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Abstract: Using Krasnoselskii’s fixed point theorem and Arzela–Ascoli theorem, we investigate the
existence of solutions for a system of nonlinear φ-Hilfer fractional differential equations. Moreover,
applying an alternative fixed point theorem due to Diaz and Margolis, we prove the Kummer stability
of the system on the compact domains. We also apply our main results to study the existence and
Kummer stability of Lotka–Volterra’s equations that are useful to describe and characterize the
dynamics of biological systems.
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Fractional differential equations (FDEs) are important due to their applications in
engineering, economics, control theory, materials sciences, physics, chemistry, and biology
(see [1] and the references therein). Scientists have applied various mathematical approaches
through diverse research-oriented aspects of fractional differential systems. For instance,
existence, stability, and control theory for fractional differential equations were studied [2,3].
For the first time, Alsina and Ger [4] studied the Hyers–Ulam stability for differential
equations. Recently, mathematicians have paid more attention to the study of stability for a
wide range of differential systems [5–7].

In this paper, we begin by considering the following fractional differential equation
HDς,ν;φ

0+ w(η) = A(w(η)) + g(η, w(η)) +
∫ t

0 h(η, s, w(s))ds, η ∈ v = (0, p]

I1−γ;φ
0 w(0) = w0, w0 ∈ R

(1)

where HDς,ν;φ
0+ (.) is a φ-Hilfer fractional derivative of order 0 < ς ≤ 1 and type 0 ≤ ν < 1,

and I1−γ;φ
0 is a φ -Riemann–Liouville fractional integral of order 1− γ (γ = ς + ν(1− ς))

with respect to the mapping φ. Furthermore, g : v × R → R and h : v2 × R → R are
given mappings, and A is a closed linear operator. In the following, we show the existence
of solutions to Equation (1) based on the Krasnoselskii FPT and Arzela–Ascoli theorem.
Using Kummer’s control function, we introduce a new concept of stability and further
deduce that the solution of Equation (1) is stable in Kummer’s sense.

1. Preliminaries

In this section, we recall some fundamental definitions of the φ-Riemann–Liouville
fractional integral, φ-Hilfer fractional derivative, and Kummer’s functions. For details,
please see [1,8] and the references therein.
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Let [n,m] be a finite and closed interval with 0 ≤ n < m < ∞ and C[n,m] be the space
of continuous functions $ : [n,m]→ R equipped with the following norm

||$||C[n,m] = max
η∈[n,m]

|$(η)|.

Furthermore, the weighted space Cγ,φ(n,m] is defined as

C1−γ,φ[n,m] =
{

$ : (n,m]→ R; (φ(η)− φ(n))1−γ$(η) ∈ C[n,m]
}

where 0 < γ < 1,

with norm

||$||C1−γ,φ [n,m] = max
η∈[n,m]

|(φ(η)− φ(n))1−γ$(η)|

where φ : [n,m] −→ R is an arbitrary function, and η ∈ [n,m].

Definition 1. Let (n,m), −∞ ≤ n < m ≤ +∞ be a finite or infinite interval of the line R, Γ be
the gamma function ,and ς > 0. Additionally, let φ(η) be a positive function defined on [n,m] so
that φ′(η) ≥ 0 on (n,m] and φ′(η) is a continuous function on (n,m). The left- and right-sided
fractional integrals of a function $ with respect to the function φ on [n,m] are defined by

Iς;φ
n+

$(x) =
1

Γ(ς)

∫ x

n
φ′(η)(φ(x)− φ(η))ς−1$(η)dη,

and

Iς;φ
m−$(x) =

1
Γ(ς)

∫ m

x
φ′(η)(φ(η)− φ(x))ς−1$(t)dη

respectively.

The fractional integrals with the above definition have a semi-group property given by

Iς;φ
n+

Iν;φ
n+

$(x) = Iς+ν;φ
n+

$(x) and Iς;φ
m− Iν;φ

m−$(x) = Iς+ν;φ
m− $(x).

Additionally, for ς, σ > 0, we have [9]:

(i) if $(x) = (φ(x)− φ(n))σ−1, then Iς;φ
n+

$(x) =
Γ(σ)

Γ(ς + σ)
(φ(x)− φ(n))ς+σ−1, and

(ii) if $(x) = (φ(m)− φ(x))σ−1, then Iς;φ
m−$(x) =

Γ(σ)
Γ(ς + δ)

(φ(m)− φ(x))ς+σ−1.

