

2. Preliminaries

In this section, a brief review of the necessary definitions and properties of the variable-
order fractional calculus is presented. Furthermore, Bernoulli polynomials, and some of
their properties, are recalled.

2.1. Some Preliminaries of Variable-Order Fractional Calculus

We followed the notations of [1].

Definition 1 (See, e.g., [1]). The left Riemann–Liouville fractional integral of order α(t) is
defined by:

0 Iα(t)
t y(t) =

1
Γ(α(t))

∫ t

0
(t− s)α(t)−1y(s)ds, t > 0,

where Γ(·) is the Euler gamma function.

Lemma 1 (See Chapter 1, Lemma 8, of [1]). Let y be the power function y(t) = tν. Then, for
ν > −1, we have:

0 Iα(t)
t y(t) =

Γ(ν + 1)
Γ(ν + 1 + α(t))

tν+α(t), α(t) ≥ 0.

Definition 2 (See, e.g., [1]). The left Caputo fractional derivative of order α(t) is defined by:

C
0 D

α(t)
t y(t) =

1
Γ(n− α(t))

∫ t

0
(t− s)n−α(t)−1y(n)(s)ds, n− 1 < α(t) < n,

C
0 D

α(t)
t y(t) = y(n)(t), α(t) = n.

For 0 ≤ α(t) ≤ n, n ∈ N, and γ > 0, two useful properties of the Caputo derivative
and Riemann–Liouville integral are:

0 Iγ
t (

C
0 D

γ

t y(t)) = y(t)−
dγe−1

∑
i=0

y(i)(0)
ti

i!
, t > 0, (3)

0 In−α(t)
t (y(n)(t)) = C

0 D
α(t)
t y(t)−

n−1

∑
i=dα(t)e

y(i)(0)
ti−α(t)

Γ(i + 1− α(t))
, t > 0, (4)

where d·e is the ceiling function.

2.2. Bernoulli Polynomials

Bernoulli polynomials build a family of independent polynomials that form a complete
basis for the space L2[0, 1], which is the space of all square integrable functions on the
interval [0, 1]. The Bernoulli polynomial of degree m, βm(t), is defined as follows [38]:

βm(t) =
m

∑
i=0

(
m
i

)
bm−iti, (5)

where bk, k = 0, 1, . . . , m, are the Bernoulli numbers that appear in the series expansion of
trigonometric functions [39] and can be defined by the following identity:
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t
et − 1

=
∞

∑
i=0

bi
ti

i!
.

The first four Bernoulli polynomials are:

β0(t) = 1,

β1(t) = t− 1
2

,

β2(t) = t2 − t +
1
6

,

β3(t) = t3 − 3
2

t2 +
1
2

t.

The Bernoulli polynomials satisfy the following property [39]:∫ 1

0
βi(t)β j(t)dt = (−1)i−1 i!j!

(i + j)!
bi+j, i, j ≥ 1. (6)

Any arbitrary function y ∈ L2[0, 1] can be approximated using the Bernoulli polyno-
mials as

y(t) '
M

∑
m=0

amβm(t) = AT B(t), (7)

where
B(t) = [β0(t), β1(t), . . . , βM(t)]T (8)

and
A = [a0, a1, . . . , aM]T .

The coefficient vector A in (7) is calculated by the following formula (see [37]):

A = D−1〈y(t), B(t)〉, (9)

where 〈·, ·〉 is the inner product, defined for two arbitrary functions f , g ∈ L2[0, 1] as

〈 f (t), g(t)〉 =
∫ 1

0
f (t)g(t)dt

and D = 〈B(t), B(t)〉, which is calculated using (6).

3. Operational Matrix of Variable-Order Fractional Integration

The aim of this section is to introduce an accurate operational matrix of variable-order
fractional integration for Bernoulli functions. To do this, we display the Bernoulli basis
vector B(t), given by (8), in terms of the Taylor basis functions, as follows:

B(t) = QT(t), (10)

where T is the Taylor basis vector

T(t) = [1, t, t2, . . . , tM]T ,

and Q is the change-of-basis matrix, which is obtained using (5) as



Fractal Fract. 2021, 5, 219 5 of 15

Q =



1 0 0 0 0 . . . 0
− 1

2 1 0 0 0 . . . 0
1
6 −1 1 0 0 . . . 0
0 1

2 − 3
2 1 0 . . . 0

...
...

