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Abstract: We give fourth-order accurate implicit methods for the computation of the first-order
spatial derivatives and second-order mixed derivatives involving the time derivative of the solution
of first type boundary value problem of two dimensional heat equation. The methods are constructed
based on two stages: At the first stage of the methods, the solution and its derivative with respect
to time variable are approximated by using the implicit scheme in Buranay and Arshad in 2020.
Therefore, O

(
h4 + τ

)
of convergence on constructed hexagonal grids is obtained that the step sizes in

the space variables x1, x2 and in time variable are indicated by h,
√

3
2 h and τ, respectively. Special

difference boundary value problems on hexagonal grids are constructed at the second stages to
approximate the first order spatial derivatives and the second order mixed derivatives of the solution.
Further, O

(
h4 + τ

)
order of uniform convergence of these schemes are shown for r = ωτ

h2 ≥ 1
16 ,

ω > 0. Additionally, the methods are applied on two sample problems.

Keywords: implicit schemes; hexagonal grid; incomplete block matrix factorization; heat equation;
computation of derivatives

MSC: 65M06; 65M12; 65M22

1. Introduction

The modeling of numerous phenomena in diverse scientific fields leads us to consider
conventional or fractional boundary value problems of time dependent differential equa-
tions on a modeling domain such as the first and second type boundary value problems
to heat equation or diffusion equation. For example, the Brownian motion problem in
statistics is modeled by heat equation via the Fokker–Planck equation (Adriaan Fokker [1]
and Max Planck [2]). It is also named as the Kolmogorov forward equation, who discovered
the concept in 1931, see in [3] independently. The stock market fluctuations represent one
of the several important real-world applications of the mathematical model of Brownian
motion. It was first given in the PhD thesis titled as “The theory of speculation”, by Louis
Bachelier (see Mandelbrot and Hudson [4]) in 1900.

Another representative sample of problems that mathematical modeling brings about
the heat equation is the image processing problems appearing through many applied
sciences from archaeology to zoology. Examples of archaeological investigations include
a camcorder for 3D underwater reconstruction of archeological objects in the study of
Meline et al. [5]. Furthermore, a recent investigation by Woźniak and Polap [6] gave soft
trees with neural components as image processing technique for archeological excava-
tions. In zoology, a study of image reconstruction problem by the application of magnetic
resonance imaging was given by Ziegler et al. [7] and in medical sciences as medical
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image reconstruction was studied in Zeng [8]. Furthermore, tomography, and medi-
cal and industrial applications are archetypal examples where substantial mathematical
manipulation is required. In some cases, the aim is humble denoising or de-blurring.
Witkin [9] and Koenderink [10] gave the modeling of blurring of an image by the heat
equation. Later, a problem of solving the reverse heat equation known as de-blurring is
studied in Rudin et al. [11] and Guichard and Morel [12].

Additionally, in mathematical biology, Wolpert [13,14] gave a phenomenological
concept of pattern formation and differentiation known as positional information. The
pre-programming of the cells for reacting to a chemical concentration and differentiate
accordingly, into different kinds of cells such as cartilage cells was proposed. After-
wards, the animal coat patterns, pattern formation on growing domains as alligators,
snakes and bacterial patterns were modeled by reaction diffusion equations in Murray [15].
Furthermore, therein, gliomas or glioblastomas, which are highly diffusive brain tumors,
are analyzed and a mathematical model for the spatiotemporal dynamics of tumor growth
was developed. Therefore, the basic model in dimensional form was given by the diffu-
sion equation

∂c
∂t

= ∇J + ρc, (1)

where c(x, t) is the number of cells at a position x and time t, ρ represents the net rate of
growth of cells including proliferation and death (or loss), and J diffusional flux of cells
taken J = D∇c, where D(x) (distance2/time) is the diffusion coefficient of cells in brain
tissue and ∇ is the gradient operator.

In general, finding analytical solutions of these modeled problems is a difficult task or
even not possible. Approximations are needed when a mathematical model is switched to
a numerical model. Finite difference methods (FDM) are a class of numerical techniques
for solving differential equations that each derivative appearing in the partial differential
equation has to be replaced by a suitable divided difference of function values at the
chosen grid points, see Grossman et al. [16]. In the last decade, the use of advanced
computers has led to the widespread use of FDM in modern numerical analysis. For
example, recently, a study on fractional diffusion equation-based image denoising model
using Crank–Nicholson and Grünwald Letnikov difference schemes (CN–GL) have been
given in Abirami et al. [17]. Another example is the most recent investigation by Buranay
and Nouman [18] in which computation of the solution to heat equation

∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t), (2)

on special polygons, where ω > 0 and f is the heat source by using implicit schemes
defined on hexagonal grids was given. Therein, under some smoothness assumptions of
the solution, two implicit methods were developed both on two layers with 14-point that
has convergence orders of O

(
h2 + τ2) and O

(
h4 + τ

)
accordingly to the solution on the

grids. Besides the solution of the modeled problem, the high accurate computation of the
derivatives of the solution are fundamental to determine some important phenomena of
the considered model problem. Such as for the diffusion problem (1) the functions ∂c

∂t and J
gives the rate of change of the cells and diffusional flux of cells, respectively.

In the literature, exhaustive studies exist for the approximation of the derivatives of
the solution to Laplace’s equation under some smoothness conditions of the boundary func-
tions and compatibility conditions. For the 2D Laplace equation, research was conducted
by Volkov [19] and Dosiyev and Sadeghi [20]. For the 3D Laplace equation on a rectangular
parallelepiped, studies were given by Volkov [21] and Dosiyev and Sadeghi [22], and
recently by Dosiyev and Abdussalam [23], and Dosiyev and Sarikaya [24].

For the heat equation, the derivative of the solution of one-dimensional heat equation
with respect to the space variable was given in Buranay and Farinola [25]. Within this paper,
two implicit schemes were developed that converge to the corresponding exact spatial
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derivative with O
(
h2 + τ

)
and O

(
h2 + τ2) accordingly. Most recently, in Buranay et al. [26]

numerical methods using implicit schemes with hexagonal grids approximating the deriva-
tives of the solution of (2) on a rectangle has been given. The smoothness condition

u ∈ C7+α, 7+α
2

x,t , 0 < α < 1 in the Hölder space was required and uniform convergence on
the grids to the respective spatial derivatives of O

(
h2 + τ2) of accuracy for r = ωτ

h2 ≤ 3
7

was proved.
In regard to the equilateral triangulation with a regular hexagonal support, we remark

the research by Barrera et al. [27] where a new class of quasi-interpolant was constructed
which has remarkable properties such as high order of regularity and polynomial reproduc-
tion. Furthermore, on the Delaunay triangulation, we mention the study by Guessab [28]
that approximations of differentiable convex functions on arbitrary convex polytopes were
given. Further, optimal approximations were computed by using efficient algorithms
accessed by the set of barycentric coordinates generated by the Delaunay triangulation.

The motivation of the contributions of this research is the need of highly accurate and
time-efficient numerical algorithms that compute the derivatives of the solution u(x1, x2, t)
to the heat Equation (2). The achievements of this study are summarized as follows.

1. The first type boundary value problem (Dirichlet problem) for the heat Equation (2)
on a rectangle D is considered. The smoothness of the solution u is taken from the

Hölder space C9+α, 9+α
2

x,t
(
QT
)
, 0 < α < 1, where x = (x1, x2) ∈ D, t ∈ [0, T] and

QT = D × (0, T) also D, QT denote the closure of D, QT , respectively. At the first
stage, an implicit scheme on hexagonal grids given in Buranay and Nouman [18]
with O

(
h4 + τ

)
order of accuracy is used to approximate the solution u(x1, x2, t).

The step sizes h and
√

3
2 h are taken for the spatial variables x1 and x2, respectively,

while τ is taken for the time variable. An analogous implicit method is also given to
approximate the derivative of the solution with respect to time.

2. At the second stages, computation of the first-order spatial derivatives and second-
order mixed derivatives involving time derivatives of the solution u(x1, x2, t) of (2) are
developed. When r = ωτ

h2 ≥ 1
16 uniform convergence of the approximate derivative

to the exact derivatives ∂u
∂xi

, ∂u
∂t , and ∂2u

∂xi∂t , i = 1, 2 with order O
(
h4 + τ

)
of accuracy on

the hexagonal grids are proved.
3. Numerical examples are given and for the solution of the obtained algebraic linear

systems preconditioned conjugate gradient method is used. The incomplete block
matrix factorization of the M-matrices given in Buranay and Iyikal [29] (see also
Concus et al. [30], Axelsson [31]) is applied for the preconditioning.

2. Hexagonal Grid Approximation of the Heat Equation and the Rate of Change by
Using Fourth Order Accurate Difference Schemes

Let D = {(x1, x2) : 0 < x1 < a1, 0 < x2 < a2} be a rectangle, where we require a2 to
be multiple of

√
3. Next, let γj, j = 1, 2, 3, 4, be the sides of D that starting from the side

x1 = 0 are labeled in anticlockwise direction. Furthermore, the boundary of D is shown

by S =
4⋃

j=1
γj. Further, we indicate the closure of D by D = D ∪ S. Let x = (x1, x2) and

QT = D× (0, T), with the lateral surface ST = {(x, t) : x = (x1, x2) ∈ S, t ∈ [0, T]} and QT

is the closure of QT . Let s be a non-integer positive number, Cs, s
2

x,t
(
QT
)

be the Banach space
of functions u(x, t) that are continuous in QT together with all derivatives of the form

∂ξ+s1+s2 u
∂tξ∂xs1

1 ∂xs2
2

for 2ξ + s1 + s2 < s (3)

with bounded norm

‖u‖
C

s, s
2

x,t (QT)
= 〈u〉(s)QT

+
[s]

∑
j=0
〈u〉(j)

QT
, (4)
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where

〈u〉(j)
QT

= ∑
2ξ+s1+s2=j

max
QT

∣∣∣∣∣ ∂ξ+s1+s2 u
∂tξ∂xs1

1 ∂xs2
2

∣∣∣∣∣, j = 0, 1, 2, ..., [s], (5)

〈u〉(s)QT
= 〈u〉(s)x + 〈u〉(

s
2 )

t , (6)

〈u〉(s)x = ∑
2r+s1+s2=[s]

〈
∂ξ+s1+s2 u

∂tξ ∂xs1
1 ∂xs2

2

〉s−[s]

x

, (7)

〈u〉(
s
2 )

t = ∑
0<s−2ξ−s1−s2<2

〈
∂ξ+s1+s2 u

∂tξ ∂xs1
1 ∂xs2

2

〉 s−2ξ−s1−s2
2

t

, (8)

further, 〈u〉αx, 〈u〉βt for α, β ∈ (0, 1) are defined as

〈u〉αx = sup
(x,t), (x′ ,t)∈QT

|u(x, t)− u(x′, t)|
|x− x′|α

, (9)

〈u〉βt = sup
(x,t), (x,t′)∈QT

|u(x, t)− u(x, t′)|
|t− t′|β

. (10)

Volkov gave the differentiability properties of solutions of boundary value problems
for the Laplace and Poisson equations on rectangle in the study [32]. On cylindrical
domains with smooth boundary, the differentiability properties of solutions of the parabolic
equations were given in Ladyženskaja et al. [33] and Friedman [34]. On regions with edges,
Azzam and Kreyszig studied the smoothness of solutions of parabolic equations for the
Dirichlet problem in [35] and for the mixed boundary value problem in [36].

2.1. Dirichlet Problem of Heat Equation and Difference Problem: Stage 1
(

H4th(u)
)

Our interest is the following problem for the heat equation:

BVP(u)

∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t) on QT ,

u(x1, x2, 0) = ϕ(x1, x2) on D,

u(x1, x2, t) = φ(x1, x2, t) on ST , (11)

where ω is positive constant. This problem is framed as first type (Dirichlet) boundary
value problem.