Definition 2. Let (n,m), −∞ ≤ n < m ≤ +∞ be a finite or infinite interval of the line R,
φ′(η) 6= 0 for all η ∈ (n,m), and ς > 0, n ∈ N. The left-sided Riemann–Liouville derivative of a
function $ with respect to φ of order ς correspondent to the Riemann–Liouville is defined by

Dς,φ$(η) = (
1

φ′(η)

d
dx

)n In−ς,φ$(η)

=
1

Γ(n− ς)
(

1
φ′(η)

d
dx

)n ×
∫ η

n
φ′(t)(φ(η)− φ(t))n−ς−1$(t)dt.
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Definition 3. Let n − 1 < ς < n with n ∈ N, I = [n,m] ( −∞ ≤ n < m ≤ ∞) and
$, φ ∈ Cn([n,m],R) be two mappings such that φ′(x) > 0 for all x ∈ I. The left- and right-sided
φ-Hilfer fractional derivatives HDς,ν;φ

0+ (.) of the arbitrary function $ of order ς and type 0 ≤ ν < 1
are defined by

HDς,ν;φ
n+

$(x) = Iν(n−ς);φ
n+

(
1

φ′(x)
d

dx

)n
I(1−ν)(n−ς);φ
n+

$(x),

and

HDς,ν;φ
m− $(x) = Iν(n−ς);φ

m−

(
− 1

φ′(x)
d

dx

)n
I(1−ν)(n−ς);φ
m− $(x)

respectively.

Theorem 1. If $ ∈ C1[n,m], ς > 0, 0 ≤ ν < 1, and γ = ς + ν(1− ς), then

HDς,ν;φ
n+

Iς;φ
n+

$(x) = $(x) and HDς,ν;φ
m− Iς;φ

m−$(x) = $(x).

Additionally, we have

Iς;φ
n+
HDς,ν;φ

n+
$(x) = $(x)− (φ(x)− φ(n))γ−1

Γ(γ)
I(1−ν)(1−ς);φ
n+

$(n),

and

Iς;φ
m−
HDς,ν;φ

m− $(x) = $(x)− (φ(m)− φ(x))γ−1

Γ(γ)
I(1−ν)(1−ς);φ
m− $(m).

Proof. Ref. [9].

The solution of a hypergeometric differential equation is called a confluent hyperge-
ometric function [10]. There exist different standard forms of confluent hypergeometric
functions, such as Kummer’s functions, Tricomi’s functions, Whittaker’s functions, and
Coulomb’s wave functions. In this paper, we apply the following Kummer (confluent
hypergeometric) function to study our stability:

Φ(P1,P2; z) = 1F1(P1,P2; z) =
Γ(P2)

Γ(P1)

∞

∑
k=0

Γ(P1 + k)
Γ(P2 + k)

zk

k!
, (2)

which is the solution of the differential equation

z
d2u

dz
+ (P2 − z)

du
dz
−P1u(z) = 0,

where z,P1 ∈ C and P2 ∈ C \Z−0 . Kummer’s function was introduced by Kummer in
1837. The series (2) is also known as the confluent hyper-geometric function of the first
kind, and is convergent for any z ∈ C. In this article, we apply it on the real line R as our
control function. Clearly, for P1 = P2, we have

Φ(P1,P2; z) = 1F1(P1,P1; z) =
Γ(P1)

Γ(P1)

∞

∑
k=0

Γ(P1 + k)
Γ(P1 + k)

zk

k!
=

∞

∑
k=0

zk

k!
= ez.
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Letting ς, ν ∈ v, we consider the following inequality for ε > 0

|HDς,ν;φ
0+ v(η)−A(v(η)) + g(η, v(η))−

∫ t

0
h(η, s, v(s))ds|

≤ εΦ(ς, ν; (φ(η)− φ(0))ς) (3)

where Φ is the Kummer’s function (see [10]), to define a new stability concept called
Kummer’s stability.

Definition 4. For a positive constant CΦ, for all ε > 0, and every solution v ∈ (C[0, p],R) to
inequality (3), if we can find a solution w ∈ (C[0, p],R) to Equation (1), with the following property:

|w(η)− v(η)| ≤ CΦεΦ(ς, ν; (φ(η)− φ(0))ς), for all η ∈ [0, p],

then we say that Equation (1) has Kummer’s stability with respect to Φ(ς, ν; (φ(η)− φ(0))ς).

Our approach is motivated by the fact that inversion of a perturbed differential operator
may result from the sum of a compact operator and a contraction mapping (see [11–13] and
the references therein). We begin by stating the following Krasnoselskii FPT, which has many
applications in studying the existence of solutions to differential equations:

Theorem 2. (Krasnoselskii FPT) Let X be a Banach space and M ⊆ X be a closed, convex, and
non-empty set. Additionally, let T,S be mappings so that:

• Tu +Sv ∈M whenever u, v ∈M,
• The operator T is continuous and compact, and
• Mapping S is a contraction.

Then, there exists a w ∈M so that w = Tw +Sw.

In addition, we mention an alternative FPT presented by Diaz and Margolis in 1967,
and it plays a crucial role in proving our stability result [14].

Theorem 3. Consider the generalized complete metric space (X, Υ) and let Θ be a self-map operator
which is a strictly contraction mapping with the Lipschitz constant κ < 1. Then, we have two
options: (i) either for every n ∈ N, Υ(Θn+1z, Θnz) = +∞; or (ii) if there exists n ∈ N so that
the operator Θ satisfies Υ(Θn+1z, Θnz) < ∞ for some z ∈ X, then the sequence {Θnz} tends to a
unique fixed point z∗ of Θ in the set X∗ = {v ∈ X : Υ(Θnv, Θnv) < ∞}. Furthermore, for all
z ∈ X:

Υ(z, z∗) ≤ 1
1− κ

Υ(z, Θz).