...
...

...
...

bM (M
1 )bM−1 (M

2 )bM−2 (M
3 )bM−3 (M

4 )bM−4 . . . 1


.

It is obvious that the matrix Q is a nonsingular matrix. Therefore, we can write:

T(t) = Q−1B(t). (11)

Taking (10) into account and by applying the left Riemann–Liouville fractional integral
operator of order α(t) to the vector B(t), we obtain

0 Iα(t)
t B(t) = 0 Iα(t)

t (QT(t)) = Q(0 Iα(t)
t T(t)) = QSα(t)

t T(t), (12)

where Sα(t)
t is a diagonal matrix, which is obtained using Lemma 1 as follows:

Sα(t)
t =



1
Γ(1+α(t)) tα(t) 0 0 0 · · · 0

0 1
Γ(2+α(t)) tα(t) 0 0 · · · 0

0 0 2
Γ(3+α(t)) tα(t) 0 · · · 0

...
...

...
...

...
0 0 0 0 · · · Γ(M+1)

Γ(M+1+α(t)) tα(t)


.

Finally, by using (11) into (12), we have:

0 Iα(t)
t B(t) = QSα(t)

t Q−1B(t) = Pα(t)
t B(t), (13)

where Pα(t)
t = QSα(t)

t Q−1 is a matrix of dimension (M + 1) × (M + 1), which we call
the operational matrix of variable-order fractional integration of order α(t) of Bernoulli
functions. Since Q and Q−1 are lower triangular matrices and Sα(t)

t is a diagonal matrix, it

is obvious that Pα(t)
t is also a lower triangular matrix. For example, with M = 2, one has:

Pα(t)
t =

 p1,1 0 0
p2,1

1
Γ(α(t)+2) tα(t) 0

p3,1

(
2

Γ(α(t)+3) −
1

Γ(α(t)+2)

)
tα(t) 2

Γ(α(t)+3) tα(t)

,

where

p1,1 =
1

Γ(α(t) + 1)
tα(t),

p2,1 =

(
1

2Γ(α(t) + 2)
− 1

2Γ(α(t) + 1)

)
tα(t),

p3,1 =

(
1

6Γ(α(t) + 1)
− 1

2Γ(α(t) + 2)
+

2
3Γ(α(t) + 3)

)
tα(t).

4. Numerical Method

This section is devoted to presenting a new numerical method for solving the multi-
term variable-order FDE (1) with initial conditions (2). To this aim, we set:

n := max
0<t≤1

{dα(t)e}.
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Then, by assuming y ∈ Cn[0, 1], we considered an approximation of the n-th order
derivative of the unknown function y using the Bernoulli functions as follows:

y(n)(t) = AT B(t), (14)

where A is an (M + 1)× 1 vector with unknown elements and B(t) is the Bernoulli basis
vector given by (8). Taking into account the initial conditions (2) and using (3), (13) and (14),
we obtain:

y(t) = 0 In
t (y

(n)(t)) +
n−1

∑
i=0

y(i)(0)
ti

i!

= AT(0 In
t B(t)) +

n−1

∑
i=0

yi
0

ti

i!

= AT Pn
t B(t) +

n−1

∑
i=0

yi
0

ti

i!
.