We assume that the initial and boundary functions ϕ(x1, x2), φ(x1, x2, t), respectively,
also the heat source function f (x1, x2, t) possess the necessary smoothness and satisfy

the conditions that the problem (11) has unique solution u ∈ C9+α, 9+α
2

x,t
(
QT
)
. We define

hexagonal grids on D with the step size h, such that h = a1/N1, and N1 is positive integer
and present this set by Dh as

Dh =

{
x = (x1, x2) ∈ D : x1 =

k′ − p′

2
h, x2 =

√
3(k′ + p′)

2
h,

k′ = 1, 2, ...; p′ = 0± 1± 2, ...
}

(12)
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Let γh
j , j = 1, ..., 4 be the set of nodes on the interior of γj, and let γ̂h

j = γj−1 ∩ γj be

the j− th vertex of D, Sh =
4⋃

j=1
(γh

j ∪ γ̂h
j ), Dh

= Dh ∪ Sh. Further, we denote by D∗lh and

D∗rh the set of interior nodes whose distance from the boundary is h
2 , thus the hexagon

is irregular hexagon with a ghost point that emerges through the left (x1 = 0) or right
(x1 = a1) side of the rectangle, respectively. The illustration of the exact solution at the
irregular hexagons with a ghost point at time levels t− τ, t and t + τ is given in Figure 1.

Figure 1. The illustration of the exact solution at the irregular hexagons with a ghost point at time
levels t− τ, t and t + τ.

Further, we indicate by D∗h = D∗lh ∪ D∗rh and D0h = Dh\D∗h. Moreover, let

γτ =

{
tk = kτ, τ =

T
M′

, k = 1, ..., M′
}

, (13)

γτ =

{
tk = kτ, τ =

T
M′

, k = 0, ..., M′
}

. (14)

Next, we give the set of interior hexagonal points and the lateral surface points by

Dhγτ = Dh × γτ =
{
(x, t) : x ∈ Dh, t ∈ γτ

}
, (15)

Sh
T = Sh × γτ =

{
(x, t) : x ∈ Sh, t ∈ γτ

}
, (16)

respectively. Let D∗lhγτ = D∗lh × γτ ⊂ Dhγτ and D∗rhγτ = D∗rh × γτ ⊂ Dhγτ and
D∗hγτ = D∗lhγτ ∪D∗rhγτ . Furthermore, D0hγτ = Dhγτ\D∗hγτ and Dhγτ is the closure of
Dhγτ . We denote the center of the hexagon by P0 and Patt(P0) is the pattern of the hexagon
consisting the neighboring points Pi, i = 1, ..., 6. Furthermore, the exact solution at the
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neighboring points Pi, i = 0, 1, ..., 6 for the time moment t + τ is presented by uk+1
Pi

, while

uk+1
PA

is the value on the boundary point as given:

uk+1
P1

= u(x1 −
h
2

, x2 +

√
3

2
h, t + τ), uk+1

P3
= u(x1 −

h
2

, x2 −
√

3
2

h, t + τ)

uk+1
P2

= u(x1 − h, x2, t + τ), uk+1
P5

= u(x1 + h, x2, t + τ)

uk+1
P4

= u(x1 +
h
2

, x2 −
√

3
2

h, t + τ), uk+1
P6

= u(x1 +
h
2

, x2 +

√
3

2
h, t + τ)

uk+1
P0

= u(x1, x2, t + τ), uk+1
PA

= u( p̂, x2, t + τ),

where ( p̂, x2, t + τ) ∈ Sh
T and the value of p̂ = 0 if P0 ∈ D∗lhγτ and p̂ = a1 if P0 ∈ D∗rhγτ .

Moreover, uk+1
h,τ,Pi

, i = 0, ..., 6, uk+1
h,τ,PA

, present the numerical solution at the same space
coordinates of Pi, i = 0, ..., 6 and PA accordingly for time moments t + τ. We also use the
following notations in Table 1 to denote the values and partial derivatives of the heat source
function f and ft =

∂ f
∂t with respect to the space variables.

Table 1. Basic notations for the heat source function f and ft.

f ft

f k+1
P0

= f (x1, x2, t + τ) f k+1
t,P0

= ∂ f
∂t

∣∣∣
(x1,x2,t+τ)

f k+1
PA

= f ( p̂, x2, t + τ) f k+1
t,PA

= ∂ f
∂t

∣∣∣
( p̂,x2,t+τ)

f k
PA

= f ( p̂, x2, t) f k
t,PA

= ∂ f
∂t

∣∣∣
( p̂,x2,t)

∂xj f k
PA

= ∂ f
∂xj

∣∣∣
( p̂,x2,t)

, j = 1, 2 ∂xj f k
t,PA

= ∂2 f
∂xj∂t

∣∣∣
( p̂,x2,t)

, j = 1, 2

∂2
xj

f k+1
P0

= ∂2 f
∂x2

j

∣∣∣∣
(x1,x2,t+τ)

, j = 1, 2 ∂2
xj

f k+1
t,P0

= ∂3 f
∂x2

j ∂t

∣∣∣∣
(x1,x2,t+τ)

, j = 1, 2

∂2
x2

∂x1 f k+1
P0

= ∂3 f
∂x2

2∂x1

∣∣∣∣
(x1,x2,t+τ)

∂2
x2

∂x1 f k+1
t,P0

= ∂4 f
∂x2

2∂x1∂t

∣∣∣∣
(x1,x2,t+τ)

∂2
x1

∂x2 f k+1
P0

= ∂3 f
∂x2

1∂x2

∣∣∣∣
(x1,x2,t+τ)

∂2
x1

∂x2 f k+1
t,P0

= ∂4 f
∂x2

1∂x2∂t

∣∣∣∣
(x1,x2,t+τ)

For computing numerically the solution of the BVP(u) we use the following difference
problem given in Buranay and Arshad [18] and call this Stage 1

(
H4th(u)

)
.

Stage 1
(

H4th(u)
)

Θ̃h,τuk+1
h,τ = Λ̃h,τuk

h,τ + ψ̃ on D0hγτ ,

Θ̃∗h,τuk+1
h,τ = Λ̃∗h,τuk

h,τ + Γ̃∗h,τφ + ψ̃∗ on D∗hγτ ,

uh,τ = ϕ(x1, x2), t = 0 on Dh,

uh,τ = φ(x1, x2, t) on Sh
T , (17)
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k = 0, ..., M′− 1, where ϕ, φ are the initial and boundary functions in (11), respectively,
also

ψ̃ = f k+1
P0

+
1
16

h2
(

∂2
x1

f k+1
P0

+ ∂2
x2

f k+1
P0

)
, (18)

ψ̃∗ =
h2

96τω
f k+1
PA
− h2

96τω
f k
PA
− 1

6
f k+1
PA

+ f k+1
P0

+
1
16

h2
(

∂2
x1

f k+1
P0

+ ∂2
x2

f k+1
P0

)
, (19)

Θ̃h,τuk+1 =

(
3

4τ
+

4ω

h2

)
uk+1

P0
+

(
1

24τ
− 2ω

3h2

) 6

∑
i=1

uk+1
Pi

, (20)

Λ̃h,τuk =
3

4τ
uk

P0
+

1
24τ

6

∑
i=1

uk
Pi

, (21)

Θ̃∗h,τuk+1 =

(
17

24τ
+

14ω

3h2

)
uk+1

P0
+

(
1

24τ
− 2ω

3h2

)(
u(p, x2 +

√
3

2
h, t + τ)

+u(p, x2 −
√

3
2

h, t + τ) + u(p + η, x2, t + τ)

)
, (22)

Γ̃∗h,τφ =

(
− 1

36τ
+

4ω

9h2

)(
φ( p̂, x2 +

√
3

2
h, t + τ) + φ( p̂, x2 −

√
3

2
h, t + τ)

)

+

(
1

18τ
+

16ω

9h2

)
φ( p̂, x2, t + τ)− 1

18τ
φ( p̂, x2, t)

+
1

36τ

(
φ( p̂, x2 +

√
3

2
h, t) + φ( p̂, x2 −

√
3

2
h, t)

)
, (23)

Λ̃∗h,τuk =
17

24τ
uk

P0
+

1
24τ

(
u(p, x2 +

√
3

2
h, t)

+u(p, x2 −
√

3
2

h, t) + u(p + η, x2, t)

)
, (24)

and {
p = h, p̂ = 0, η = h

2 if P0 ∈ D∗lhγτ ,
p = a1 − h, p̂ = a1, η = − h

2 if P0 ∈ D∗rhγτ .
(25)

2.2. Dirichlet Problem for the Rate of Change and Difference Problem: Stage 1
(

H4th
(

∂u
∂t

))
Further, for the computation of ∂u

∂t , we construct the next boundary value problem
denoted by ut =

∂u
∂t which defines the rate of change function

BVP
(

∂u
∂t

)
∂ut

∂t
= ω

(
∂2ut

∂x2
1
+

∂2ut

∂x2
2

)
+ ft (x1, x2, t) on QT ,

ut(x1, x2, 0) = ϕ̂ (x1, x2) on D,

ut(x1, x2, t) = φt (x1, x2, t) on ST , (26)
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where

ft =
∂ f (x1, x2, t)

∂t
,

ϕ̂ = ω

(
∂2 ϕ

∂x2
1
+

∂2 ϕ

∂x2
2

)
+ f (x1, x2, 0),

φt =
∂φ(x1, x2, t)

∂t
, (27)

and ϕ, φ are the initial and boundary functions in (11).

Assuming ut ∈ C7+α, 7+α
2

x,t
(
QT
)
, fourth-order accurate implicit schemes for the solution

of the BVP
(

∂u
∂t

)
is proposed with the following difference problem. This stage is called

Stage 1
(

H4th
(

∂u
∂t

))
.

Stage 1
(

H4th
(

∂u
∂t

))
Θ̃h,τuk+1

t,h,τ = Λ̃h,τuk
t,h,τ + ψ̃t on D0hγτ ,

Θ̃∗h,τuk+1
t,h,τ = Λ̃∗h,τuk

t,h,τ + Γ̃∗h,τφt + ψ̃∗t on D∗hγτ ,

ut,h,τ = ϕ̂, t = 0 on Dh,

ut,h,τ = φt(x1, x2, t) on Sh
T , (28)

k = 0, ..., M′ − 1, where the operators Θ̃h,τ , Λ̃h,τ , Θ̃∗h,τ , Γ̃∗h,τ and Λ̃∗h,τ are presented in
(20)–(24), respectively, and

ψ̃t = f k+1
t,P0

+
1

16
h2
(

∂2
x1

f k+1
t,P0

+ ∂2
x2

f k+1
t,P0

)
, (29)

ψ̃∗t =
h2

96τω
f k+1
t,PA
− h2

96τω
f k
t,PA
− 1

6
f k+1
t,PA

+ f k+1
t,P0

+
1

16
h2
(

∂2
x1

f k+1
t,P0

+ ∂2
x2

f k+1
t,P0

)
. (30)

2.3. M−Matrices and Convergence of Finite Difference Schemes in Stage 1
(

H4th(u)
)

and

Stage 1
(

H4th
(

∂u
∂t

))
Let A =

[
ai,j
]

and B =
[
bi,j
]
, i = 1, 2, ..., N and j = 1, 2, ..., N be real matrices. We

denote by A > 0 (A ≥ 0) if ai,j > 0 (ai,j ≥ 0) for all i, j. Also A < B (A ≤ B) if ai,j < bi,j
(ai,j ≤ bi,j). Analogous notation is also used for the vectors. Further, let w be a vector with
coordinates wj, j = 1, 2, ..., N, the vector with coordinates

∣∣wj
∣∣ is denoted by |w|. For a fixed

time level k ≥ 0 we present the Equations (17) and (28) in matrix form with N unknown
interior grid points Lj, j = 1, 2, ..., N, labeled using standard ordering as

Ãũk+1 = B̃ũk + τq̃k
u,

Ãũk+1
t = B̃ũk

t + τq̃k
ut , (31)

respectively, where Ã, B̃ ∈ RN×N and ũk, q̃k
u, ũk

t , q̃k
ut ∈ RN and

Ã =

(
Ĕ1 +

1
24

Inc +
ωτ

h2 C̃
)

, B̃ =

(
Ĕ1 +

1
24

Inc
)

, (32)

C̃ = Ĕ2 −
2
3

Inc ∈ RN×N . (33)
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and Inc is the neighboring topology matrix, Ĕ1, Ĕ2 are diagonal matrices with entries

[
Ĕ1
]

j,j =

{ 3
4 if Lj ∈ D0hγτ

17
24 if Lj ∈ D∗hγτ

, j = 1, 2, ..., N, (34)

[
Ĕ2
]

j,j =

{
4 if Lj ∈ D0hγτ
14
3 if Lj ∈ D∗hγτ

, j = 1, 2, ..., N, (35)

respectively (see Buranay and Arshad [18]).