Now, we are ready to prove that Equation (1) is equivalent to an integral equation.
Then, by the above theorem, we infer that a fixed point exists for the integral equation, so
Equation (1) has at least one solution.

Proposition 1. Assume that g : v × R → R and h : v2 × R → R are real-valued continu-
ous mappings, and A is a closed operator, then the following integral equation is equivalent to
Equation (1):

w(η) =
(φ(η)− φ(0))γ−1

Γ(γ)
w0 + Iς;φ

0+
[
g(η, w(η), w(η)) +

∫ s

0
h(η, τ, u(τ))dτ +A(w(η))

]
(4)

where γ ≥ 0 and we obtain from γ = ς + ν(1− ς) for 0 < ς ≤ 1 and 0 ≤ ν < 1 in (1).
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Proof. Using the properties of the φ-Hilfer fractional derivative outlined in the preliminar-
ies, we have

HDς,ν;φw(η) = Iν(n−ς);φDγ;φw(η) = Iγ−ς;φDγ;φw(η),

where γ = ς + ν(1− ς). So, by the above equality, we have

Iγ−ς;φDγ;φw(η) = A(w(η)) + g(η, w(η)) +
∫ η

0
h(η, s, w(s))ds.

Now, applying Iς,φ to both sides of the above equation and using Theorem 1, we obtain

Iς;φ Iγ−ς;φDγ;φw(η) = Iς;φ
(
A(w(η)) + g(η, w(η)) +

∫ s

0
h(η, τ, w(τ))dτ

)
,

and

Iγ;φDγ;φw(η) = Iς;φ
(
A(w(η)) + g(η, w(η)) +

∫ s

0
h(η, τ, w(τ))dτ

)
.

Then,

w(η) =
(φ(η)− φ(0))γ−1

Γ(γ)
w0 + Iς;φ

(
A(w(η)) + g(η, w(η)) +

∫ s

0
h(η, τ, u(τ))dτ

)
.

Conversely, assuming that w ∈ C[0, p] satisfies Equation (4), we claim that the frac-
tional differential Equation (1) holds. We apply HDς,ν;φ to the Equation (4) and imply by
Theorem 1 that

HDς,ν;φw(η)

= HDς,ν;φ
(
(φ(η)− φ(0))γ−1

Γ(γ)
w0 + Iς;φ

0+ g(η, w(η)) + Iς;φ
0+

[∫ s

0
h(η, τ, w(τ))dτ

]
+Iς;φ

0+ (A(w(η)))
)

.

From HDς,ν;φw0 = 0, we obtain

HDς,ν;φ
0+ w(η) = A(w(η)) + g(η, w(η)) +

∫ η

0
h(t, s, u(s))ds.

This completes the proof.



Fractal Fract. 2021, 5, 200 6 of 15

Remark 1. Let w ∈ C(v,R) satisfy inequality (3). Then the following integral inequality holds

|w(t)− (φ(η)− φ(0))γ−1

Γ(γ)
w0

−Iς;φ
0+ g(η, w(η)))− Iς;φ

0+

[∫ s

0
h(η, τ, w(τ))dτ

]
− Iς;φ

0+ (A(w(η)))|

≤ ε

Γ(ς)

∫ η

0
φ′(t)(φ(x)− φ(η))ς−1Φ(ς, ν; (φ(η)− φ(0))ς)ds

=
ε

Γ(ς)

∫ η

0
φ′(η)(φ(x)− φ(η))ς−1 Γ(ν)

Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

(φ(η)− φ(0))kς

k!
ds

=
ε

Γ(ς)
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

1
k!

∫ η

0
φ′(t)(φ(x)− φ(η))ς−1(φ(η)− φ(0))kςds

=
ε

Γ(ς)
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

1
k!

∫ η

0
(φ(x)− φ(η))ς−1(φ(η)− φ(0))kςdφ(s)

=
ε

Γ(ς)
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

1
k!

∫ φ(η)−φ(0)

0
(φ(η)− φ(0)− w)ς−1wkςdw

=
ε

Γ(ς)
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

1
k!
(φ(η)− φ(0))ς−1

∫ φ(η)−φ(0)

0

(
1− w

φ(η)− φ(0)

)ς−1
wkςdw

=
ε

Γ(ς)
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)
Γ(ν + k)

1
k!
(φ(η)− φ(0))ς(k+1)

∫ 1

0
(1− ν)ς−1νkςdν

=
ε

Γ(ς)
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

1
k!
(φ(η)− φ(0))ς(k+1) Γ(kς + 1)Γ(ς)

Γ((k+ 1)ς + 1)

≤ ε
Γ(ν)
Γ(ς)

∞

∑
k=0

Γ(ς + k)

Γ(ν + k)

(φ(η)− φ(0))ς(k+1)

k!

≤ εΦ(ς, ν; (φ(η)− φ(0))ς).

2. Existence Result

In this section, we study Equation (1) under the following hypotheses:

Hypothesis 1 (H1). g ∈ C(v×R,R). Moreover, there exists q1 such that

|g(η, w)| ≤ q1M1,

where η ∈ v, w ∈ C([0, p],R) and M1 =‖ w ‖C[0,p].