(15)

In a similar way, using (4), (13), and (14), we obtain

C
0 D

α(t)
t y(t) = AT Pn−α(t)

t B(t) +
n−1

∑
i=dα(t)e

yi
0

ti−α(t)

Γ(i + 1− α(t))
(16)

and
C
0 D

αj(t)
t y(t) = AT P

n−αj(t)
t B(t) +

n−1

∑
i=dαj(t)e

yi
0

ti−αj(t)

Γ(i + 1− αj(t))
, j = 1, . . . , k. (17)

By substituting the approximations given in (15)–(17) into Equation (1), we have:

F

t, AT Pn
t B(t) +

n−1

∑
i=0

yi
0

ti

i!
, AT Pn−α1(t)

t B(t) +
n−1

∑
i=dα1(t)e

yi
0

ti−α1(t)

Γ(i + 1− α1(t))
,

. . . , AT Pn−αk(t)
t B(t) +

n−1

∑
i=dαk(t)e

yi
0

ti−αk(t)

Γ(i + 1− αk(t))


= AT Pn−α(t)

t B(t) +
n−1

∑
i=dα(t)e

yi
0

ti−α(t)

Γ(i + 1− α(t))
. (18)

By using (18) at M + 1 collocation points, which are chosen as tj = j+1
M+2 , with

j = 0, 1, . . . , M, we obtain the following system of nonlinear algebraic equations:

AT P
n−α(tj)
tj

B(tj) +
n−1

∑
i=dα(tj)e

yi
0

tj
i−α(tj)

Γ(i + 1− α(tj))

= F

(
tj, AT Pn

tj
B(tj) +

n−1

∑
i=0

yi
0

tj
i

i!
, AT P

n−α1(tj)
tj

B(tj)

+
n−1

∑
i=dα1(tj)e

yi
0

tj
i−α1(tj)

Γ(i + 1− α1(tj))
, . . . , AT P

n−αk(tj)
tj

B(tj)

+
n−1

∑
i=dαk(tj)e

yi
0

tj
i−αk(tj)

Γ(i + 1− αk(tj))

.

(19)
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System (19) includes M + 1 nonlinear algebraic equations in terms of the unknown
parameters of vector A. After solving this system, an approximation of the solution of the
problem (1) and (2) is given by (15).

5. Error Estimate

The purpose of this section is to obtain an estimate of the error norm for the approxi-
mate solution obtained by the proposed method in Section 4. We assume that f (t) = y(n)(t)
is a sufficiently smooth function on [0, 1] and qM(t) is the interpolating polynomial to f at
points ts, where ts, s = 0, 1, . . . , M, are the roots of the (M + 1)-degree shifted Chebyshev
polynomial in [0, 1]. Then, according to the interpolation error, we have:

f (t)− qM(t) =
f (M+1)(ξ)

(M + 1)!

M

∏
s=0

(t− ts), ξ ∈ (0, 1).

Therefore,

| f (t)− qM(t)| ≤ max
t∈(0,1)

∣∣∣ f (M+1)(t)
∣∣∣

(M + 1)!

M

∏
s=0
|t− ts|. (20)

We assume that there is a real number κ such that:

max
t∈(0,1)

∣∣∣ f (M+1)(t)
∣∣∣ ≤ κ. (21)

By using (21) in (20) and taking into consideration the estimates for Chebyshev inter-
polation nodes [40], we obtain:

| f (t)− qM(t)| ≤ κ

22M+1(M + 1)!
. (22)

As a consequence of (22), we obtain the following result.

Theorem 1. Let fM(t) = AT B(t) be the Bernoulli functions’ expansion of a sufficiently smooth
function f defined on [0, 1], where A and B(t) are given, respectively, by (8) and (9). Then, there
exists a real number κ such that:

‖ f (t)− fM(t)‖ ≤ κ

22M+1(M + 1)!
. (23)

Proof. Let ΠM be the space of all polynomials of degree ≤M on t ∈ [0, 1]. By definition,
fM is the best approximation of f in ΠM. Therefore, we have:

‖ f (t)− fM(t)‖2 ≤ ‖ f (t)− g(t)‖2,

where g is any arbitrary polynomial in ΠM. Therefore, we can write:

‖ f (t)− fM(t)‖2
2 =

∫ 1

0
| f (t)− fM(t)|2dt ≤

∫ 1

0
| f (t)− qM(t)|2dt, (24)

where qM is the interpolating polynomial of f , as discussed before. As a result, taking into
consideration (22) in (24), we easily obtain (23).