Lemma 1. (Buranay and Arshad [18]) (a) The matrices Ã and B̃ in (31) are symmetric positive
definite (spd) matrices

(b) Â = I + ωτ
h2 B̃−1C̃ is spd matrix and

∥∥∥Â
−1
∥∥∥

2
< 1.

Lemma 2. The matrix Ã in (31) is nonsingular M−matrix for r = ωτ
h2 ≥ 1

16 .

Proof. Taking into consideration Lemma 1, the matrix Ã is a spd matrix. Further, using
the Equations (32)–(35), Ã is strictly diagonally dominant matrix with positive diagonal
entries. Furthermore, off-diagonal entries are non-positive for r = ωτ

h2 ≥ 1
16 . Therefore, it is

nonsingular M−matrix.

Let

ξu
h,τ = uh,τ − u on Dhγτ (36)

ξut
h,τ = ut,h,τ − ut on Dhγτ (37)

From (17) and (36) the error function (36) satisfies the following system as given in
Buranay and Arshad: [18]

Θ̃h,τξu,k+1
h,τ = Λ̃h,τξu,k

h,τ + Ψ̃u,k
1 on D0hγτ ,

Θ̃∗h,τξu,k+1
h,τ = Λ̃∗h,τξu,k

h,τ + Ψ̃u,k
2 on D∗hγτ ,

ξu
h,τ = 0, t = 0 on Dh,

ξu
h,τ = 0 on Sh

T , (38)

where

Ψ̃u,k
1 = Λ̃h,τuk − Θ̃h,τuk+1 + ψ̃, (39)

Ψ̃u,k
2 = Λ̃∗h,τuk − Θ̃∗h,τuk+1 + Γ̃∗h,τφ + ψ̃∗, (40)

and ψ̃, ψ̃∗ and φ are presented in (17). Analogously, using (28) and (37) the error function
(37) satisfies the following system:

Θ̃h,τξut ,k+1
h,τ = Λ̃h,τξut ,k

h,τ + Ψ̃ut ,k
1 on D0hγτ ,

Θ̃∗h,τξut ,k+1
h,τ = Λ̃∗h,τξut ,k

h,τ + Ψ̃ut ,k
2 on D∗hγτ ,

ξut
h,τ = 0, t = 0 on Dh,

ξut
h,τ = 0 on Sh

T , (41)

where

Ψ̃ut ,k
1 = Λ̃h,τuk

t − Θ̃h,τuk+1
t + ψ̃t, (42)

Ψ̃ut ,k
2 = Λ̃∗h,τuk

t − Θ̃∗h,τuk+1
t + Γ̃∗h,τφt + ψ̃∗t , (43)
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and φt, ψ̃t, and ψ̃∗t are the given functions in (27), (29) and (30) respectively.
Further, the following systems are considered:

Θ̃h,τŵk+1
h,τ = Λ̃h,τŵk

h,τ + κ̂k
1 on D0hγτ ,

Θ̃∗h,τŵk+1
h,τ = Λ̃∗h,τŵk

h,τ + Γ̃∗h,τŵφ,h,τ + κ̂k
2 on D∗hγτ ,

ŵh,τ = ŵϕ,h,τ , t = 0 on Dh,

ŵh,τ = ŵφ,h,τ on Sh
T , (44)

Θ̃h,τwk+1
h,τ = Λ̃h,τwk

h,τ + κk
1 on D0hγτ ,

Θ̃∗h,τwk+1
h,τ = Λ̃∗h,τwk

h,τ + Γ̃∗h,τwφ,h,τ + κk
2 on D∗hγτ ,

wh,τ = wϕ,h,τ , t = 0 on Dh,

wh,τ = wφ,h,τ on Sh
T , (45)

for k = 0, ..., M′ − 1, where κ̂k
1, κ̂k

2 and κk
1, κk

2 are given functions. The algebraic systems (44)
and (45) at a fixed time level k ≥ 0 may be given in matrix representation as

Ãŵk+1 = B̃ŵk + τκ̂k, (46)

Ãwk+1 = B̃wk + τκk, (47)

accordingly. In these equations, ŵk, wk, κ̂k, κk ∈ RN and the matrices Ã and B̃ are given
in (32).

Lemma 3. Let the solutions of (46) and (47) be presented by ŵk+1 and wk+1, respectively, for
r = ωτ

h2 ≥ 1
16 . If

w0 ≥ 0 and κk ≥ 0 (48)∣∣∣ŵ0
∣∣∣ ≤ w0, (49)∣∣∣κ̂k
∣∣∣ ≤ κk, (50)

for k = 0, ..., M′ − 1 then

∣∣∣ŵk+1
∣∣∣ ≤ wk+1, k = 0, ..., M′ − 1, (51)

Proof. From Lemma 2, when r = ωτ
h2 ≥ 1

16 the matrix Ã is nonsingular M−matrix therefore,
Ã−1 ≥ 0. Furthermore, from (32) B̃ ≥ 0 and using (48) it follows that κk ≥ 0, k = 0, ..., M′− 1
and w0 ≥ 0. Further, assuming wk ≥ 0 and from induction we achieve

wk+1 = Ã−1B̃wk + τA−1κk ≥ 0, (52)

which gives wk+1 ≥ 0 for k = 0, ..., M′ − 1. Next, assume that
∣∣∣ŵk
∣∣∣ ≤ wk using (46)–(50),

and by induction it follows that

ŵk+1 = Ã−1B̃ŵk + τÃ−1κ̂k (53)∣∣∣ŵk+1
∣∣∣ ≤ Ã−1B̃

∣∣∣ŵk
∣∣∣+ τÃ−1

∣∣∣κ̂k
∣∣∣

≤ Ã−1B̃wk + τÃ−1κk = wk+1, for k = 0, ..., M′ − 1. (54)
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Remark 1. Writing the implicit schemes on hexagonal grids for the problems (17) and (28) in the
canonical form it follows that the maximum principle holds when r = ωτ

h2 ≥ 1
16 . Further, Lemma 3

is the consequence of comparison theorem (see Chapter 4, Section 4.2 Theorem 1 and Theorem 2 in
Samarskii [37]) applied to the systems (44) and (45).

Additionally, let

µ1(u) = max

{
max

QT

∣∣∣∣∣ ∂5u
∂x4

1∂t

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂5u
∂x4

2∂t

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂5u
∂x2

1∂x2
2∂t

∣∣∣∣∣ ,
max

QT

∣∣∣∣∣ ∂6u
∂x4

1∂x2
2

∣∣∣∣∣, max
QT

∣∣∣∣∣ ∂6u
∂x2

1∂x4
2

∣∣∣∣∣, max
QT

∣∣∣∣∣∂6u
∂x6

1

∣∣∣∣∣, max
QT

∣∣∣∣∣∂6u
∂x6

2

∣∣∣∣∣
}

, (55)

µ2(u) = max
QT

∣∣∣∣∂2u
∂t2

∣∣∣∣. (56)

Theorem 1. For the solution of the system (38) and (41) when r = ωτ
h2 ≥ 1

16 , the following
pointwise error estimations hold true:∣∣∣ξu

h,τ(x1, x2, t)
∣∣∣ ≤ dΩ̃1(h, τ)ρ(x1, x2, t) on Dhγτ , (57)∣∣∣ξut

h,τ(x1, x2, t)
∣∣∣ ≤ dΩ̃t,1(h, τ)ρ(x1, x2, t) on Dhγτ , (58)

respectively, where

Ω̃1(h, τ) =
3
5

β̃τ +

(
3

160
+

47
2880

ω

)
α̃h4, (59)

Ω̃t,1(h, τ) =
3
5

β̃tτ +

(
3

160
+

47
2880

ω

)
α̃th4, (60)

and α̃ = µ1(u), α̃t = µ1(ut) and β̃ = µ2(u), β̃t = µ2(ut) and

d = max
{ a1

2ω
,

a2

2ω
, 1
}

, (61)

and u is the solution of BVP(u) and ρ(x1, x2, t) is the function giving the distance from the
considered hexagonal grid point (x1, x2, t) ∈ Dhγτ to the surface of QT .

Proof. We give the proof of (57) by considering the auxiliary system

Θ̃h,τ ξ̂u,k+1
h,τ = Λ̃h,τ ξ̂u,k

h,τ + Ω̃1(h, τ) on D0hγτ ,

Θ̃∗h,τ ξ̂u,k+1
h,τ = Λ̃∗h,τ ξ̂u,k

h,τ +
5
6

Ω̃1(h, τ) on D∗hγτ

ξ̂u
h,τ = ξ̂u

ϕ,h,τ = 0, t = 0 on Dh,

ξ̂u
h,τ = ξ̂u

φ,h,τ = 0 on Sh
T , (62)

and the majorant functions

ξ
u
1 (x1, x2, t) =

1
2ω

Ω̃1(h, τ)
(

a1x1 − x2
1

)
≥ 0 on Dhγτ , (63)

ξ
u
2 (x1, x2, t) =

1
2ω

Ω̃1(h, τ)
(

a2x2 − x2
2

)
≥ 0 on Dhγτ , (64)

ξ
u
3 (x1, x2, t) = Ω̃1(h, τ)t ≥ 0 on Dhγτ , (65)
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which ξ
u
l (x1, x2, t), satisfy the following difference problem for l = 1, 2, 3, respectively.

Θ̃h,τξ
u,k+1
l,h,τ = Λ̃h,τξ

u,k
l,h,τ + Ω̃1(h, τ) on D0hγτ ,

Θ̃∗h,τξ
u,k+1
l,h,τ = Λ̃∗h,τξ

u,k
l,h,τ + Γ̃∗h,τξ

u∗
l,φ,h,τ +

5
6

Ω̃1(h, τ) on D∗hγτ ,

ξ
u
l,h,τ = ξ

u
l,ϕ,h,τ = ξ

u
l (x1, x2, 0) ≥ 0, t = 0 on Dh,

ξ
u
l,h,τ = ξ

u∗
l,φ,h,τ ≥ 0 on Sh

T . (66)

Therefore, difference problems (62) and (66) in matrix form are

Ãξ̂u,k+1 = B̃ξ̂u,k + τη̂u,k, (67)

Ãξ
u,k+1
i = B̃ξ

u,k
i + τηu,k

i , i = 1, 2, 3, (68)

accordingly, and Ã and B̃ are as given in (32) and ηu,k
i , ξ

u,k
i , i = 1, 2, 3 and ξ̂u,k, η̂u,k,∈ RN

satisfying ξ
u,0
i ≥ 0 ,

∣∣∣ξ̂u,0
∣∣∣ ≤ ξ

u,0
i , and ηu,k

i ≥ 0, and
∣∣∣η̂u,k

∣∣∣ ≤ ηu,k
i , i = 1, 2, 3, for k =

0, ..., M′ − 1. Using that Ω̃1(h, τ) ≥
∣∣∣Ψ̃u,k

1

∣∣∣ on D0hγτ , and 5
6 Ω̃1(h, τ) ≥

∣∣∣Ψ̃u,k
2

∣∣∣ on D∗hγτ and
on the basis of Lemma 3 we obtain∣∣∣ξu

h,τ(x1, x2, t)
∣∣∣ ≤ min

i=1,2,3
ξ

u
i (x1, x2, t) ≤ dΩ̃1(h, τ)ρ(x1, x2, t) on Dhγτ . (69)

The proof of (58) is analogous and follows from Lemma 3 by taking the majorant
functions

ξ
ut
1 (x1, x2, t) =

1
2ω

Ω̃t,1(h, τ)
(

a1x1 − x2
1

)
≥ 0 on Dhγτ , (70)

ξ
ut
2 (x1, x2, t) =

1
2ω

Ω̃t,1(h, τ)
(

a2x2 − x2
2

)
≥ 0 on Dhγτ , (71)

ξ
ut
3 (x1, x2, t) = Ω̃t,1(h, τ)t ≥ 0 on Dhγτ , (72)

where Ω̃t,1(h, τ) is as given in (60).