Hypothesis 2 (H2). There exists q2 such that |h(η, s, w)| ≤ q2|w(η)| for all η ∈ v and
w ∈ C([0, p],R).

Hypothesis 3 (H3). The operator A is bounded and ||A|| < Γ(ς + 1)
Γ(γ)(φ(p)− φ(0))γ

.

Hypothesis 4 (H4). The function φ(η) is uniformly continuous for all η ∈ v.
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Lemma 1. Let the operator T : C[0, p]→ C[0, p] given as

(T w)(η) =
(φ(η)− φ(0))γ−1

Γ(γ)
w0 + Iς;φ

0+ g(η, w(η))

+Iς;φ
0+

[∫ s

0
h(η, τ, w(τ))dτ

]
+ Iς;φ

0+ (A(w(η)))

and assume that the hypotheses (H1)–(H3) are satisfied. Then, the operator T maps the closed ball
Br = {w ∈ C([0, p] : ||w|| ≤ r} into itself, if

r ≥ Γ(ς + γ)|w0|
Γ(ς + γ)− Γ(γ)Cφ

ς

Γ(ς+γ)

[
q2p+ q1M1 +

Γ(ς+1)
Γ(γ)Cφ

γ

] , (5)

where Cφ := (φ(p)− φ(0)).

Proof. Clearly, we need to prove that if w(η) ∈ Br then (T w)(η) ∈ Br. For all η ∈ [0, p],
we have

|(T w)(η)|

≤ |w0|+
1

Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1

(φ(s)− φ(0))1−ς
max

s∈[0,η]
|(φ(s)− φ(0))1−γg(s, w(s)|ds

+
1

Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1

(φ(η)− φ(s))1−ς
max

s∈[0,η]
(φ(s)− φ(0))1−γ

[∫ s

0
|h(η, τ, w(τ))|dτ

]
ds

+
||A||
Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1 maxs∈[0,η] |(φ(s)− φ(0))1−γw(s)|ds

(φ(η)− φ(s))1−ς

≤ |w0|+
q1M1r

Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1

(φ(η)− φ(s))1−ς
ds +

q2rp

Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1

(φ(η)− φ(s))1−ς
ds

+
||A||r
Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1ds
(φ(η)− φ(s))1−ς

≤ |w0|+
1

Γ(ς)
[||A||r+ q2rp+ q1M1r]

∫ t

0

φ′(s)(φ(s)− φ(0))γ−1

(φ(η)− φ(s))1−ς
ds

≤ |w0|+
(φ(η)− φ(0))ς+γ−1

Γ(ς)
[||A||r+ q2rp+ q1M1r]B(ς, γ)

where B is the beta function. From the formula

B(ς, γ) =
Γ(ς)Γ(γ)
Γ(ς + γ)

,

we have

|(T w)(η)| ≤ |w0|+
Γ(γ)(φ(p)− φ(0))ς

Γ(ς + γ)
[||A||r+ q2rp+ q1M1r].

Applying H3 and condition (5), we have

|(T w)(η)| ≤ |w0|+
Γ(γ)Cφ

ς

Γ(ς + γ)

[
q2rp+ q1M1r+

Γ(ς + 1)r
Γ(γ)Cφ

γ

]
≤ r.

This completes the proof.
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The following theorem shows the existence of solutions to the fractional differential
Equation (1) using Krasnoselskii’s FPT listed above.

Theorem 4. Assume that hypotheses H1–H4 are satisfied. Then, Equation (1) has a solution.

Proof. Define T : C[0, p]→ C[0, p] as

(Tw)(η) = (T1w)(η) + (T2w)(η),

where

(T1w)(η) :=
(φ(η)− φ(0))γ−1

Γ(γ)
w0 + Iς;φ

0+ g(η, w(η), w(η))) + Iς;φ
0+

[∫ s

0
h(η, τ, w(τ))dτ

]
,

and
(T2w)(η) := Iς;φ

0+ (A(w(η))).

From Proposition 1, solving Equation (1) is equivalent to finding a fixed point for the
operator T defined on the space C[0, p].

Suppose that r satisfies condition (5) and Br = {w ∈ C([0, p] : ||w|| ≤ r}. Due to
Lemma 1, the operator T maps Br into itself. Now, we use Krasnoselskii FPT to show that
T has a fixed point.

Claim 1. The operator T1 is continuous on Br.
Let {wn} be a sequence in Br that converges to w. We need to prove that T1wn → T1w. For

each η ∈ [0, p], we have

|(T1wn)(η)− (T1w)(η)|

≤ 1
Γ(ς)

∫ η

0

φ′(s)(φ(s)− φ(0))γ−1

(φ(η)− φ(0))1−ς
| max

s∈[0,η]
(φ(s)− φ(0))1−γg(s, wn(s), (wn(s))

− g(s, w(s), (w(s))|ds

+ 1
Γ(ς)

∫ η
0

φ′(s)(φ(s)− φ(0))γ−1

(φ(η)− φ(0))1−ς
maxs∈[0,η](φ(s)− φ(0))1−γ[

∫ s
0 |h(η, τ, wn(τ))

− h(η, τ, w(τ))|dτ]ds.