With the help of Theorem 1 and by assuming f (t) = y(n)(t), we obtain the follow-
ing result.
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Theorem 2. Let the exact solution y of the problem (1) and (2) be a real-valued sufficiently smooth
function and yM be the approximate solution of this problem obtained by the method proposed in
Section 4. Then, we have:

‖y(t)− yM(t)‖2 ≤
κ

22M+1(M + 1)!(n− 1)!
√

2n(2n− 1)
,

where y is the exact solution and κ = maxt∈(0,1)

∣∣∣y(nM+n)(t)
∣∣∣, n = max0<t≤1{dα(t)e}.

Proof. Let X be the space of all real-valued functions defined on [0, 1] and 0 In
t : X → X be

the Riemann–Liouville integral operator. We use the following definition for the norm of
the operator 0 In

t :
‖0 In

t ‖2 = sup
‖g‖2=1

‖0 In
t g‖2.

To continue the proof, first, we introduce an upper bound for ‖0 In
t ‖2. To this end, using

the definition of the left Riemann–Liouville integral operator and Schwarz’s inequality,
we obtain:

‖0 In
t g‖2

2 =

∥∥∥∥ 1
(n− 1)!

∫ t

0
(t− s)n−1g(s)ds

∥∥∥∥2

2

=
1

[(n− 1)!]2

∥∥∥∥∫ t

0
(t− s)n−1g(s)ds

∥∥∥∥2

2
=

1

[(n− 1)!]2

∫ 1

0

∣∣∣∣∫ t

0
(t− s)n−1g(s)ds

∣∣∣∣2dt

≤ 1

[(n− 1)!]2

∫ 1

0

(∫ t

0
(t− s)2n−2ds

)(∫ 1

0
|g(s)|2ds

)
dt

=
1

[(n− 1)!]22n(2n− 1)
.

Therefore, we have:

‖0 In
t ‖2 ≤

1
(n− 1)!

√
2n(2n− 1)

. (25)

On the other hand, from Theorem 1, we have the following error bound:∥∥∥y(n)(t)− AT B(t)
∥∥∥

2
≤ κ

22M+1(M + 1)!
. (26)

Finally, using (3), (15), (25) and (26), we obtain that:

‖y(t)− yM(t)‖2 =

∥∥∥∥∥0 In
t (y

(n)(t)) +
n−1

∑
i=0

yi
0

ti

i!
−
(

0 In
t (AT B(t)) +

n−1

∑
i=0

yi
0

ti

i!

)∥∥∥∥∥
2

=
∥∥∥0 In

t (y
(n)(t)− AT B(t))

∥∥∥
2

≤ ‖0 In
t ‖2

∥∥∥y(n)(t)− AT B(t)
∥∥∥

2

≤ κ

22M+1(M + 1)!(n− 1)!
√

2n(2n− 1)
,

which completes the proof.

6. Illustrative Examples

In this section, we apply our method to some variable-order FDEs and, moreover, to
one variable-order fractional pantograph differential equation (Example 4), comparing the
results with the ones obtained by existing methods in the literature. We implemented our
method and performed our numerical simulations with Mathematica 12.
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Example 1. In our first example, we considered the following multiterm variable-order FDE [19,22,23]:

C
0 D

2t
t y(t) + t

1
2 C

0 D
t
3
t y(t) + t

1
3 C

0 D
t
4
t y(t) + t

1
4 C

0 D
t
5
t y(t) + t

1
5 y(t) = g(t), 0 < t ≤ 1, (27)

where

g(t) = − t2−2t

Γ(3− 2t)
− t

1
2

t2− t
3

Γ(3− t
3 )
− t

1
3

t2− t
4

Γ(3− t
4 )
− t

1
4

t2− t
5

Γ(3− t
5 )

+ t
1
5

(
2− t2

2

)

with initial conditions y(0) = 2 and y′(0) = 0. The exact solution to this problem is y(t) = 2− t2

2 .
As can be seen, we have α(t) = 2t. Therefore, to implement the proposed method, we introduce:

n = max
0<t≤1

{d2te} = 2.