3. Second Stages of the Implicit Methods Approximating ∂u
∂x1

and ∂2u
∂x1∂t with O(h4 + τ)

Order of Convergence

Let

STγ1 = γ1 × (0, T] = {(0, x2, t) : (0, x2) ∈ γ1, t ∈ (0, T]},
STγ2 = γ2 × (0, T] = {(x1, 0, t) : (x1, 0) ∈ γ2, t ∈ (0, T]},
STγ3 = γ3 × (0, T] = {(a1, x2, t) : (a1, x2) ∈ γ3, t ∈ (0, T]},
STγ4 = γ4 × (0, T] = {(x1, a2, t) : (x1, a2) ∈ γ4, t ∈ (0, T]},
STγ5 =

{
(x1, x2, 0) : (x1, x2) ∈ D, t = 0

}
, (73)

and the corresponding sets of grid points is shown by Sh
Tγi, i = 1, 2, ..., 5.

3.1. Hexagonal Grid Approximation to ∂u
∂x1

: Stage 2
(

H4th
(

∂u
∂x1

))
For obtaining fourth-order accurate numerical approximation to v = ∂u

∂x1
first we apply

the implicit method given in Stage 1
(

H4th(u)
)

and compute the approximate solution

uh,τ . Next, we denote pi =
∂u
∂x1

on STγi, i = 1, 2, ..., 5 and use the next problem given in
Buranay et al. [26].
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Boundary Value Problem for v = ∂u
∂x1

(
BVP

(
∂u
∂x1

))
Lv =

∂ f (x1, x2, t)
∂x1

on QT ,

v(x1, x2, t) = pi on STγi, i = 1, 2, ..., 5, (74)

where, f (x1, x2, t) is the given heat source function in (11) and

L ≡ ∂

∂t
−ω

(
∂2

∂x2
1
+

∂2

∂x2
2

)
. (75)

Taking into consideration u ∈ C9+α, 9+α
2

x,t
(
QT
)
, we require v ∈ C8+α,4+ α

2
x,t

(
QT
)
. Further,

we take

p4th

1h =



1
12h (−25u(0, x2, t) + 48uh,τ(h, x2, t)
−36uh,τ(2h, x2, t) + 16uh,τ(3h, x2, t)
−3uh,τ(4h, x2, t)) if P0 ∈ D0hγτ ,

1
840h

(
−2816u(0, x2, t) + 3675uh,τ

(
h
2 , x2, t

)
−1225uh,τ

(
3h
2 , x2, t

)
+ 441uh,τ

(
5h
2 , x2, t

)
−75uh,τ

(
7h
2 , x2, t

))
if P0 ∈ D∗lhγτ ,

on Sh
Tγ1, (76)

p4th

3h =



1
12h (25u(a1, x2, t)− 48uh,τ(a1 − h, x2, t)

+36uh,τ(a1 − 2h, x2, t)− 16uh,τ(a1 − 3h, x2, t)
+3uh,τ(a1 − 4h, x2, t)) if P0 ∈ D0hγτ , ,

1
840h

(
2816u(a1, x2, t)− 3675uh,τ

(
a1 − h

2 , x2, t
)

+1225uh,τ

(
a1 − 3h

2 , x2, t
)
− 441uh,τ

(
a1 − 5h

2 , x2, t
)

+75uh,τ

(
a1 − 7h

2 , x2, t
))

if P0 ∈ D∗rhγτ

on Sh
Tγ3, (77)

pih =
∂φ(x1, x2, t)

∂x1
on Sh

Tγi, i = 2, 4, (78)

p5h =
∂ϕ(x1, x2)

∂x1
on Sh

Tγ5, (79)

where ϕ(x1, x2), φ(x1, x2, t) are as in (11), and uh,τ is obtained by using Stage 1
(

H4th(u)
)

.

Lemma 4. Let u be the solution of BVP(u) in (11) and uh,τ be the solution of (17) in Stage

1
(

H4th(u)
)

. Then, it holds that∣∣∣p4th

ih (uh,τ)− p4th

ih (u)
∣∣∣ ≤ 15dΩ̃1(h, τ), i = 1, 3, (80)

where Ω̃1(h, τ) in (59) and d in (61) was defined.

Proof. Using (76) and (77) from Theorem 1, and using (57) when P0 ∈ D0hγτ gives∣∣∣p4th

ih (uh,τ)− p4th

ih (u)
∣∣∣ ≤ 1

12h

(
48hdΩ̃1(h, τ) + 36(2h)dΩ̃1(h, τ)

+16(3h)dΩ̃1(h, τ) + 3(4h)dΩ̃1(h, τ)
)

≤ 15dΩ̃1(h, τ), i = 1, 3, if P0 ∈ D0hγτ , (81)
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where Ω̃1(h, τ) in (59) and d in (61) was defined. In the case P0 ∈ D∗hγτ it follows that∣∣∣p4th

ih (uh,τ)− p4th

ih (u)
∣∣∣ ≤ 1

840h

(
3675

h
2

dΩ̃1(h, τ) + 1225
3h
2

dΩ̃1(h, τ)

+441
5h
2

dΩ̃1(h, τ) + 75
7h
2

dΩ̃1(h, τ)

)
≤ 6dΩ̃1(h, τ), i = 1, 3 if P0 ∈ D∗hγτ . (82)

Therefore, follows (80).

Lemma 5. Let uh,τ be the solution of the problem (17) in Stage 1
(

H4th(u)
)

. Then, it holds that

max
Sh

Tγ1∪Sh
Tγ3

∣∣∣p4th

ih (uh,τ)− pi

∣∣∣ ≤ M̃1h4 + 15dΩ̃1(h, τ), i = 1, 3, (83)

where M̃1 = 1
5 max

QT

∣∣∣∣ ∂5u
∂x5

1

∣∣∣∣ and Ω̃1(h, τ) in (59) and d in (61) was defined.

Proof. On the basis of u ∈ C9+α, 9+α
2

x,t
(
QT
)
, at the points (0, x2, kτ) ∈ Sh

Tγ1 and (a1, x2, kτ) ∈
Sh

Tγ3 of each line segment[(
x1, η

√
3

2
h, kτ

)
: 0 ≤ x1 ≤ a1, 0 ≤ x2 = η

√
3

2
h ≤ a2, 0 ≤ t = kτ ≤ T

]
,

we obtain fourth order approximation of ∂u
∂x1

by the Formulas (76) and (77). From truncation
error formula (see Burden and Faires [38]) results

max
Sh

Tγ1∪Sh
Tγ3

∣∣∣p4th

ih (u)− pi

∣∣∣ ≤ h4

5
max

QT

∣∣∣∣∣∂5u
∂x5

1

∣∣∣∣∣, i = 1, 3 if P0 ∈ D0hγτ . (84)

Analogously,

max
Sh

Tγ1∪Sh
Tγ3

∣∣∣p4th

ih (u)− pi

∣∣∣ ≤ 7h4

128
max

QT

∣∣∣∣∣∂5u
∂x5

1

∣∣∣∣∣, i = 1, 3 if P0 ∈ D∗hγτ , (85)

Using Lemma 4 and the estimations (84) and (85) follows (83).

Subsequently, for fourth order numerical solution of BVP
(

∂u
∂x1

)
we propose the fol-

lowing problem and call this Stage 2
(

H4th
(

∂u
∂x1

))
Stage 2

(
H4th

(
∂u
∂x1

))
Θ̃h,τvk+1

h,τ = Λ̃h,τvk
h,τ + D̃x1 ψ̃ on D0hγτ ,

Θ̃∗h,τvk+1
h,τ = Λ̃∗h,τvk

h,τ + Γ̃∗h,τ p4th

1h (uh,τ) + D̃x1 ψ̃∗ on D∗lhγτ

Θ̃∗h,τvk+1
h,τ = Λ̃∗h,τvk

h,τ + Γ̃∗h,τ p4th

3h (uh,τ) + D̃x1 ψ̃∗ on D∗rhγτ

vh,τ = p4th

ih (uh,τ) on Sh
Tγi, i = 1, 3,

vh,τ = pih on Sh
Tγi, i = 2, 4, 5 (86)
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where p4th

1h , p4th

3h , pih , i = 2, 4, 5 are defined by (76)–(79) and the operators Θ̃h,τ ,
Λ̃h,τ , Θ̃∗h,τ , Γ̃∗h,τ and Λ̃∗h,τ are the operators given in (20)–(24), respectively. Further-
more,

D̃x1 ψ̃ = ∂x1 f k+1
P0

+
1

16
h2
(

∂3
x1

f k+1
P0

+ ∂2
x2

∂x1 f k+1
P0

)
, (87)

D̃x1 ψ̃∗ =
h2

96τω
∂x1 f k+1

PA
− h2

96τω
∂x1 f k

PA
− 1

6
∂x1 f k+1

PA
+ ∂x1 f k+1

P0

+
1
16

h2
(

∂3
x1

f k+1
P0

+ ∂2
x2

∂x1 f k+1
P0

)
(88)

Let
ξv

h,τ = vh,τ − v on Dhγτ , (89)

where v = ∂u
∂x1

. From (86) and (89) we have

Θ̃h,τξv,k+1
h,τ = Λ̃h,τξv,k

h,τ + Ψ̃v,k
1 on D0hγτ ,

Θ̃∗h,τξv,k+1
h,τ = Λ̃∗h,τξv,k

h,τ + Γ̃∗h,τξ∗vh,τ + Ψ̃v,k
2 on D∗hγτ

ξv
h,τ = 0 on Sh

Tγi, i = 2, 4, 5,

ξv
h,τ = ξ∗vh,τ = p4th

ih (uh,τ)− pi on Sh
Tγi, i = 1, 3. (90)

where

Ψ̃v,k
1 = Λ̃h,τvk − Θ̃h,τvk+1 + D̃x1 ψ̃, (91)

Ψ̃v,k
2 = Λ̃∗h,τvk − Θ̃∗h,τvk+1 + Γ̃∗h,τ pi + D̃x1 ψ̃∗, i = 1, 3. (92)

Next, let θ̃1 = µ1(v), σ̃1 = µ2(v), where µ1, µ2 are given in (55) and (56), respectively,
and

θ̃ = max

{
θ̃1,

M̃1

$
+ 15

d
$

(
3

160
+

47ω

2880

)
α̃

}
, (93)

σ̃ = max
{

σ̃1, 15dβ̃
}

, (94)

where α̃ = µ1(u), β̃ = µ2(u) and d in (61), also M̃1 is as given in Lemma 5 and
$ = 3

640ω + 47
11,520 .

Theorem 2. The solution vh,τ of the finite difference problem given in Stage 2
(

H4th
(

∂u
∂x1

))
satisfies

max
Dhγτ

∣∣vh,τ − v
∣∣ ≤ 6

5
σ̃(T + 1)τ +

(
3

640ω
+

47
11, 520

)(
1 + a2

1 + a2
2

)
θ̃h4, (95)

for r = ωτ
h2 ≥ 1

16 where θ̃, σ̃ are as given in (93) and (94), respectively, and v = ∂u
∂x1

is the exact

solution of BVP
(

∂u
∂x1

)
.
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Proof. Consider the next system

Θ̃h,τ ξ̂v,k+1
h,τ = Λ̃h,τ ξ̂v,k

h,τ + Ω̃2(x1) on D0hγτ ,

Θ̃∗h,τ ξ̂v,k+1
h,τ = Λ̃∗h,τ ξ̂v,k

h,τ + Γ̃∗h,τ ξ̂v∗
h,τ + Ω̃2(x1)−

1
6

Ω̃2( p̂) on D∗hγτ ,

ξ̂v
h,τ = 0 on Sh

Tγi, i = 2, 4, 5,

ξ̂v
h,τ = ξ̂v∗

h,τ = p4th

ih (uh,τ)− pi on Sh
Tγi, i = 1, 3, (96)

where

Ω̃2(x1) =
3

5a1
σ̃τ(2a1 − x1) +

(
3

160
+

47
2880

ω

)
θ̃h4,

≥ 3
5

σ̃τ +

(
3

160
+

47
2880

ω

)
θ̃h4 ≥

∣∣∣Ψ̃v,k
1

∣∣∣, (97)

Ω̃2(x1)−
1
6

Ω̃2( p̂) =

 σ̃τ
(

1− 3h
10a1

)
+
(

1
64 + 47

3456 ω
)

θ̃h4 if P0 ∈ D∗lhγτ ,

σ̃τ
(

1
2 + 3h

10a1

)
+
(

1
64 + 47

3456 ω
)

θ̃h4 if P0 ∈ D∗rhγτ ,

≥
∣∣∣Ψ̃v,k

2

∣∣∣. (98)

Further, x1 = h
2 and p̂ = 0 if P0 ∈ D∗lhγτ and x1 = a1 − h

2 , p̂ = a1 if P0 ∈ D∗rhγτ . We
take the majorant function

ξ
v
(x1, x2, t) = ξ

v
1(x1, x2, t) + ξ

v
2(x1, x2, t), (99)

where

ξ
v
1(x1, x2, t) =

3
5a1

σ̃τ(t + 1)(2a1 − x1) on Dhγτ ,

ξ
v
2(x1, x2, t) =

(
3

640ω
+

47
11, 520

)
θ̃h4
(

1 + a2
1 + a2

2 − x2
1 − x2

2

)
on Dhγτ .