Since g and h are continuous, and wn → w as n → +∞ in Br, we can conclude that
|T1wn)(η)− (T1w)(η)| → 0 as n→ +∞ by Lebesgue dominated convergence theorem.
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Claim 2. T1 is an equicontinuous operator.
To prove our second claim, we let η1, η2 ∈ v with η2 < η1 and w ∈ Br,

|(T1w)(η1)− (T1w)(η2)|

≤ (φ(η1)− φ(η2))
1−γ(φ(s)− φ(0))1−γ

Γ(γ)
|w0|

+
(φ(η1)− φ(η2))

1−ςq1M1r

Γ(ς)

∫ η1

η2

φ′(s)(φ(s)− φ(0))1−γds

+
(φ(η1)− φ(η2))

1−ςq2rp

Γ(ς)

∫ η1

η2

φ′(s)(φ(s)− φ(0))1−γ)ds

≤ (φ(η1)− φ(η2))
1−γ(φ(s)− φ(0))1−γ

Γ(γ)
|w0|

+
(φ(η1)− φ(η2))

1−ς

Γ(ς)
(q1M1r+ q2r)

∫ η1

0
φ′(s)(φ(s)− φ(0))1−γds

≤ (φ(η1)− φ(η2))
1−γ(φ(p)− φ(0))1−γ

Γ(γ)
|w0|

+
Γ(γ)(φ(η1)− φ(η2))

1−ς+γ

Γ(ς + 1)
(q2r+ q1M1r).

Hence, we have

|(T1w)(η1)− (T1w)(η2)|

≤ (φ(η1)− φ(η2))
1−γ

Γ(γ)
|w0|

+
Γ(γ)(φ(η1)− φ(η2))

1−ς+γ

Γ(ς + 1)(φ(b)− φ(0))1−γ
(q2r+ q1M1r),

regarding Hypothesis 4, the right-hand side of the above inequality tends to zero whenever η1 → η2,
so it clearly claims that T1 is equicontinuous. Furthermore, using the previous lemma, it is
uniformly bounded. Therefore, by Arzela–Ascoli Theorem, T1 is compact on Br.

Claim 3. The operator T2 is a contraction.
Let w1, w2 ∈ C1−γ,ς([0, p]); then, we have

|(T2w1)(t)− (Tw2)(t)|

≤ ||A||
Γ(ς)

∫ η

0

φ′(s)
(φ(η)− φ(s))1−ς

|w1(s)− w2(s)|ds

≤ ||A||Γ(γ)(φ(p)− φ(0))γ

Γ(ς + 1)
|w1(η)− w2(η)|.

By Hypothesis 3 (H3), we infer that ||A||Γ(γ)(φ(p)− φ(0))γ < Γ(ς + 1). Thus, T2 is
a contraction mapping. By Theorem 2, the mapping T has at least a fixed point, which
directly implies that Equation (1) has a solution. This completes the proof.
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3. Stability Analysis

In this section, we present the Kummer stability with respect to
Φ(ς, ν; (φ(η) − φ(0))ς) for Equation (1) based on Theorem 3. We begin by assuming
the following hypotheses:

(K1) g ∈ C(v×R,R). Moreover, there exists Lg > 0 such that

|g(η,w1)− g(η,w2)| ≤ Lg|w1 −w2|, (6)

for all η ∈ [0, p].
(K2) h : v2 ×R→ R is a continuous function which satisfies a Lipschitz condition in the

third argument, i.e., there exists Lh > 0 such that

|h(η, s,w)− h(η, s, v)| ≤ Lh|w− v|, (7)

for all s, η ∈ v and w, v ∈ R.

Theorem 5. Suppose that g and h satisfy K1 and K2. Additionally, let

||A|| <
Γ(ς + 1)− (2Lf + pLh)Γ(γ)(φ(p)− φ(0))ς

Γ(γ)(φ(p)− φ(0))ς
. (8)

If a continuously differentiable function w : v → R for ε ≥ 0 satisfies

|HDς,ν;φ
0+ w(η)−A(w(η))− g(η, w(η))−

∫ η

0
h(η, s, w(s))ds|

≤ εΦ(ς, ν; (φ(η)− φ(0))ς),

for all η ∈ v, then there exists a unique continuous function v0 : v → R that satisfies Equation (1) and

|w(η)− v0(η)| (9)

≤ Γ(ς + 1)ε
Γ(ς + 1)− (2Lg + pLh + ||A||)Γ(γ)(φ(p)− φ(0))ς

Φ(ς, ν; (φ(η)− φ(0))ς),

for all η ∈ v.