We set M = 1 and suppose
y′′(t) = AT B(t),

where

A = [a0, a1]
T and B(t) =

[
1, t− 1

2

]T
.

The operational matrices of variable-order fractional integration are given as follows:

P2−2t
t =

 t2−2t

Γ(3−2t) 0
t2−2t

2Γ(4−2t) −
t2−2t

2Γ(3−2t)
t2−2t

Γ(4−2t)

, P2− t
3

t =

 t2− t
3

Γ(3− t
3 )

0

t2− t
3

2Γ(4− t
3 )
− t2− t

3

2Γ(3− t
3 )

t2− t
3

Γ(4− t
3 )

,

P2− t
4

t =

 t2− t
4

Γ(3− t
4 )

0

t2− t
4

2Γ(4− t
4 )
− t2− t

4

2Γ(3− t
4 )

t2− t
4

Γ(4− t
4 )

, P2− t
5

t =

 t2− t
5

Γ(3− t
5 )

0

t2− t
5

2Γ(4− t
5 )
− t2− t

5

2Γ(3− t
5 )

t2− t
5

Γ(4− t
5 )

.

Furthermore, we have:

P2
t =

[
t2

2 0
− t2

6
t2

6

]
.

Now, using the initial conditions and the aforementioned operational matrices, we obtain the
following approximations for y(t) and its variable-order derivatives:

y(t) = AT P2
t B(t) + 2, C

0 D
2t
t y(t) = AT P2−2t

t B(t) +
1

∑
i=d2te

yi
0

ti−2t

Γ(i− 2t + 1)
,

C
0 D

t
3
t y(t) = AT P2− t

3
t B(t) +

1

∑
i=d t

3 e
yi

0
ti− t

3

Γ(i− t
3 + 1)

,

C
0 D

t
4
t y(t) = AT P2− t

4
t B(t) +

1

∑
i=d t

4 e
yi

0
ti− t

4

Γ(i− t
4 + 1)

,

C
0 D

t
5
t y(t) = AT P2− t

5
t B(t) +

1

∑
i=d t

5 e
yi

0
ti− t

5

Γ(i− t
5 + 1)

.

By substituting these approximations into (27), collocating the resulting equation at t0 = 1
3 ,

t1 = 2
3 , and finally, solving the obtained system, we obtain:

a0 = −1, a1 = 0.
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Therefore, we have:

y(t) = [−1 0]

[
t2

2 0
− t2

6
t2

6

][
1

t− 1
2

]
+ 2 = 2− t2

2
,

which is the exact solution. In this case, since the exact solution is a second-order polynomial, we
can obtain it by applying the numerical method with just two basis functions.

Example 2. In our second example, we considered the following nonlinear variable-order FDE
borrowed from [41]:

C
0 D

α(t)
t y(t) + sin(t)y2(t) = g(t), 0 < t ≤ 1, 0 < α(t) ≤ 1,

y(0) = 0,

where

g(t) =
Γ( 9

2 )

Γ
( 9

2 − α(t)
) t

7
2−α(t) + sin(t)t7.

The exact solution of this problem is y(t) = t
7
2 . By considering α(t) = 1− 0.5 exp(−t), we

solved this problem with different values of M. The numerical results are displayed in Figure 1 and
Table 1. In Figure 1, the approximate solutions obtained with M = 1, 2, 3, together with the exact
solution of this problem, are plotted. Furthermore, by considering M = 2, 6, 10, the absolute errors
at some selected points are reported in Table 1. From these results, the convergence of the numerical
solutions to the exact one can be easily seen.

Exact

M=1

M=2

M=3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

y
(t
)

0.30 0.32 0.34 0.36 0.38 0.40

-0.02

0.00

0.02

0.04

Figure 1. (Example 2) Comparison between the exact solution and numerical solutions with
M = 1, 2, 3.