The function in (99) satisfies the difference problem

Θ̃h,τξ
v,k+1
h,τ = Λ̃h,τξ

v,k
h,τ + Ω̃2(x1) on D0hγτ ,

Θ̃∗h,τξ
v,k+1
h,τ = Λ̃∗h,τξ

v,k
h,τ + Γ̃∗h,τξ

v∗
h,τ + Ω̃2(x1)−

1
6

Ω̃2( p̂) on D∗hγτ ,

ξ
v
h,τ = ξ

v∗
h,τ = ξ

v
1(0, x2, t) + ξ

v
2(0, x2, t) on Sh

Tγ1,

ξ
v
h,τ = ξ

v
1(x1, 0, t) + ξ

v
2(x1, 0, t) on Sh

Tγ2,

ξ
v
h,τ = ξ

v∗
h,τ = ξ

v
1(a1, x2, t) + ξ

v
2(a1, x2, t) on Sh

Tγ3,

ξ
v
h,τ = ξ

v
1(x1, a2, t) + ξ

v
2(x1, a2, t) on Sh

Tγ4,

ξ
v
h,τ = ξ

v
1(x1, x2, 0) + ξ

v
2(x1, x2, 0) on Sh

Tγ5. (100)

Next, for k = 0, ..., M′ − 1, we put the Equations (96) and (100) in matrix form as

Ãξ̂v,k+1 = B̃ξ̂v,k + τη̂v,k, (101)

Ãξ
v,k+1

= B̃ξ
v,k

+ τηv,k, (102)
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where Ã, B̃ are as given in (32) and ξ̂v,k, ξ
v,k

, η̂v,k, ηv,k ∈ RN . Using (97)–(100) we have
ξ

v,0 ≥ 0 , and ηv,k ≥ 0 , and
∣∣∣η̂v,k

∣∣∣ ≤ ηv,k for k = 0, ..., M′ − 1, and
∣∣∣ξ̂v,0

∣∣∣ ≤ ξ
v,0

. Then

Lemma 3 implies that
∣∣∣ξ̂v,k+1

∣∣∣ ≤ ξ
v,k+1

. Furthermore,

ξ
v
(x1, x2, t) ≤ ξ

v
(0, 0, T)

=
6
5

σ̃(T + 1)τ +

(
3

640ω
+

47
11, 520

)(
1 + a2

1 + a2
2

)
θ̃h4,

yielding (95).

3.2. Boundary Value Problem for ∂2u
∂x1∂t and Hexagonal Grid Approximation: Stage

2
(

H4th
(

∂2u
∂x1∂t

))
First, we construct BVP( ∂u

∂t ) and obtain the approximate solution ut,h,τ by using the

implicit method given in Stage 1
(

H4th
(

∂u
∂t

))
. Next, we denote pt,i =

∂2u
∂x1∂t on STγi, i =

1, 2, ..., 5 and propose the below problem for vt =
∂2u

∂x1∂t .

Boundary Value Problem
(

BVP
(

∂2u
∂x1∂t

))
Lvt =

∂2 f (x1, x2, t)
∂x1∂t

on QT ,

vt(x1, x2, t) = pt,i on STγi, i = 1, 2, ..., 5. (103)

From u ∈ C9+α, 9+α
2

x,t
(
QT
)
, we assume that the solution vt ∈ C6+α,3+ α

2
x,t

(
QT
)
. We take

p4th

t,1h =



1
12h (−25ut(0, x2, t) + 48ut,h,τ(h, x2, t)
−36ut,h,τ(2h, x2, t) + 16ut,h,τ(3h, x2, t)
−3ut,h,τ(4h, x2, t)) if P0 ∈ D0hγτ ,

1
840h

(
−2816ut(0, x2, t) + 3675ut,h,τ

(
h
2 , x2, t

)
−1225ut,h,τ

(
3h
2 , x2, t

)
+ 441ut,h,τ

(
5h
2 , x2, t

)
−75ut,h,τ

(
7h
2 , x2, t

))
if P0 ∈ D∗lhγτ ,

on Sh
Tγ1, (104)

p4th

t,3h =



1
12h (25ut(a1, x2, t)− 48ut,h,τ(a1 − h, x2, t)

+36ut,h,τ(a1 − 2h, x2, t)− 16ut,h,τ(a1 − 3h, x2, t)
+3ut,h,τ(a1 − 4h, x2, t)) if P0 ∈ D0hγτ ,

1
840h

(
2816ut(a1, x2, t)− 3675ut,h,τ

(
a1 − h

2 , x2, t
)

+1225ut,h,τ

(
a1 − 3h

2 , x2, t
)
− 441ut,h,τ

(
a1 − 5h

2 , x2, t
)

+75ut,h,τ

(
a1 − 7h

2 , x2, t
))

if P0 ∈ D∗rhγτ ,

on Sh
Tγ3, (105)

pt,ih =
∂φt(x1, x2, t)

∂x1
on Sh

Tγi, i = 2, 4, (106)

pt,5h =
∂ϕ̂(x1, x2)

∂x1
on Sh

Tγ5, (107)

where ϕ̂(x1, x2) and φt(x1, x2, t) are as given in (27) and ut,h,τ is the approximate solution

achieved by using Stage 1
(

H4th
(

∂u
∂t

))
.

For a fourth-order accurate hexagonal grid approximation of BVP
(

∂2u
∂x1∂t

)
, we propose
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Stage 2
(

H4th
(

∂2u
∂x1∂t

))
:

Θ̃h,τvk+1
t,h,τ = Λ̃h,τvk

t,h,τ + D̃x1 ψ̃t on D0hγτ ,

Θ̃∗h,τvk+1
t,h,τ = Λ̃∗h,τvk

t,h,τ + Γ̃∗h,τ p4th

t,1h(ut,h,τ) + D̃x1 ψ̃∗t on D∗lhγτ

Θ̃∗h,τvk+1
t,h,τ = Λ̃∗h,τvk

t,h,τ + Γ̃∗h,τ p4th

t,3h(ut,h,τ) + D̃x1 ψ̃∗t on D∗rhγτ

vt,h,τ = p4th

t,ih(ut,h,τ) on Sh
Tγi, i = 1, 3,

vt,h,τ = pt,ih on Sh
Tγi, i = 2, 4, 5 (108)

where p4th

t,1h, p4th

t,3h, pt,ih , i = 2, 4, 5 are defined by (104)–(107) and the operators Θ̃h,τ ,
Λ̃h,τ , Θ̃∗h,τ , Λ̃∗h,τ and Γ̃∗h,τ are the operator given in (20)–(24), respectively. Furthermore,
vt,h,τ is the numerical solution of (108) and

D̃x1 ψ̃t = ∂x1 f k+1
t,P0

+
1
16

h2
(

∂3
x1

f k+1
t,P0

+ ∂2
x2

∂x1 f k+1
t,P0

)
, (109)

D̃x1 ψ̃∗t =
h2

96τω
∂x1 f k+1

t,PA
− h2

96τω
∂x1 f k

t,PA
− 1

6
∂x1 f k+1

t,PA
+ ∂x1 f k+1

t,P0

+
1
16

h2
(

∂3
x1

f k+1
t,P0

+ ∂2
x2

∂x1 f k+1
t,P0

)
. (110)

Let
ξvt

h,τ = vt,h,τ − vt on Dhγτ , (111)

where vt =
∂2u

∂x1∂t . From (108) and (111), we have

Θ̃h,τξvt ,k+1
h,τ = Λ̃h,τξvt ,k

h,τ + Ψ̃vt ,k
1 on D0hγτ ,

Θ̃∗h,τξvt ,k+1
h,τ = Λ̃∗h,τξvt ,k

h,τ + Γ̃∗h,τξ∗vt
h,τ + Ψ̃vt ,k

2 on D∗hγτ ,

ξvt
h,τ = 0 on Sh

Tγi, i = 2, 4, 5,

ξvt
h,τ = ξ∗vt

h,τ = p4th

t,ih(ut,h,τ)− pt,i on Sh
Tγi, i = 1, 3, (112)

where

Ψ̃vt ,k
1 = Λ̃h,τvk

t − Θ̃h,τvk+1
t + D̃x1 ψ̃t, (113)

Ψ̃vt ,k
2 = Λ̃∗h,τvk

t − Θ̃∗h,τvk+1
t + Γ̃∗h,τ pt,i + D̃x1 ψ̃∗t , i = 1, 3. (114)

Let θ̃t,1 = µ1(vt), σ̃t,1 = µ2(vt) where µ1, µ2 are given in (55) and (56), respectively,
and let

θ̃t = max

{
θ̃t,1,

M̃t,1

$
+ 15

d
$

(
3

160
+

47ω

2880

)
α̃t

}
, (115)

σ̃t = max
{

σ̃t,1, 15dβ̃t

}
, (116)

where α̃t = µ1(ut), β̃t = µ2(ut) and d is as given in (61). Furthermore, M̃t,1 = 1
5 max

QT

∣∣∣∣ ∂5ut
∂x5

1

∣∣∣∣
and $ = 3

640ω + 47
11,520 .

Theorem 3. The solution vt,h,τ achieved by using Stage 2
(

H4th
(

∂2u
∂x1∂t

))
satisfies

max
Dhγτ

∣∣vt,h,τ − vt
∣∣ ≤ 6

5
σ̃t(T + 1)τ +

(
3

640ω
+

47
11, 520

)
θ̃t

(
1 + a2

1 + a2
2

)
h4, (117)
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for r = ωτ
h2 ≥ 1

16 where θ̃t, σ̃t are presented in (115) and (116), respectively, and vt =
∂2u

∂x1∂t is the

exact solution of BVP
(

∂2u
∂x1∂t

)
.

Proof. The proof basically is analogous with the proof of Theorem 2 and follows from the

requirement vt ∈ C6+α,3+ α
2

x,t
(
QT
)
.

4. Second Stages of the Implicit Methods Approximating ∂u
∂x2

and ∂2u
∂x2∂t with O(h4 + τ)

Order of Convergence

4.1. Boundary Value Problem for ∂u
∂x2

and Hexagonal Grid Approximation: Stage 2
(

H4th
(

∂u
∂x2

))
Let the BVP(u) be given. First, we apply Stage 1

(
H4th(u)

)
and obtain the approximate

solution uh,τ on the hexagonal grids. Then, by denoting qi =
∂u
∂x2

on STγi, i = 1, 2, ..., 5 we

use the next problem for z = ∂u
∂x2

, proposed in Buranay et al. [26]

Boundary Value Problem for ∂u
∂x2

(
BVP

(
∂u
∂x2

))
Lz =

∂ f (x1, x2, t)
∂x2

on QT ,

z(x1, x2, t) = qi on STγi, i = 1, 2, ..., 5. (118)

We take

q4th

2h =
1

12
√

3h

(
−25u(x1, 0, t) + 48uh,τ

(
x1,
√

3h, t
)
− 36uh,τ

(
x1, 2
√

3h, t
)

+16uh,τ

(
x1, 3
√

3h, t
)
− 3uh,τ

(
x1, 4
√

3h, t
))

on Sh
Tγ2, (119)

q4th

4h =
1

12
√

3h

(
25u(x1, a2, t)− 48uh,τ

(
x1, a2 −

√
3h, t

)
+ 36uh,τ

(
x1, a2 − 2

√
3h, t

)
−16uh,τ

(
x1, a2 − 3

√
3h, t

)
+ 3uh,τ

(
x1, a2 − 4

√
3h, t

))
on Sh

Tγ4, (120)

qih =
∂φ(x1, x2, t)

∂x2
on Sh

Tγi, i = 1, 3, (121)

q5h =
∂ϕ(x1, x2)

∂x2
on Sh

Tγ5, (122)

and ϕ(x1, x2), φ(x1, x2, t) given in (11) are the initial and boundary functions, respectively,
uh,τ is the solution taken by using Stage 1

(
H4th(u)

)
.