Proof. Let Y := C1−γ,φ(0, p] be endowed with the following generalized metric, defined by

d∗(w, v) (10)

= inf{C ≥ 0 : |w(η)− v(η)| ≤ CεΦ(ς, ν; (φ(η)− φ(0))ς), for all η ∈ v},

for all w, v ∈ Y. It is not difficult to see that (Y, d∗) is a complete generalized metric
space [5]. Define the operator S : Y→ Y by

(Sw)(η) :=

(φ(η)− φ(0))γ−1

Γ(γ)
w0 + Iς;φ

0+ (A(w(η))) + Iς;φ
0+ g(η, w(η))

+Iς;φ
0+

[∫ s

0
h(η, τ, w(τ))dτ

]
,

for all η ∈ v and w ∈ Y. For any w, v ∈ Y, choose a constant K so that d∗(w, v) ≤ K, i.e,

|w(t)− v(t)| ≤ KεΦ(ς, ν; (φ(η)− φ(0))ς) (11)
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for all η ∈ v. So, using Remark 1, we have

|(Sw)(η)− (Sv)(η)|

≤ 1
Γ(ς)

∫ η

0

φ′(s)
(φ(η)− φ(s))ς

|g(η,w(η))− g(t, v(η))|

+
1

Γ(ς)

∫ η

0

φ′(s)
(φ(η)− φ(s))ς

[∫ s

0
|h(η, τ,w(τ))− h(η, τ, v(τ))|dτ

]

+
||A||
Γ(ς)

∫ η

0

φ′(s)
(φ(η)− φ(s))ς

|w(η)− v(η)|

≤
(2Lg + pLh + ||A||)Kε

Γ(ς)

∫ η

0

φ′(s)
(φ(η)− φ(s))ς

Φ(ς, ν; (φ(η)− φ(0))ς)

≤
(2Lg + pLh + ||A||)Γ(γ)(φ(p)− φ(0))ς

Γ(ς + 1)
KεΦ(ς, ν; (φ(η)− φ(0))ς),

which indicates that

d∗((Sw), (Sv)) ≤
(2Lg + pLh + ||A||)Γ(γ)(φ(p)− φ(0))ς

Γ(ς + 1)
d∗(w, v),

for all w, v ∈ (Y, d∗). From (8), we have (2Lg+ pLh+ ||A||)Γ(γ)(φ(p)−φ(0))ς < Γ(ς+ 1).
Hence, the operator S is a strict contraction. Moreover, for element v0 ∈ (Y, d∗), we have

|(Sv0)(η)− v0(η)|

≤ |v0(η)−
(φ(η)− φ(0))γ−1

Γ(γ)
v0

− Iς;φ
0+ g(η, v0(η))− Iς;φ

0+

[∫ s

0
h(η, τ, v0(τ))dτ

]
− Iς;φ

0+ (A(v0(η)))|

≤ εΦ(α, β; (φ(η)− φ(0))α),

for all η ∈ v. In summary, d∗(Sv0, v0) ≤ 1 and d∗(Snv0,Sn+1v0) < +∞ for all n ∈ N.
According to Theorem 3, there exists a unique continuous function w : v → R such that
Sw = w, w satisfies Equation (1) for all η ∈ v and

w(η)

=
(φ(η)− φ(0))γ−1

Γ(γ)
w0

+ Iς;φ
0+ g(η, v0(η)) + Iς;φ

0+

[∫ s

0
h(η, τ, v0(τ))dτ

]
+ Iς;φ

0+ (A(v0(η))),

for every η ∈ v. In addition, it follows from the above calculations that

d∗(w, v0) ≤
Γ(ς + 1)

Γ(ς + 1)− (2Lg + pLh + ||A||)Γ(γ)(φ(p)− φ(0))ς
,

which justifies inequality (9).
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3.1. The System of FDEs with Initial Conditions

Based on the results obtained in the previous section, we consider the following
system of FDEs with initial conditions:


HDς,ν;φ

0+ wi(η) = gi(w1(η), . . . , wn(η)) +
∫ η

0 hi(s, w1(s), . . . , wn(s))ds, η ∈ v = (0, p]

I1−γ;φ
0 wi(0) = wi(0), w0 ∈ R,

(12)

where i = 1, . . . , n, HDς,ν;φ
0+ (.) is a φ-Hilfer fractional derivative of order 0 < ς ≤ 1 and

type 0 ≤ ν < 1, and I1−γ;φ
0 is φ -Riemann-Liouville fractional integral of order 1 − γ

(γ = ς + ν(1− ς)) with respect to the mapping φ. Furthermore, gi : v × R → R and
hi : v2 ×R→ R are given mappings.

We can rewrite the above equation as follows
HDς,ν;φ

0+ W(η) = G(W(η)) +
∫ η

0 H(W(s))ds, η ∈ v = (0, p]

I1−γ;φ
0 W(0) = W0,

(13)

where

W(η) =


w1
w2
...

wn

, W0 =


w1(0)
w2(0)

...
wn(0)


and

G(W(η)) +
∫ t

0
H(W(η))ds =



g1(η, w1(η), . . . , wn(η)) +
∫ η

0 h1(η, s, w1(s), . . . , wn(s))ds

g2(η, w1(η), . . . , wn(η)) +
∫ η

0 h2(η, s, w1(s), . . . , wn(s))ds

...

gn(η, w1(η), . . . , wn(η)) +
∫ η

0 hn(η, s, w1(s), . . . , wn(s))ds


.

From Theorem 1, we obtain the equivalent matrix equation

W(η) = W0 + Iς,φ
0+

(
G(W(η)) +

∫ t

0
H(W(η))ds

)
. (14)

Changing Equation (13) as
HDς,ν;φ

0+ w(η) = g(η, w(η)) +
∫ η

0 h(w(s))ds, η ∈ v = (0, p]

I1−γ;φ
0 w(0) = w0.

