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Abstract: A simple and direct procedure for implementing fractional-order filters with transfer
functions that contain Laplace operators of different fractional orders is presented in this work. Based
on a general fractional-order transfer function that describes fractional-order low-pass, high-pass,
band-pass, band-stop and all-pass filters, the introduced concept deals with the consideration of this
function as a whole, with its approximation being performed using a curve-fitting-based technique.
Compared to the conventional procedure, where each fractional-order Laplace operator of the transfer
function is individually approximated, the main offered benefit is the significant reduction in the
order of the resulting rational function. Experimental results, obtained using a field-programmable
analog array device, verify the validity of this concept.

Keywords: fractional-order filters; curve-fitting approximation technique; oustaloup approximation
method; field-programmable analog array

1. Introduction

Fractional-order filters have thrust the scientific field of filtering into a new era, making
it applicable in a wide range of interdisciplinary fields, such as control systems, bio-
impedance spectroscopy, acoustic applications and filter applications [1]. The insertion of
one or more fractional exponents in a filter function provides additional degrees of freedom
that allow precise adjustment of the filter’s characteristics, including the cutoff frequency
and the slope of the transition from the pass band to stop band.

A general transfer function, able to describe fractional-order low-pass (LP), high-pass
(HP), band-pass (BP), band-stop (BS) and all-pass (AP) filters, is given in (1)

H(s) =
KHP(τs)α+β + KBP(τs)β + KLP

(τs)α+β + (τs)β + 1
, (1)

where α, β ∈ (0, 1) are fractional orders; s is the Laplace operator; τ is a characteristic time
constant; and KLP, KHP and KBP are real coefficients denoting the gain factors of the LP,
HP and BP filters, respectively. The BS filter is obtained by the sum of the LP and HP filter
functions, and the AP filter by the subtraction of the LP from the HP filter function [2].

The implementation of the filter functions, generated from (1), cannot be directly
performed using conventional elements. Therefore, the following alternative methods
are exploited:

(a) Employment of fractional-order capacitors, which substitute the conventional (i.e.,
integer-order) capacitors in the topologies of integer-order standard filters. Due
to the absence of commercial availability of such elements, they are approximated
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by RC schemes, such as the Foster and Cauer networks. The price paid for the
offered quick design procedure is the absence of on-the-fly tuning of the filter’s
characteristics, making it suitable only for cases of filters with pre-defined type and
frequency characteristics [3–5].

(b) Approximation of the fractional-order Laplace operators in (1) using appropriate tools,
such as Continued Fraction Expansion, Oustaloup, Matsuda and Carlson [6], and then
substitution of the resulting rational function approximations of these operators. The
derived filter function is an integer-order polynomial ratio that can be implemented
utilizing classical filter design techniques, such as cascade connection of elementary
filter stages and multi-feedback structures. This design procedure is more complicated
than the previous one, but it offers the advantage of electronic tuning capability of
the derived filter structures, considering that active elements with electronically
controlled characteristics (e.g., transconductance) are utilized [2,7–11]. However, this
approach is efficient only for approximations of filter functions with a single fractional
order. In the case of functions, such as the one in (1), the order of the derived rational
function will be at least double the applied order of approximation [2].

The contribution made in this work is summarized as follows:

(a) Instead of individually approximating the fractional-order Laplace operators, the
magnitude and phase frequency responses of the whole filter function in (1) are fitted
by a suitable integer-order transfer function derived through the employment of
specialized Symbolic Math Toolbox™ built-in functions.

(b) The order of the derived rational function is always equal to the order of the employed
approximation, and thus, this approach offers the advantage of minimizing the circuit
complexity, compared to the aforementioned conventional approach.
The paper is organized as follows: an investigation of the problem regarding the ap-
proximation of the general filter function following the conventional and the proposed
procedures is discussed in Section 2, and a design example for comparison purposes
is given in Section 3. The validity of the suggested procedure was experimentally
evaluated using a field-programmable analog array (FPAA) device [12] and the results
are presented in Section 4.