Lemma 6. Let u be the solution of (11) and uh,τ be the approximation achieved by using Stage

1
(

H4th(u)
)

. Then, the following inequality holds true∣∣∣q4th

ih (uh,τ)− q4th

ih (u)
∣∣∣ ≤ 15dΩ̃1(h, τ), i = 2, 4, (123)

for r ≥ 1
16 where, Ω̃1(h, τ) is given in (59) and d is defined in (61).
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Proof. From Theorem 1, and using (119) and (120), we have∣∣∣q4th

ih (uh,τ)− q4th

ih (u)
∣∣∣ ≤ 1

12
√

3h

(
48
√

3hdΩ̃1(h, τ) + 36(2
√

3hdΩ̃1(h, τ))

+16(3
√

3hdΩ̃1(h, τ)) + 3(4
√

3hdΩ̃1(h, τ))
)

≤ 15dΩ̃1(h, τ), i = 2, 4. (124)

Thus, we obtain (123).

Lemma 7. Let M̃2 = 9
5 max

QT

∣∣∣∣ ∂5u
∂x5

2

∣∣∣∣ and uh,τ be the approximation taken by using Stage 1
(

H4th(u)
)

.

Then, the following inequality is true:

max
Sh

Tγ2∪Sh
Tγ4

∣∣∣q4th

ih (uh,τ)− qi

∣∣∣ ≤ M̃2h4 + 15dΩ̃1(h, τ), i = 2, 4, (125)

where Ω̃1(h, τ) is given in (59) and d is defined in (61).

Proof. Requiring u ∈ C9+α, 9+α
2

x,t
(
QT
)
, at the points (x1, 0, kτ) ∈ Sh

Tγ2 and (x2, a2, kτ) ∈
Sh

Tγ4 of each line segment

[(σh, x2,kτ) : 0 ≤ x1 = σh ≤ a1, 0 ≤ x2 ≤ a2, 0 ≤ t = kτ ≤ T],

we get fourth-order approximation of ∂u
∂x2

by the difference Formulas (119) and (120). Then,
the truncation error (see Burden and Faires [38]) yields

max
Sh

Tγ2∪Sh
Tγ4

∣∣∣q4th

ih (u)− qi

∣∣∣ ≤ 9
5

h4max
QT

∣∣∣∣∣∂5u
∂x5

2

∣∣∣∣∣, i = 2, 4 . (126)

Taking M̃2 = 9
5 max

QT

∣∣∣∣ ∂5u
∂x5

2

∣∣∣∣ and using Lemma 6 and the estimation (123) and (126)

follows (125).

Second stage of the fourth-order accurate implicit method for the numerical solution
to BVP

(
∂u
∂x2

)
is given as follows:

Stage 2
(

H4th
(

∂u
∂x2

))
Θ̃h,τzk+1

h,τ = Λ̃h,τzk
h,τ + D̃x2 ψ̃ on D0hγτ ,

Θ̃∗h,τzk+1
h,τ = Λ̃∗h,τzk

h,τ + Γ̃∗h,τq1h + D̃x2 ψ̃∗ on D∗lhγτ ,

Θ̃∗h,τzk+1
h,τ = Λ̃∗h,τzk

h,τ + Γ̃∗h,τq3h + D̃x2 ψ̃∗ on D∗rhγτ ,

zh,τ = qih on Sh
Tγi, i = 1, 3, 5,

zh,τ = q4th

ih on Sh
Tγi, i = 2, 4, (127)
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where q4th

ih , i = 2, 4 and qih , i = 1, 3, 5 are defined by (119)–(122) and the operators Θ̃h,τ ,
Λ̃h,τ , Θ̃∗h,τ , Γ̃∗h,τ and Λ̃∗h,τ are the operators given in (20)–(24) respectively. Furthermore,
zh,τ is the numerical solution and

D̃x2 ψ̃ = ∂x2 f k+1
P0

+
1

16
h2
(

∂2
x1

∂x2 f k+1
P0

+ ∂3
x2

f k+1
P0

)
, (128)

D̃x2 ψ̃∗ =
h2

96τω
∂x2 f k+1

PA
− h2

96τω
∂x2 f k

PA
− 1

6
∂x2 f k+1

PA
+ ∂x2 f k+1

P0

+
1
16

h2
(

∂2
x1

∂x2 f k+1
P0

+ ∂3
x2

f k+1
P0

)
(129)

Let
ξz

h,τ = zh,τ − z on Dhγτ . (130)

From (127) and (130), we have

Θ̃h,τξz,k+1
h,τ = Λ̃h,τξz,k

h,τ + Ψ̃z,k
1 on D0hγτ ,

Θ̃∗h,τεz,k+1
h,τ = Λ̃∗h,τεz,k

h,τ + Ψ̃z,k
2 on D∗hγτ ,

εz
h,τ = 0 on Sh

Tγi, i = 1, 3, 5,

εz
h,τ = q4th

ih (uh,τ)− qi on Sh
Tγi, i = 2, 4, (131)

where q4th

2h , q4th

4h are defined by (119) and (120) accordingly, and

Ψ̃z,k
1 = Λ̃h,τzk − Θ̃h,τzk+1 + D̃x2 ψ̃, (132)

Ψ̃z,k
2 = Λ̃∗h,τzk − Θ̃∗h,τzk+1 + Γ̃∗h,τqi + D̃x2 ψ̃∗, i = 1, 3. (133)

Further, let λ̃1 = µ1(z), δ̃1 = µ2(z) where µ1, µ2 are given in (55) and (56), respectively,
and

λ̃ = max

{
λ̃1,

M̃2

$
+ 15

d
$

(
3

160
+

47ω

2880

)
α̃

}
(134)

δ̃ = max
{

δ̃1, 15dβ̃
}

(135)

where α̃ = µ1(u), β̃ = µ2(u) and d is presented in (61) and M̃2 is as given in Lemma 7 and
z is the solution of BVP

(
∂u
∂x2

)
.

Theorem 4. The solution zh,τ achieved from Stage 2
(

H4th
(

∂u
∂x2

))
satisfies

max
Dhγτ

∣∣zh,τ − z
∣∣ ≤ 6

5
δ̃(T + 1)τ +

(
3

640ω
+

47
11, 520

)
λ̃
(

1 + a2
1 + a2

2

)
h4, (136)

for r = ωτ
h2 ≥ 1

16 , where λ̃, δ̃ are as given in (134) and (135), respectively, and z = ∂u
∂x2

is the exact

solution of BVP
(

∂u
∂x2

)
.
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Proof. We take the system

Θ̃h,τ ξ̂z,k+1
h,τ = Λ̃h,τ ξ̂z,k

h,τ + Ω̃3(x2) on D0hγτ ,

Θ̃∗h,τ ξ̂z,k+1
h,τ = Λ̃∗h,τ ξ̂z,k

h,τ +
5
6

Ω̃3(x2) on D∗hγτ ,

ξ̂z
h,τ = 0 on Sh

Tγi, i = 1, 3, 5,

ξ̂z
h,τ = q4th

ih (uh,τ)− qi on Sh
Tγi, i = 2, 4. (137)

q4th

2h , q4th

4h are defined by (119) and (120) accordingly and

Ω̃3(x2) =
3

5a2
δ̃τ(2a2 − x2) +

(
3

160
+

47
2880

ω

)
λ̃h4,

≥ 3
5

δ̃τ +

(
3

160
+

47
2880

ω

)
λ̃h4 ≥

∣∣∣Ψz,k
1

∣∣∣ (138)

5
6

Ω̃3(x2) =
1

2a2
δ̃τ(2a2 − x2) +

(
1

64
+

47
3456

ω

)
λ̃h4,

≥ 1
2

δ̃τ +

(
1

64
+

47
3456

ω

)
λ̃h4 ≥

∣∣∣Ψz,k
2

∣∣∣. (139)

Furthermore, construct the following majorant function:

ξ
z
(x1, x2, t) = ξ

z
1(x1, x2, t) + ξ

z
2(x1, x2, t), (140)

where

ξ
z
1(x1, x2, t) =

3
5a2

δ̃τ(t + 1)(2a2 − x2) on Dhγτ ,

ξ
z
2(x1, x2, t) =

(
3

640ω
+

47
11, 520

)
λ̃h4

(
1 + a2

1 + a2
2 − x2

1 − x2
2

)
on Dhγτ ,

which satisfies the difference problem

Θ̃h,τξ
z,k+1
h,τ = Λ̃h,τξ

z,k
h,τ + Ω̃3(x2) on D0hγτ ,

Θ̃∗h,τεz,k+1
h,τ = Λ̃∗h,τεz,k

h,τ + Γ̃∗h,τεz∗
h,τ +

5
6

Ω̃3(x2) on D∗hγτ ,

ξ
z
h,τ = ξ

z∗
h,τ = ξ

z
1(0, x2, t) + ξ

z
2(0, x2, t) on Sh

Tγ1,

ξ
z
h,τ = ξ

z
1(x1, 0, t) + ξ

z
2(x1, 0, t) on Sh

Tγ2,

ξ
z
h,τ = ξ

z∗
h,τ = ξ

z
1(a1, x2, t) + ξ

z
2(a1, x2, t) on Sh

Tγ3,

ξ
z
h,τ = ξ

z
1(x1, a2, t) + ξ

z
2(x1, a2, t) on Sh

Tγ4,

ξ
z
h,τ = ξ

z
1(x1, x2, 0) + ξ

z
2(x1, x2, 0) on Sh

Tγ5. (141)

By writing (137) and (141) in matrix form as

Ãξ̂z,k+1 = B̃ξ̂z,k + τη̂z,k, (142)

Ãξ
z,k+1

= B̃ξ
z,k

+ τηz,k, (143)

respectively, where Ã, B̃ are as given in (32) and ξ̂z,k, ξ
z,k

, η̂z,k, ηz,k ∈ RN and using (138)–(141)
we get ηz,k ≥ 0 and

∣∣∣η̂z,k
∣∣∣ ≤ ηz,k for k = 0, 1, ..., M′ − 1 and ξ

z,0 ≥ 0,
∣∣∣ξ̂z,0

∣∣∣ ≤ ξ
z,0

. Then, on

the basis of Lemma 3 follows
∣∣∣ξ̂z,k+1

∣∣∣ ≤ ξ
z,k+1

, k = 0, 1, ..., M′ − 1. From
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ξ
z
(x1, x2, t) ≤ ξ

z
(0, 0, T)

=
6
5

δ̃(T + 1)τ +

(
3

640ω
+

47
11, 520

)
λ̃
(

1 + a2
1 + a2

2

)
h4,

follows (136).

4.2. Boundary Value Problem for ∂2u
∂x2∂t and Hexagonal Grid Approximation: Stage

2
(

H4th
(

∂2u
∂x2∂t

))
Let the BVP(u) be given. Then, as the first step we apply the Stage 1

(
H4th

(
∂u
∂t

))
and obtain the approximate solution ut,h,τ on the hexagonal grids. Subsequently, denote
qt,i =

∂2u
∂x2∂t on STγi, i = 1, 2, ..., 5 and develop the next problem for zt =

∂2u
∂x2∂t .