(15)

A continuous function w is said to be a solution of Equation (15) if it satisfies

w(η) = w0 + Iς,φ
(
g(η, w(η)) +

∫ η

0
h(s, w(s))ds

)
. (16)

Using Theorem 5, under conditions (K1), (K2) and (8), Equation (15) has a unique solution.



Fractal Fract. 2021, 5, 200 13 of 15

4. Application of φ-Hilfer Fractional Derivative

In this section, we propose the proof of the existence of the solution of the Lotka–
Volterra model by considering it being ruled by a φ-Hilfer fractional derivative of the
model, as an application.

First, we state the Lotka–Volterra model, which was introduced by Lotka and Volterra [15]
independently. This model is known as the predator–prey equations or the Lotka–Volterra
equations, and it is given by

Ẋ = α(X− X
N1

)− βXY, on [n,m],

Ẏ = δXY− σ(Y− Y
N2

), on [n,m],

X(n) = Xn

Y(n) = Yn

(17)

where X and Y are population size or the population density of different species; Xn, Yn are
the initial conditions; α, β, δ, and σ represent different growth or decay rates; and N1, N2
are the carrying capacities. The above system shows an interaction between the logistic
growth and decay of two different species.

Based on the definitions in the previous sections, we can restate the model (17) in
the sense of the φ-Hilfer fractional derivative. Taking α = ς, β = ν and σ = γ, where
γ = ς + ν(1− ς), we will apply the model

HDς,ν;φ
0+ X(η) = ς(X− X

N1
)− νXY, on [n,m]

HDς,ν;φ
0+ Y(η) = δXY− γ(Y− Y

N2
), on [n,m]

I1−γ;φ
0 X(0) = wX

I1−γ;φ
0 Y(0) = wY

(18)

where wX ,wY ∈ R+ to analyze the existence, uniqueness, and stability of solutions.

Proposition 2. Equation (18) has a unique solution (X, Y) on the ball with radius r, and

L <
1
2

(
Γ(ς + 1)

Γ(γ)(φ(p)− φ(0))ς
− ||A|| − pLh

)
(19)

where L = νrk + δrk + max {ς(1− 1
N1

), γ(1− 1
N2

)} for some 0 < k ≤ ς. The solutions are of

the following form:

X(η) =
(φ(η)− φ(0))γ−1

Γ(γ)
wX + Iς;φ

0+
[
g(η, X(η), X(η)) +

∫ s

0
h(η, τ, u(τ))dτ +A(X(η))

]
and

Y(η) =
(φ(η)− φ(0))γ−1

Γ(γ)
wY + Iς;φ

0+
[
g(η, Y(η), Y(η)) +

∫ s

0
h(η, τ, u(τ))dτ +A(Y(η))

]
where γ ≥ 0 and we obtain from γ = ς + ν(1− ς) for 0 < ς ≤ 1 and 0 ≤ ν < 1 in (1).
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Proof. Assume that Fi : Ω → R is a continuous function on close set Ω ⊆ R+
n , where

Fi = gi(w1(η), . . . , wn(η)) +
∫ η

0 hi(s, w1(s), . . . , wn(s))ds and i = 1, . . . , n. Let X1 = (x1, y1)
and X2 = (x2, y2), then

J1 + J2 := |ς(x1 −
x1

N1
)− νx1y1 − ς(x2 −

x2

N1
) + νx2y2|+ |δx1y1 − γ(y1 −

y1

N2
)

−δx2y2 − γ(y2 −
y2

N2
)|,

but we have

J1 = |ς(x1 −
x1

N1
)− νx1y1 − ς(x2 −

x2

N1
) + νx2y2| ≤ ς|x1 − x2|(1−

1
N1

)

+ν|x1||y1 − y2|+ ν|y2||x1 − x2|

and

J2 = |δx1y1 − γ(y1 −
y1

N2
)− δx2y2 − γ(y2 −

y2

N2
)| ≤ δ|x1||y1 − y2|+ δ|y2||x1 − x2|+

γ|y1 − y2|(1−
1

N2
).

Now, assume that Ω = Br, so for some 0 < k ≤ ς, we have

J1 + J2 ≤
(

ς(1− x1

N1
) + νrk + δrk

)
|x1 − x2|+

(
νrk + δrk + γ(1− 1

N2
)

)
|y1 − y2|

≤ L(|x1 − x2|+ |y1 − y2|)

where L = νrk + δrk +max {ς(1− 1
N1

), γ(1− 1
N2

)}, and using the discussion in Section 3.1

and Theorem 5, our proof is complete.