Table 1. (Example 2) Absolute errors at some selected points with different M.

t M = 2 M = 6 M = 10

0.2 5.69× 10−3 9.75× 10−6 8.06× 10−7

0.4 2.34× 10−3 8.02× 10−6 6.34× 10−7

0.6 2.78× 10−3 7.03× 10−6 5.53× 10−7

0.8 2.52× 10−3 5.97× 10−6 4.59× 10−7

1.0 1.66× 10−2 2.89× 10−5 1.95× 10−6

Example 3. Consider the following variable-order FDE taken from [42]:

C
0 D

sin(t)
t y(t) + y(t) + ety(t5) = g(t), 0 < t ≤ 1,

y(0) = 0,
(28)
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where

g(t) =
Γ(4)

Γ(4− sin(t))
t3−sin(t) +

Γ(3)
Γ(3− sin(t))

t2−sin(t) + et(t15 + t10) + t3 + t2.

The exact solution of this problem is y(t) = t3 + t2. To solve Problem (28), we applied the
method with M = 1 and M = 2. The numerical solution obtained with M = 1, together with the
exact solution are plotted in Figure 2. With M = 2, according to the method described in Section 4,
we set n = max0<t≤1{dsin(t)e} = 1. Therefore, by assuming that

y′(t) = AT B(t),

and using the initial condition, we have:

y(t) = AT P1
t B(t), C

0 D
sin(t)
t y(t) = AT P1−sin(t)

t B(t), y(t5) = AT P1
t5 B(t5).

By substituting these approximations into (28) and using the collocation points t0 = 1
4 ,

t1 = 1
2 , and t2 = 3

4 , we obtain a system of three nonlinear algebraic equations in terms of the
elements of the vector A. By solving the resulting system, one obtains:

a0 = 2, a1 = 5, a2 = 3.

Finally, using these values, we obtain:

y(t) =
[

2 5 3
] t 0 0
− t

4
t
2 0

t
36 − t

6
t
3

 1
t− 1

2
t2 − t + 1

6

 = t3 + t2,

which is the exact solution.

Exact

M=1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

t

y
(t
)

Figure 2. (Example 3) Comparison between the exact solution and numerical solution with M = 1.

Example 4. Let us now consider the fractional pantograph differential equation:

C
0 D

α(t)
t y(t) + y(t)− 0.1y(0.2t) = −0.1e−0.2t, 0 < t ≤ 1, 0 < α(t) ≤ 1,

y(0) = 1.
(29)

The exact solution of this problem, when α(t) = 1, is y(t) = e−t. By choosing M = 1 and
α(t) = 1, we set:

y′(t) = AT B(t).

Then, by considering the initial condition, we have:

y(t) = AT P1
t B(t) + 1, y(0.2) = AT P1

0.2tB(0.2t) + 1.
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By substituting these approximations into (29), and using the collocation points

t0 =
1
3

, t1 =
2
3

,

we obtain
a0 = −0.620328, a1 = 0.621053,

which gives

y(t) =
[
−0.620328 0.621053

][ t 0
− t

4
t
2

][
1

t− 1
2

]
+ 1 = 0.310526t2 − 0.930854t + 1.

This approximate solution and the exact solution to the problem, corresponding to α = 1, are
displayed in Figure 3. By computing the L2-norm of the error for this approximation, we have:∥∥∥e−t − (0.310526t2 − 0.930854t + 1)

∥∥∥
2
= 6.29× 10−3,

which shows that the method gives a high-accuracy approximate solution, even with a small number
of basis functions. A comparison of the absolute errors, obtained by the proposed method with
M = 6, 8, 10 at some selected points, with the results proposed in [43], using modified hat functions,
and those of [44], using Bernoulli wavelets, are reported in Table 2. From this table, it is seen that
our method gave more accurate results with a smaller number of basis functions when compared to
previous methods. Moreover, the approximate solutions obtained with M = 2 and different α(t),
along with the exact solution of corresponding first-order equation, are given in Figure 4. This
figure shows that the numerical solution is close to the exact solution for the case α(t) = 1 when
α(t) is close to one.

Exact

M=1

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

y
(t
)

Figure 3. (Example 4) Comparison between exact and numerical solutions with M = 1 and α(t) = 1.