Boundary Value Problem for ∂2u
∂x2∂t

(
BVP

(
∂2u

∂x2∂t

))
Lzt =

∂2 f (x1, x2, t)
∂x2∂t

on QT ,

zt(x1, x2, t) = qt,i on STγi, i = 1, 2, ..., 5, (144)

We assume zt ∈ C6+α,3+ α
2

x,t
(
QT
)
. We take

q4th

t,2h =
1

12
√

3h

(
−25ut(x1, 0, t) + 48ut,h,τ

(
x1,
√

3h, t
)
− 36ut,h,τ

(
x1, 2
√

3h, t
)

+16ut,h,τ

(
x1, 3
√

3h, t
)
− 3ut,h,τ

(
x1, 4
√

3h, t
))

on Sh
Tγ2, (145)

q4th

t,4h =
1

12
√

3h

(
25ut(x1, a2, t)− 48ut,h,τ

(
x1, a2 −

√
3h, t

)
+ 36ut,h,τ

(
x1, a2 − 2

√
3h, t

)
−16ut,h,τ

(
x1, a2 − 3

√
3h, t

)
+ 3ut,h,τ

(
x1, a2 − 4

√
3h, t

))
on Sh

Tγ4, (146)

qt,ih =
∂φt(x1, x2, t)

∂x2
on Sh

Tγi, i = 1, 3, (147)

qt,5h =
∂ϕ̂(x1, x2)

∂x2
on Sh

Tγ5, (148)

where ϕ̂(x1, x2) and φt(x1, x2, t) are as given in (27) and ut,h,τ is the approximate solution

taken by Stage 1
(

H4th
(

∂u
∂t

))
. For a stable fourth-order accurate numerical solution of

BVP
(

∂2u
∂x2∂t

)
we propose the next problem:

Stage 2
(

H4th
(

∂2u
∂x2∂t

))

Θ̃h,τzk+1
t,h,τ = Λ̃h,τzk

t,h,τ + D̃x2 ψ̃t on D0hγτ ,

Θ̃∗h,τzk+1
t,h,τ = Λ̃∗h,τzk

t,h,τ + Γ̃∗h,τqt,1h + D̃x2 ψ̃∗t on D∗lhγτ ,

Θ̃∗h,τzk+1
t,h,τ = Λ̃∗h,τzk

t,h,τ + Γ̃∗h,τqt,3h + D̃x2 ψ̃∗t on D∗rhγτ

zh,τ = qt,ih on Sh
Tγi, i = 1, 3, 5,

zt,h,τ = q4th

t,ih on Sh
Tγi, i = 2, 4 (149)
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where q4th

ih , i = 2, 4 and qih , i = 1, 3, 5 are defined by (119)–(122) and the operators Θ̃h,τ ,
Λ̃h,τ , Θ̃∗h,τ , Γ̃∗h,τ and Λ̃∗h,τ are the operators given in (20)–(24) respectively. Additionally,

D̃x2 ψ̃t = ∂x2 f k+1
t,P0

+
1

16
h2
(

∂2
x1

∂x2 f k+1
t,P0

+ ∂3
x2

f k+1
t,P0

)
, (150)

D̃x2 ψ̃∗t =
h2

96τω
∂x2 f k+1

t,PA
− h2

96τω
∂x2 f k

t,PA
− 1

6
∂x2 f k+1

t,PA
+ ∂x2 f k+1

t,P0

+
1
16

h2
(

∂2
x1

∂x2 f k+1
t,P0

+ ∂3
x2

f k+1
t,P0

)
. (151)

Let
ξzt

h,τ = zt,h,τ − zt on Dhγτ , (152)

from (149) and (152) we have

Θ̃h,τξzt ,k+1
h,τ = Λ̃h,τξzt ,k

h,τ + Ψ̃zt ,k
1 on D0hγτ ,

Θ̃∗h,τεzt ,k+1
h,τ = Λ̃∗h,τεzt ,k

h,τ + Ψ̃zt ,k
2 on D∗hγτ

εzt
h,τ = 0 on Sh

Tγi, i = 1, 3, 5

εzt
h,τ = q4th

t,ih(uh,τ)− qt,i on Sh
Tγi, i = 2, 4. (153)

where q4th

t,2h , q4th

t,4h , qt,ih , i = 1, 3, 5 are defined by (145)–(148) accordingly and

Ψ̃zt ,k
1 = Λ̃h,τzk

t − Θ̃h,τzk+1
t + D̃x2 ψ̃t, (154)

Ψ̃zt ,k
2 = Λ̃∗h,τzk

t − Θ̃∗h,τzk+1
t + Γ̃∗h,τqt,i + D̃x2 ψ̃∗t , i = 1, 3. (155)

Let λ̃t,1 = µ1(zt), δ̃t,1 = µ2(zt), where µ1, µ2 are given in (55) and (56), respectively,
and

λ̃t = max

{
λ̃t,1,

M̃t,2

$
+ 15

d
$

(
3

160
+

47ω

2880

)
α̃t

}
, (156)

δ̃t = max
{

δ̃t,1, 15dβ̃t

}
, (157)

where α̃t = µ1(ut), β̃t = µ2(ut) and d is presented in (61) also M̃t,2 = 9
5 max

QT

∣∣∣∣ ∂5ut
∂x5

2

∣∣∣∣ and

$ = 3
640ω + 47

11,520 and zt is the solution of BVP
(

∂2u
∂x2∂t

)
.

Theorem 5. The solution zt,h,τ achieved by Stage 2
(

H4th
(

∂2u
∂x2∂t

))
satisfies

max
Dhγτ

∣∣zt,h,τ − zt
∣∣ ≤ 6

5
δ̃t(T + 1)τ +

(
3

640ω
+

47
11, 520

)
λ̃t

(
1 + a2

1 + a2
2

)
h4, (158)

for r = ωτ
h2 ≥ 1

16 , where λ̃t, δ̃t are positive constants given in (156) and (157), respectively, and

zt =
∂2u

∂x2∂t is the exact solution of BVP
(

∂2u
∂x2∂t

)
.

Proof. The proof is analogous to the proof of Theorem 4, and follows from the requirement

zt ∈ C6+α,3+ α
2

x,t
(
QT
)
.

5. Experimental Investigations

The proposed fourth order two stage implicit methods are applied on two test prob-
lems such that for the first example the exact solution is known. However, for the second
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example the exact solution is not given. We take D =
{
(x1, x2) : 0 < x1 < 1, 0 < x2 <

√
3

2

}
,

and t ∈ [0, 1]. Further, Mathematica is used for the realization of the algorithms in machine
precision. Also we used preconditioned conjugate gradient method with the precondition-
ing approach given in Buranay and Iyikal [29] (see also Concus et al. [30] and Axelsson [31]).
We define the following:

H4th
(

∂u
∂xi

)
, i = 1, 2 is the given fourth order method for the computation ∂u

∂xi
, i = 1, 2,

respectively.

H4th
(

∂2u
∂xi∂t

)
, i = 1, 2 is the given fourth-order method for the computation ∂2u

∂xi∂t , i = 1, 2,
seriatim.

CTH4th
∂u
∂xi

, i = 1, 2 presents the CPUs for one time level spend by the method H4th
(

∂u
∂xi

)
,

i = 1, 2, accordingly.

CTH4th

∂2u
∂xi∂t

, i = 1, 2 shows the CPUs for one time level spend by the method H4th
(

∂2u
∂xi∂t

)
,

i = 1, 2, respectively.

Furthermore, v2−µ ,2−λ , z2−µ ,2−λ , ut,2−µ ,2−λ , and vt,2−µ ,2−λ , zt,2−µ ,2−λ are the computed

grid functions obtained by the methods H4th
(

∂u
∂xi

)
, i = 1, 2, H4th

(
∂u
∂t

)
and H4th

(
∂2u

∂xi∂t

)
,

i = 1, 2, accordingly for h = 2−µ and τ = 2−λ where µ, λ are positive integers. The error
function εh,τ on the set Dhγτ obtained by H4th

(
∂u
∂xi

)
, i = 1, 2 for h = 2−µ, τ = 2−λ is

presented by εH4th
∂u
∂xi

(
2−µ, 2−λ

)
, i = 1, 2 while the error function resulting by the methods

H4th
(

∂2u
∂xi∂t

)
, i = 1, 2 are shown with εH4th

∂u
∂xi∂t

(
2−µ, 2−λ

)
, i = 1, 2, respectively. Furthermore,

max
Dhγτ

∣∣∣∣εH4th
∂u
∂xi

(
2−µ, 2−λ

)∣∣∣∣ =

∥∥∥∥εH4th
∂u
∂xi

∥∥∥∥
∞

, i = 1, 2, (159)

max
Dhγτ

∣∣∣∣εH4th
∂u

∂xi∂t

(
2−µ, 2−λ

)∣∣∣∣ =

∥∥∥∥εH4th
∂u

∂xi∂t

∥∥∥∥
∞

, i = 1, 2. (160)

Further, we denote the order of convergence of the approximate solution v2−µ ,2−λ and
z2−µ ,2−λ to the functions v = ∂u

∂x1
and z = ∂u

∂x2
obtained by using the fourth-order implicit

method H4th
(

∂u
∂xi

)
, i = 1, 2 by

<H4th
∂u
∂xi

=

∥∥∥∥εH4th
∂u
∂xi

(2−µ, 2−λ)

∥∥∥∥
∞∥∥∥∥εH4th

∂u
∂xi

(2−(µ+1), 2−(λ+4))

∥∥∥∥
∞

i = 1, 2. (161)

Furthermore, the order of convergence of the approximate solutions vt,2−µ ,2−λ and

zt,2−µ ,2−λ to their corresponding exact solutions vt = ∂2u
∂x1∂t and zt = ∂2u

∂x2∂t obtained by

H4th
(

∂2u
∂xi∂t

)
, i = 1, 2 are given by

<H4th

∂2u
∂xi∂t

=

∥∥∥∥εH4th
∂u

∂xi∂t
(2−µ, 2−λ)

∥∥∥∥
∞∥∥∥∥εH4th

∂u
∂xi∂t

(2−(µ+1), 2−(λ+4))

∥∥∥∥
∞

, i = 1, 2. (162)

We remark that the computed values of (161) and (162) are ≈ 24 showing the fourth
order convergence of the given methods in x1, x2 and linear convergence in t.
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5.1. Test Problem Example 1

Equations are given as follows:

∂u
∂t

= 0.25

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t) on QT ,

u(x1, x2, 0) = 0.005x9+α
1 + 0.03x9+α

2 + 1 + x1x2 on D,

u(x1, x2, t) = û(x1, x2, t) on ST ,

where

f (x1, x2, t) = −
(

9 + α

2

)
t

7+α
2 sin

(
t

7+α
2

)
−x1x2e−t − 0.25(9 + α)(8 + α)

[
0.005x7+α

1 + 0.03x7+α
2

]
û(x1, x2, t) = 0.005x9+α

1 + 0.03x9+α
2 + cos(t

9+α
2 ) + x1x2e−t.

present the heat source and the exact solution respectively and we take α = 0.5. For the

Example 1, Table 2 demonstrates CTH4th
∂u
∂xi

,
∥∥∥∥εH4th

∂u
∂xi

∥∥∥∥
∞

and<H4th
∂u
∂xi

i = 1, 2 achieved by H4th
(

∂u
∂xi

)
,

i = 1, 2 respectively while Table 3 shows CTH4th

∂2u
∂xi∂t

,

∥∥∥∥∥εH4th

∂2u
∂xi∂t

∥∥∥∥∥
∞

and <H4th

∂2u
∂xi∂t

i = 1, 2 taken by the

method H4th
(

∂2u
∂xi∂t

)
, i = 1, 2 accordingly. Tables 2 and 3 justify the theoretical results given

such that the approximate solutions vh,τ , zh,τ , vt,h,τ and zt,h,τ converge to the corresponding
exact functions v = ∂u

∂x1
and z = ∂u

∂x2
, vt =

∂2u
∂x1∂t and zt =

∂2u
∂x2∂t with fourth order in spatial

variables and first order in time for r ≥ 1
16 . Moreover, the last two rows in Tables 2 and 3

demonstrate that the order of convergence is also O
(
h4 + τ

)
when r < 1

16 .

Table 2. CTH4th
∂u
∂xi

,
∥∥∥∥εH4th

∂u
∂xi

∥∥∥∥
∞

for i = 1, 2 and the convergence orders of vh,τ and zh,τ to their exact

respective derivatives for the Example 1.

(h, τ) CT H4th
∂u

∂x1

∥∥∥∥εH4th
∂u

∂x1

∥∥∥∥
∞

<H4th
∂u

∂x1

CT H4th
∂u

∂x2

∥∥∥∥εH4th
∂u

∂x2

∥∥∥∥
∞

<H4th
∂u

∂x2(
2−4, 2−3) 0.33 4.5384× 10−3 14.634 0.31 5.3873× 10−3 14.595(
2−5, 2−7) 20.55 3.1012× 10−4 15.901 19.03 3.6911× 10−4 15.895(
2−6, 2−11) 1309.02 1.9503× 10−5 15.991 1220.01 2.3222× 10−5 15.992(
2−7, 2−15) 82, 622.60 1.2196× 10−6 78, 092.10 1.4521× 10−6(
2−4, 2−11) 79.27 1.8788× 10−5 15.980 73.06 2.0209× 10−5 16.006(
2−5, 2−15) 5209.05 1.1757× 10−6 4880.77 1.2626× 10−6
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Table 3. CTH4th

∂2u
∂xi ∂t

,

∥∥∥∥∥εH4th

∂2u
∂xi ∂t

∥∥∥∥∥
∞

, for i = 1, 2 and the convergence orders of vt,h,τ and zt,h,τ to their exact

respective derivatives for the Example 1.