2. Proposed Design Procedure

Using any of the continued fraction expansion, Oustaloup, Matsuda or Carlson meth-
ods, for the approximation of the Laplace operators in (1), the transfer function in (2) is
derived this way:

(τs)r ' Ansn + An−1sn−1 + . . . + A1s + A0

sn + Bn−1sn−1 + . . . + B1s + B0
, (2)

where r = {β, α + β} is the order of the operator; n is the order of the applied approxima-
tion; and Ai (i = 0, 1, . . . n), Bj (j = 0, 1, . . . n− 1) are real, positive coefficients.

By approximating each one of the fractional terms (τs)β and (τs)α+β of (1) using (2),
the resulting approximated filter function will have the form of a rational, integer-order
polynomial ratio, is that given in (3):

Happrox(s) '
Cpsp + Cp−1sp−1 + . . . + C1s + C0

sq + Dq−1sq−1 + . . . + D1s + D0
, (3)

where [p, q] is the order of the ratio’s polynomials and Ck, (k = 0, 1, . . . p), Dl , (l =
0, 1, . . . q− 1) are real coefficients.

In the case that α + β ∈ (0, 1), the nth-order approximation of the fractional terms
(τs)β and (τs)α+β is performed by transfer functions of the form of (2) with order equal to
n. Therefore, the transfer function in (3) will be of order 2n, due to the different values of the
coefficients of the corresponding intermediate transfer functions used for approximating
the Laplace operators. In the case that α+ β ∈ (1, 2), the approximation of the term (τs)α+β
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is performed through the utilization of the product (τs)(α+β)−1 · (τs), and the resulting
orders of the transfer function in (3) are summarized in Table 1.

Table 1. Order of the functions in (3) for different types of filters using conventional approximation
methods.

Filter
Order

α + β ∈ (0, 1) α + β ∈ (1, 2)

LP

[p, q] = [2n, 2n]

[p, q] = [2n, 2n + 1]
HP [p, q] = [2n + 1, 2n + 1]
BP [p, q] = [2n, 2n + 1]
BS [p, q] = [2n + 1, 2n + 1]
AP [p, q] = [2n + 1, 2n + 1]

The main derivation is that, for a given order of approximation (n), the order of the
final filter function will be at least the double, which means increased circuit complexity.
The proposed concept suggests the exploitation of a curve-fitting-based approximation
technique, which is based on the Sanathanan–Koerner (SK) least square iterative method,
for approaching the filter function in (1) [8,9]. The application of this technique is simple,
considering that it is supported by MATLAB software and specialized Symbolic Math Tool-
box™ built-in functions. The main advantage of this method, compared to conventional
approximation tools, is the capability of approaching a whole transfer function, leading to
an expression that always has the simple form of (3). In addition, this method has already
been compared with other relevant frequency response-based approximation algorithms,
and it has proven to be more efficient in terms of accuracy [8,13].

The steps of the algorithm are:

step #1: Extraction of the frequency response data of (1) within a specific frequency range
of interest, a process that is performed using the frd built-in function.

step #2: Approximation of the obtained data, based on the fitfrd built-in function, which
forms the state-space model of the data for a given order of approximation (n).

step #3: Conversion of the model to an integer-order transfer function of the form in (3)
using the ss2tf built-in function.

Therefore, the final approximated filter function, for an nth-order approximation, will
be of order [n, n] independent of the type of the filter, and this is the most attractive benefit
offered by the proposed procedure. As the transfer function in (3) will have a constant
form, the selection of the type of filter, as well as the tuning of its characteristics, will be
performed through the adjustment of the values of the coefficients Ck and Dl . This results
in a versatile structure whose behavior can be externally determined without any change in
its core. In other words, following the proposed procedure, an electronically adjustable or
programmable structure can be employed for simultaneously offering the elementary LP,
HP, BP, BS and AP filter functions with minimized active component count, and therefore,
reduced circuit complexity, compared to the structures presented in [2].