Table 2. (Example 4) Comparison of absolute errors, at some selected grid points, with α(t) = 1.

Method of [43] Method of [44] Present Method

t n = 64 k = 2, M = 6 M = 6 M = 8 M = 10

2−2 1.18× 10−9 1.05× 10−8 8.61× 10−9 1.37× 10−11 5.56× 10−13

2−3 5.39× 10−10 5.79× 10−9 1.01× 10−8 1.57× 10−11 4.25× 10−13

2−4 1.17× 10−9 2.00× 10−8 9.30× 10−9 1.59× 10−11 2.42× 10−13

2−5 5.34× 10−10 3.70× 10−9 6.47× 10−9 1.21× 10−11 1.29× 10−13

2−6 2.27× 10−9 2.03× 10−8 3.83× 10−9 7.58× 10−12 6.72× 10−14
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Exact

α(t)=0.7+0.3sin2(t)

α(t)=0.8+0.2t

α(t)=0.9+0.1sin(t)

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

y
(t
)

Figure 4. (Example 4) Approximate solutions with M = 2 and different α(t), together with the exact
solution for α(t) = 1.

Example 5. As our last example, consider the following variable-order FDE found in [45]:

C
0 D

α(t)
t y(t) + 3y′(t)− y(t) = et

(
3− Γ(1− α(t), t)

Γ(1− α(t))

)
, 0 < t ≤ 1,

where α(t) = 0.25(1 + cos2(t)) and the initial condition is y(0) = 1. The exact solution is
y(t) = et. We solved this problem using the proposed method in this paper with different values of
M. A comparison of the absolute errors at some selected points, obtained by our method and the one
of [45], based on a class of Lagrange polynomials, is given in Table 3.

Table 3. (Example 5) Comparison of the absolute errors at some selected grid points.

Method of [45] Present Method

t M = 6 M = 10 M = 6 M = 8 M = 10

0.1 8.66× 10−9 1.04× 10−12 2.56× 10−8 4.12× 10−11 4.40× 10−14

0.3 1.60× 10−8 4.57× 10−14 2.43× 10−8 3.92× 10−11 4.23× 10−14

0.5 2.49× 10−8 2.82× 10−11 2.44× 10−8 3.93× 10−11 4.24× 10−14

0.7 4.19× 10−8 3.12× 10−11 2.47× 10−8 3.98× 10−11 4.29× 10−14

0.9 5.93× 10−8 1.46× 10−10 2.56× 10−8 4.14× 10−11 4.43× 10−14

7. Concluding Remarks

Many researchers have employed fractional differential equations (FDEs) in order to
model and analyze various scientific phenomena. Typically, such FDEs do not have known
analytical solutions, and approximate and numerical approaches have to be applied [46].
Here, a new numerical method, based on Bernoulli polynomials, was presented for solv-
ing multiterm variable-order fractional differential equations. The operational matrix of
variable-order fractional integration for the Bernoulli basis functions was introduced, which
is a lower triangular matrix and helps to reduce the computational effort of the method.
Our scheme uses this matrix to give some approximations of the unknown solution of the
problem and its variable-order fractional derivatives in terms of the Bernoulli functions.
Substituting these approximations into the equation and using some collocation points al-
lowed us to reduce the problem to a system of nonlinear algebraic equations, which greatly
simplifies the problem. An error estimate of the method was proven, and the applicability
of our method was illustrated by solving five illustrative examples. The obtained results
confirmed the efficiency, accuracy, and high performance of our technique, when compared
with the state-of-the-art numerical schemes available in the literature. We emphasize that
the accuracy of our method is preserved even when the solution of the problem is not
infinitely differentiable. This can be observed in Example 2, whose exact solution is t

7
2 .
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We used a variable-order definition where the operator has no order memory, a so-
called type-I operator. As future work, it would be interesting to extend the proposed
numerical method to approximate variable-order derivatives with weak (type-II) and strong
(type-III) variable-order definitions [18,47]. Other interesting lines of research include the
stability analysis of the proposed numerical method and its application to different areas
in science and engineering, for example in structural mechanics.
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