(h, τ) CT H4th

∂2u
∂x1∂t

∥∥∥∥∥εH4th

∂2u
∂x1∂t

∥∥∥∥∥
∞

<H4th

∂2u
∂x1∂t

CT H4th

∂2u
∂x2∂t

∥∥∥∥∥εH4th

∂2u
∂x2∂t

∥∥∥∥∥
∞

<H4th

∂2u
∂x2∂t(

2−4, 2−3) 0.41 4.42644× 10−6 15.451 0.39 4.2937× 10−6 15.401(
2−5, 2−7) 24.78 2.8648× 10−7 15.925 22.593 2.7879× 10−7 15.892(
2−6, 2−11) 1595.03 1.7989× 10−8 15.997 1436.69 1.7543× 10−8 15.993(
2−7, 2−15) 100, 555.00 1.1245× 10−9 92543.1 1.0969× 10−10(
2−4, 2−11) 96.94 1.8392× 10−8 15.997 88.61 1.7381× 10−8 15.920(
2−5, 2−16) 6414.28 1.1497× 10−9 5733.49 1.0918× 10−9

Figures 2 and 3 illustrate the grid functions
∣∣∣∣εH4th

∂u
∂xi

(2−4, 2−3)

∣∣∣∣, ∣∣∣∣εH4th
∂u
∂xi

(2−5, 2−7)

∣∣∣∣,∣∣∣∣εH4th
∂u
∂xi

(2−6, 2−11)

∣∣∣∣ and
∣∣∣∣εH4th

∂u
∂xi

(2−7, 2−15)

∣∣∣∣ , i = 1, 2, respectively, when t = 0.8 obtained

by the corresponding method H4th
(

∂u
∂xi

)
, i = 1, 2 for the Example 1. Figures 4 and 5

demonstrate the grid functions

∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−4, 2−3)

∣∣∣∣∣,
∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−5, 2−7)

∣∣∣∣∣,
∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−6, 2−11)

∣∣∣∣∣ and∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−7, 2−15)

∣∣∣∣∣ for i = 1, 2 respectively, for t = 0.8 achieved by applying the correspond-

ing method H4th
(

∂2u
∂xi∂t

)
, i = 1, 2 for the Example 1.

Figure 2. The grid function of absolute errors when t = 0.8 obtained by the method H4th
(

∂u
∂x1

)
for

the Example 1.
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Figure 3. The grid function of absolute errors when t = 0.8 obtained by the method H4th
(

∂u
∂x2

)
for

the Example 1.

Figure 4. The grid function of absolute errors when t = 0.8 obtained by the method H4th
(

∂2u
∂x1∂t

)
for

the Example 1.
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Figure 5. The grid function of absolute errors when t = 0.8 obtained by the method H4th
(

∂2u
∂x2∂t

)
for

the Example 1.

5.2. Test Problem Example 2

Equations are given as follows:

∂u
∂t

= 0.25

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1, x2, t) on QT ,

u(x1, x2, 0) = 0.01x1x2(1− x1)

(√
3

2
− x2

)
on D,

u(x1, x2, t) = 0 on ST .

The heat source function is

f (x1, x2, t) = −0.01x1x2(1− x1)

(√
3

2
− x2

)
sin t

+0.005

(
x1(1− x1) + x2

(√
3

2
− x2

))
cos t.

The problem in Example 2 is a benchmark problem such that the solution is not
provided. An analogous problem with zero heat source was also considered in Henner et
al. [39]. By applying the proposed methods H4th

(
∂u
∂xi

)
, i = 1, 2, we obtain the approximate

solutions v2−µ,,2−λ and z2−µ,,2−λ accordingly at every time level for the considered values
µ = 5, 6,7 and λ = 7, 11, 15. Tables 4 and 5 present v2−µ,,2−λ(x1, x2, t) and z2−µ,,2−λ(x1, x2, t),

respectively, at the grid points
(

0.125,
√

3
8 , 1

)
,
(

0.25,
√

3
8 , 1

)
,
(

0.375,
√

3
8 , 1

)
,
(

0.5,
√

3
8 , 1

)
,(

0.625,
√

3
8 , 1

)
,
(

0.75,
√

3
8 , 1

)
and

(
0.875,

√
3

8 , 1
)

and the corresponding order of conver-

gence <H4th
∂u
∂xi

(P) for i = 1, 2 at the grid point P(x1, x2, t) given as

<H4th
∂u

∂x1

(P) =

∣∣∣∣∣ v2−5,2−7(P)− v2−6,2−11(P)
v2−6,2−11(P)− v2−7,2−15(P)

∣∣∣∣∣, (163)

<H4th
∂u

∂x2

(P) =

∣∣∣∣∣ z2−5,2−7(P)− z2−6,2−11(P)
z2−6,2−11(P)− z2−7,2−15(P)

∣∣∣∣∣. (164)
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By the same way Tables 6 and 7 show vt,2−µ,,2−λ(x1, x2, t) and zt,2−µ,,2−λ(x1, x2, t), re-

spectively, at the the considered grids and the corresponding convergence orders <H4th

∂2u
∂xi∂t

(P)

for i = 1, 2 at the point P(x1, x2, t) defined as

<H4th

∂2u
∂x1∂t

(P) =

∣∣∣∣∣ vt,2−5,2−7(P)− vt,2−6,2−11(P)
vt,2−6,2−11(P)− vt,2−7,2−15(P)

∣∣∣∣∣, (165)

<H4th

∂2u
∂x2∂t

(P) =

∣∣∣∣∣ zt,2−5,2−7(P)− zt,2−6,2−11(P)
zt,2−6,2−11(P)− zt,2−7,2−15(P)

∣∣∣∣∣. (166)

Table 4. The numerical solution vh,τ at seven points when t = 1, and the convergence orders obtained
by H4th( ∂u

∂x1
) for the Example 2.

P v2−5,2−7(P) v2−6,2−11(P) v2−7,2−15(P) <H4th
∂u

∂x1

(P)(
0.125,

√
3

8 , 1
)

0.000569713036 0.000569841548 0.000569849555 16.052(
0.25,

√
3

8 , 1
)

0.000379748416 0.000379890609 0.000379899468 16.049(
0.375,

√
3

8 , 1
)

0.000189857076 0.000189944236 0.000189949667 16.048(
0.5,

√
3

8 , 1
)

5.22× 10−16 −3.27× 10−17 1.87× 10−18 16.046(
0.625,

√
3

8 , 1
)
−0.000189857076 −0.000189944236 −0.000189949667 16.048(

0.75,
√

3
8 , 1

)
−0.000379748416 −0.000379890609 −0.000379899468 16.049(

0.875,
√

3
8 , 1

)
−0.000569713036 −0.000569841548 −0.00056984955 16.052

Table 5. The numerical solution zh,τ at seven points when t = 1, and the convergence orders obtained
by H4th( ∂u

∂x2
) for the Example 2.

P z2−5,2−7(P) z2−6,2−11(P) z2−7,2−15(P) <H4th
∂u

∂x2

(P)(
0.125,

√
3

8 , 1
)

0.000255810101 0.000255886243 0.000255890985 16.052(
0.25,

√
3

8 , 1
)

0.000438524584 0.000438661691 0.000438670233 16.052(
0.375,

√
3

8 , 1
)

0.000548151240 0.000548326834 0.000548337774 16.052(
0.5,

√
3

8 , 1
)

0.000584693185 0.000584881865 0.000584893620 16.052(
0.625,

√
3

8 , 1
)

0.000548151240 0.000548326834 0.000548337774 16.052(
0.75,

√
3

8 , 1
)

0.000438524584 0.000438661691 0.000438670233 16.052(
0.875,

√
3

8 , 1
)

0.000255810101 0.000255886242 0.000255890985 16.052
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Table 6. The numerical solution vt,h,τ at seven points when t = 1, and the convergence orders
obtained by H4th( ∂2u

∂x1∂t ) for the Example 2.

P vt,2−5,2−7(P) vt,2−6,2−11(P) vt,2−7,2−15(P) <H4th

∂2u
∂x1∂t

(P)(
0.125,

√
3

8 , 1
)
−0.000887304144 −0.000887477357 −0.000887488206 15.966(

0.25,
√

3
8 , 1

)
−0.000591460365 −0.000591646827 −0.000591658507 15.964(

0.375,
√

3
8 , 1

)
−0.000295709687 −0.000295822129 −0.000295829173 15.963(

0.5,
√

3
8 , 1

)
7.22× 10−18 3.33× 10−19 −9.86× 10−20 15.957(

0.625,
√

3
8 , 1

)
0.0002957096868 0.000295822129 0.000295829173 15.963(

0.75,
√

3
8 , 1

)
0.0005914603655 0.000591646827 0.000591658507 15.964(

0.875,
√

3
8 , 1

)
0.0008873041426 0.000887477357 0.000887488206 15.966

Table 7. The numerical solution zt,h,τ at seven points when t = 1, and the convergence orders
obtained by H4th( ∂2u

∂x2∂t ) for the Example 2.

P zt,2−5,2−7(P) zt,2−6,2−11(P) zt,2−7,2−15(P) <H4th

∂2u
∂x2∂t

(P)(
0.125,

√
3

8 , 1
)
−0.000398417531 −0.000398520228 −0.000398526661 15.966(

0.25,
√

3
8 , 1

)
−0.000682992442 −0.000683176968 −0.000683188526 15.966(

0.375,
√

3
8 , 1

)
−0.000853734894 −0.000853970855 −0.000853985635 15.965(

0.5,
√

3
8 , 1

)
−0.000910648720 −0.0009109021308 −0.000910918003 15.966(

0.625,
√

3
8 , 1

)
−0.000853734894 −0.0008539708553 −0.000853985635 15.966(

0.75,
√

3
8 , 1

)
−0.000682992442 −0.000683176968 −0.000683188526 15.965(

0.875,
√

3
8 , 1

)
−0.000398417531 −0.000398520228 −0.000398526661 15.966

The computed solutions v2−7,2−15 and z2−7,2−15 achieved by using the corresponding

two stage method H4th
(

∂u
∂xi

)
, i = 1, 2 are demonstrated in Figures 6 and 7 for the time

levels t = 0.2 and t = 0.8. Figures 8 and 9 illustrate the approximate solutions vt,2−7,2−15

and zt,2−7,2−15 taken by using the respective two stage method H4th
(

∂2u
∂x1∂t

)
, i = 1, 2 for time

levels t = 0.2 and t = 0.8.

Figure 6. The approximate solution v2−7,2−15 at time levels t = 0.2 and t = 0.8 obtained by the method

H4th
(

∂u
∂x1

)
for the Example 2.
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Figure 7. The approximate solution z2−7,2−15 at time levels t = 0.2 and t = 0.8 obtained by the method

H4th
(

∂u
∂x2

)
for the Example 2.

Figure 8. The approximate solution vt,2−7,2−15 at time levels t = 0.2 and t = 0.8 obtained by the

method H4th
(

∂2u
∂x1∂t

)
for the Example 2.

Figure 9. The approximate solution zt,2−7,2−15 at time levels t = 0.2 and t = 0.8 obtained by the

method H4th
(

∂2u
∂x2∂t

)
for the Example 2.

6. Conclusions

Numerical methods using implicit schemes defined on hexagonal grids are proposed
for computing the derivatives of the solution to Dirichlet problem of heat equation on
rectangle. For the required smoothness conditions of the solution and when r = ωτ

h2 ≥ 1
16

the uniform convergence of the constructed difference schemes on the grids to the respective
exact derivatives ∂u

∂xi
and ∂2u

∂xi∂t , i = 1, 2 is shown to be O
(
h4 + τ

)
.

Novelty Statement:
In Buranay et al. [26], we gave a second-order hexagonal grid approximation of

the first-order spatial derivatives of the solution to BVP(u) in (11) with the smoothness

condition u ∈ C7+α, 7+α
2

x,t , 0 < α < 1 in the Hölder space. The method was established in two

stages. In this study, we require that u ∈ C9+α, 9+α
2

x,t , and give hexagonal grid computation
of all the first order derivatives and the mixed order second order derivatives involving
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the time derivative by developing two stage implicit methods of fourth order accurate in
space variables.
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