3. Design Example and Comparative Results

The initial function in (1) was approximated using the proposed procedure, based on
the curve-fitting technique, for order n = 5 within the frequency range f = [10, 100 k]Hz
for the filter cases given in Table 2. In order to prove the efficiency of the proposed concept,
a comparison with the Oustaloup approximation method of the same order (n = 5) was
also performed.

The final filter function, derived following the proposed approximation process, is
that given in (3) with [p, q] = [5, 5] for all types of filters. This is not the case following the
Oustaloup method, where, by consulting the Table 1, the order of the obtained function is
[p, q] = [10, 11] for the LP and BP types, and [p, q] = [11, 11] for the HP, BS and AP types.
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Therefore, the Oustaloup method leads to double the hardware compared to that required
for the curve-fitting-based method. In addition, the fact that the derived filter function in
the case of the proposed procedure has a common form in all filter types makes it possible
to implement different types of filters with variable order using the same controllable core.

Table 2. Values of parameters in (1) for realizing various filter cases.

Filter
Parameter

(α, β) (KLP, KHP, KBP) τ

LP (0.3, 0.5)
(1, 0, 0) 22.91 (µs)

(0.3, 0.8) 69.97 (µs)

HP (0.5, 0.3)
(0, 1, 0) 1.106 (ms)

(0.8, 0.3) 362 (µs)

BP (0.4, 0.7)
(0, 0, 1) 186.7 (µs)

(0.7, 0.4) 135.7 (µs)

BS (0.4, 0.7)
(1, 1, 0) 205 (µs)

(0.7, 0.4) 123.5 (µs)

AP (0.3, 0.5)
(−1, 1, 0) 184.8 (µs)

(0.6, 0.8) 547.8 (µs)
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Figure 1. Gain and phase frequency responses, derived from 5th-order Oustaloup (dashed-dotted lines) and 5th-order
curve-fitting-based (solid lines) approximation methods, for the (a) LP and HP, (b) BP and BS and (c) AP filter cases given in
Table 2, along with the corresponding ideal responses (dashed lines).

The efficiency of each approximation method was evaluated through the gain and
phase frequency responses of Figure 1, obtained using the MATLAB software, where the
Oustaloup results are indicated by dashed-dotted lines and the curve-fitting-based results
by solid lines. Considering the associated ideal responses, which are indicated by dashed
lines, the difference between the accuracy of the two methods is evident. In particular, the
maximum integral absolute error (IAE) on the gain for the LP, HP, BP, BS and AP filter types
was about 1.94× 104 dB·Hz and in the phase 1.01× 107 ◦·Hz in the case of the Oustaloup
method. The corresponding values, in the case of the proposed approximation procedure,
were 4.22× 103 dB·Hz and 1.43× 106 ◦·Hz. Consequently, the proposed approximation
process offers not only a considerably compact transfer function that can be implemented
with the requirement of minimum circuitry, but also a sufficiently accurate approximation
over the entire frequency range of interest.
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4. Experimental Results

The proposed concept was experimentally evaluated using FPAA hardware, and in
particular, an Anadigm QUAD AN231K04 development kit, which is controlled through
the AnadigmDesigner 2 EDA software [14–18]. Employing an integrator-based follow-
the-leader feedback (FLF) structure, which is depicted in Figure 2, considering a 5th-
order approximation, the transfer function that describes this functional block diagram is
the following:

HFLF(s) =
K5s5 + K4s4 + . . . + K1s + K0

s5 + 1
τ1

s4 + . . . + 1
τ1τ2 ...τ4

s + 1
τ1τ2 ...τ5

, (4)

and the time constants (τ) and scaling factors (K) are calculated by equating the coefficients
of (3) and (4). Therefore, the design equations, considering that D5 = 1, becomes as follows:

Ki =
Ci
Di

, (i = 0, 1, . . . 5) τi+1 =
D5−i
D4−i

, (i = 0, 1, . . . 4) . (5)

For demonstration purposes, six of the cases, given in Table 2, were examined: (i)
LP filter with (α, β) = (0.3, 0.5), (ii) HP filter with (α, β) = (0.5, 0.3), (iii) BP filter with
(α, β) = (0.7, 0.4), (iv) BS filter with (α, β) = (0.7, 0.4), (v) AP filter with (α, β) = (0.3, 0.5)
and (vi) AP filter with (α, β) = (0.6, 0.8). The coefficients of the derived approximated
filter functions are provided in Table 3.