Example 1. Let K : [0, 1]× [0, 1]→ R be a continuous function and w(η) be a continuous func-
tion on [0, 1] so that |K(η, λ)w(η)| < Γ(1/3)

3Γ(2/9) (e− 1)−
2
9 . Consider the following fractional system


HD

1
3 , 2

3 ;eη

0+ w(η) =
∫ 1

0 K(η, λ)w(η)dη +
1
5

sin(w(η)) +
∫ 1

0 sin(
3
5

ηw(s))ds, η ∈ (0, 1]

I
2
9 ;φ
0 w(0) = w0, w0 ∈ R

(20)

For all η ∈ [0, 1] and continuous real-valued functions w on [0, 1], we have | 15 sin(w(η))| ≤
1
5 |w(η)|. Moreover,

|
∫ 1

0
sin(

3
5

ηw(s))ds| ≤ 3
5
|(w(η))|,

for all η ∈ [0, 1]. Furthermore, by assumption, the operator 3
∫ 1

0 K(η, λ)w(η)dη is bounded and we

have |
∫ 1

0 K(η, λ)w(η)dη| ≤ Γ(4/3)
Γ(2/9)(e−1)2/9 , for all η, λ ∈ [0, 1] and continuous functions w. So

H1–H3 are satisfied for q1 = 1/5 and q2 = 3/5. Therefore, Theorem 4 proved that Equation (20)
has at least one solution.

5. Conclusions

In this paper, we considered a class of fractional differential equations including a
closed linear operator. Next, we used the Krasnoselskii fixed-point theorem to investigate
the existing result under some mild conditions. Moreover, we introduced and then proved
the Kummer stability of φ-Hilfer fractional differential equations on the compact domains.



Fractal Fract. 2021, 5, 200 15 of 15

Author Contributions: Formal analysis, C.L., R.S. and M.B.G.; Funding acquisition, T. A.; Methodol-
ogy, F.M., C.L., T.A. and M.B.G.; Project administration, T.A.; Resources, F. M.; Supervision, R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are thankful to the editor and referees for providing valuable comments. C.L.
was supported by NSERC Discovery Grant number 2019-03907. The author T. Abdeljawad would
like to thank Prince Sultan University for the moral support through the TAS research lab.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Liu, K.; Wang, J.; O’Regan, D. Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Adv.

Differ. Equ. 2019, 2019, 1–12. [CrossRef]
2. Podlubny, I. Fractional Differential Equations. Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999;

Volume 198.
3. Peng, S.; Wang, J.; Yu, X. Stable manifolds for some fractional differential equations. Nonlinear Anal. Model. Control 2018, 23,

642–663. [CrossRef]
4. Jung S.M. Hyers-Ulam stability of linear differential equations of first order (II). Appl. Math. Lett. 2006, 19, 854–858. [CrossRef]
5. Aderyani, S.R.; Saadati, R.; Feckan, M. The Cadariu-Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability

of Ω-Hilfer Fractional Differential Equations. Mathematics 2021, 9, 1408. [CrossRef]
6. Jung S.M. Hyers-Ulam stability of linear differential equations of first order (III). J. Math. Anal. Appl. 2005, 311, 139–146. [CrossRef]
7. Wang, G.; Zhou, M.; Sun, L. Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2008, 21,

1024–1028. [CrossRef]
8. Norouzi, F.; N’Guerekata, G.M. A study of φ-Hilfer fractional differential system with application in financial crisis. Chaos Solitons

Fractals X 2021, 6, 100056. [CrossRef]
9. Sousa, J. da Vanterler, C.; Capelas De Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul.

2018, 60, 72–91. [CrossRef]
10. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Equations; Elsevier: Amsterdam, The Netherlands, 2006.
11. Gabeleh, M.; Patel, D.K.; Patle, P.R.; Sen, M.D.L. Existence of a solution of Hilfer fractional hybrid problems via new Krasnoselskii-

type fixed point theorems.Open Math. 2021, 19, 450–469. [CrossRef]
12. Burton, T.A. A Fixed-Point Theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11.1, 85–88. [CrossRef]
13. Eiman, S.K.; Sarwar, M. Study on Krasnoselskii’s fixed point theorem for Caputo-Fabrizio fractional differential equations. Adv.

Differ. Equ. 2020, 2020, 178. [CrossRef]
14. Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am.

Math. Soc. 1968, 74, 305–309. [CrossRef]
15. Bacaer, N. Lotka, Volterra and the Predator–Prey System (1920–1926) A Short History of Mathematical Population Dynamics; Springer:

London, UK, 2011; pp. 71–76.

http://doi.org/10.1186/s13662-019-1997-4
http://dx.doi.org/10.15388/NA.2018.5.2
http://dx.doi.org/10.1016/j.aml.2005.11.004
http://dx.doi.org/10.3390/math9121408
http://dx.doi.org/10.1016/j.jmaa.2005.02.025
http://dx.doi.org/10.1016/j.aml.2007.10.020
http://dx.doi.org/10.1016/j.csfx.2021.100056
http://dx.doi.org/10.1016/j.cnsns.2018.01.005
http://dx.doi.org/10.1515/math-2021-0033
http://dx.doi.org/10.1016/S0893-9659(97)00138-9
http://dx.doi.org/10.1186/s13662-020-02624-x
http://dx.doi.org/10.1090/S0002-9904-1968-11933-0

	Preliminaries
	Existence Result
	Stability Analysis
	The System of FDEs with Initial Conditions

	Application of -Hilfer Fractional Derivative
	Conclusions
	References