Using the values of Table 3 and the design equations in (5), the calculated values of
time constants and scaling factors are summarized in Table 4.

The implementation of the FLF structure in Figure 2, using the FPAA hardware, was
based on the configuration that is demonstrated in the Anadigm design of Figure 3. Two
FPAA chips were required when Integrator, GainHoldand SumDiff Configurable Analogue
Blocks (CABs) were utilized to implement the integration and scaling stages, and the chip
clock was set at 2 MHz. The experimental setup that was used is shown in Figure 4.

1
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1
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+υin +1 +1

υoutKo
+ +1

-1

+1

+1
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+1
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K5

Figure 2. FLF block diagram for implementing LP, HP, BP, BS and AP filter functions.
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Figure 3. FPAA-based realization of the functional block diagram in Figure 2.

Table 3. Values of the coefficients in (3) derived from the 5th-order approximation of the initial function in (1) for various
filter types.

Coefficient
Filter

LP HP BP BS AP
(0.3, 0.5) (0.5, 0.3) (0.7, 0.4) (0.7, 0.4) (0.3, 0.5) (0.6, 0.8)

C0 1.812× 1020 2.383× 1015 4.68× 1016 6.689× 1017 −1.026× 1019 −1.146× 1019

C1 4.361× 1017 1.811× 1014 1.101× 1015 5.767× 1015 −3.783× 1016 −6.374× 1015

C2 1.317× 1014 8.018× 1011 2.705× 1012 7.219× 1012 −8.754× 1012 2.488× 1012

C3 6.778× 109 5.37× 108 1.139× 109 1.886× 109 2.109× 109 2.18× 109

C4 5.138× 104 6.26× 104 2.169× 104 1.237× 105 1.555× 105 1.386× 105

C5 0.02145 0.9617 0.01929 0.9802 0.8324 0.9842
D0 1.871× 1020 1.296× 1017 5.653× 1017 7.264× 1017 1.11× 1019 1.165× 1019

D1 5.069× 1017 1.296× 1015 5.51× 1015 7.152× 1015 5.894× 1016 1.961× 1016

D2 1.966× 1014 2.196× 1012 8.418× 1012 1.059× 1013 4.652× 1013 1.243× 1013

D3 1.65× 1010 8.576× 108 2.753× 109 3.223× 109 7.759× 109 3.067× 109

D4 3.144× 105 7.504× 104 1.368× 105 1.473× 105 2.532× 105 1.528× 105

The experimental gain and phase were measured using an Agilent 4395A spectrum
analyzer within the frequency range f = [10, 100 k]Hz, and the resulting responses are
given in Figure 5a for the LP and HP filter types; in Figure 5b for the BP and BS types; and
in Figure 5c for the AP filter type, indicated by triangle symbols, along with the respective
results obtained from the curve-fitting-based approximation (solid lines) and the theory
(dashed lines).

Indicatively, a screenshot of the analyzer, showing the gain frequency response during
the measurement of the BP type of filter for orders (α, β) = (0.7, 0.4), is demonstrated in
Figure 6. From these plots, the versatile features of the implemented FPAA-based structure
were verified, making the presented procedure attractive from the design flexibility point
of view.

The experimental values of the critical frequencies for each case are tabulated in
Table 5, with the respective theoretically calculated values being given between parentheses,
verifying the accurate behavior of the implemented filter functions.
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Table 4. Values of time constants and scaling factors in (4), calculated using the values of Table 3 and the design equations
in (5).

Coefficient
Filter

LP HP BP BS AP
(0.3, 0.5) (0.5, 0.3) (0.7, 0.4) (0.7, 0.4) (0.3, 0.5) (0.6, 0.8)

K0 0.969 0.018 0.083 0.921 −0.924 −0.984
K1 0.86 0.14 0.2 0.806 −0.642 −0.325
K2 0.67 0.365 0.321 0.682 −0.188 0.2
K3 0.41 0.626 0.414 0.585 0.272 0.711
K4 0.163 0.834 0.158 0.84 0.614 0.907
K5 0.021 0.962 0.019 0.98 0.832 0.984
τ1 3.18 (µs) 13.32 (µs) 7.31 (µs) 6.79 (µs) 3.95 (µs) 6.546 (µs)
τ2 19.05 (µs) 87.5 (µs) 49.7 (µs) 45.71 (µs) 32.63 (µs) 49.81 (µs)
τ3 83.92 (µs) 390.5 (µs) 327 (µs) 304.2 (µs) 166.8 (µs) 246.6 (µs)
τ4 387.9 (µs) 1.69 (ms) 1.53 (ms) 1.78 (ms) 789.25 (µs) 634.1 (µs)
τ5 2.71 (ms) 10 (ms) 9.75 (ms) 9.85 (ms) 5.31 (ms) 1.68 (ms)

Figure 4. Experimental setup for evaluating the performances of the filters.
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Figure 5. Experimental gain and phase frequency responses (triangle symbols), along with the corresponding approximated
(solid lines) and ideal (dashed lines) responses, for (a) LP and HP, (b) BP and BS and (c) AP filter cases.
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Table 5. Critical frequencies for the filter cases in Figure 5, along with the theoretical values given between parentheses.

Frequency
Filter

LP HP BP BS AP

fc/ fpeak (kHz) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
flow (Hz) – – 142.5 (140.7) 173.8 (174.1) –
fhigh (kHz) – – 4.36 (4.32) 3.48 (3.37) –

Figure 6. Screenshot of the Agilent 4395A spectrum analyzer, showing the gain frequency response
during the measurement of the BP type of filter for orders (α, β) = (0.7, 0.4).

5. Conclusions

The proposed concept for the implementation of fractional-order filter transfer func-
tions with Laplace operators of multiple fractional orders, based on the exploitation of
a curve-fitting-based approximation process, provides simultaneously an efficient and
compact realization. The reduction in the order of the derived approximated rational
transfer function was significant, compared to the case where conventional approxima-
tion methods were followed. The provided design example shows that, according to the
presented procedure, the derived order of the transfer function for a 5th-order approxi-
mation was [p, q] = [5, 5] for all filter types with a maximum error of about 10% in the
frequency range [10, 100 k]Hz. When employing the Oustaloup approximation, the order
of the function was [p, q] = [10, 11] for the LP and BP types and [11, 11] for the HP, BS
and AP types. The maximum observed error in the aforementioned frequency range was
about 50%. Another resulting benefit is that all types of filters with variable orders can be
implemented by the same core, making the presented structure a generalized filter scheme.
This was experimentally verified through the utilization of the Anadigm QUAD AN231K04
development kit.

The employed algorithm offers the advantage of quick design procedure in the sense
that the whole transfer function is considered, instead of the intermediate fractional-order
Laplace terms. In addition, it approximates the fractional-order function within a frequency
range defined by the user, as in the case of the Oustaloup method. The same also holds
for similar MATLAB software Symbolic Math Toolbox™ built-in functions, such as tfest.
On the other hand, a drawback is that these curve-fitting approximation methods are only
available in MATLAB software. Another option could be employing the Padé tool, which
performs approximation of the transfer function around a center frequency specified by
the user, as in the case of the continued fraction expansion method. A comparison among
all the aforementioned methods showed that the Sanathanan–Koerner (SK) least square
iterative method employed in this work outperforms any of the other approximation
tools [8,13].
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The presented design procedure is versatile and can be also applied for the approximation
of various types of fractional-order transfer functions, including control systems [19,20] and
biological/biomedical systems [21], and these are undergoing research exploitation steps.
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