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Abstract: We investigate particle diffusion in a heterogeneous medium limited by a surface where
sorption–desorption processes are governed by a kinetic equation. We consider that the dynamics of
the particles present in the medium are governed by a diffusion equation with a spatial dependence
on the diffusion coefficient, i.e., K(x) = D|x|−η , with −1 < η and D = const, respectively. This
system is analyzed in a semi-infinity region, i.e., the system is defined in the interval [0, ∞) for an
arbitrary initial condition. The solutions are obtained and display anomalous spreading, that is, the
dynamics may be viewed as anomalous diffusion, which in turn is related, and hence, the model can
be directly applied to several complex systems ranging from biological fluids to electrolytic cells.

Keywords: fractional diffusion equation; memory effect; anomalous diffusion

1. Introduction

Separation is a transformation process of a mixture into two or more distinct prod-
ucts [1]. It is widely used in modern society, from the petrochemical [2] to biotechnology
industries [3]. Among several ways of promoting the separation process, adsorption
phenomena stands out due to its simple design and low investment required, finding
applications in removing a substance from fluid (liquid or gas) in several areas [1,4,5]. In a
few words, adsorption is an adhesion of some chemical species from a fluid (adsorbate) on
a surface (absorbent) [6,7]. While adsorption may occur by two distinctive mechanisms [6],
that is, chemisorption (particles chemically bonded to the substrate) or physisorption (parti-
cles adhere to the substrate by falling into potential wells) [7], the process in which particles
reach the adsorbing substrates often takes place by diffusion [8]. Hence, adsorption and
diffusion are two coupled phenomena since, as particles exit the volume to the surface, the
gradient of concentration changes toward the surface and diffusion takes place to equalize
the concentration. Similarly, during the desorption process (substance is released to the
bulk), diffusion compensates for the increase in concentration near the substrate. Therefore,
understanding how these two phenomena work together is crucial not only in separa-
tion process but in several other systems where diffusion and adsorption occur together,
such as biochemical reactions in living systems [9,10], in the electrical response of weak
electrolytes [11], in cancer [12] and population dynamics [13,14], and many others [15–21].

Recently, several works have been devoted to study systems where diffusion and
adsorption simultaneously occur. In particular, it is important to understand how the diffu-
sion process is affected by the adsorbing surfaces, which is often calculated by measuring
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how the distribution of particles spread over time, that is, by following how the mean
square displacement (MSD) changes over time [11]. In fact, such measurements are impor-
tant because they probe, for example, memory effects [22], diffusion in membranes [23,24]
and diffusion in porous media [25,26], which in turn helps to describe the morphology
of these materials. Indeed, by studying the MSD’s dependence in time, one can classify
diffusion as being normal or anomalous, that is, MSD∼ tb, so it is either normal if b = 1, or
anomalous if b 6= 1. Different behaviors for the MSD are also possible, such as MSD∼ lnγ t,
which are related to an ultra-slow diffusion [27–29]. Indeed, it is often observed that the
diffusion regime is heavily affected by surface adsorption [30–34]. Another important phe-
nomenon that affects diffusivity is by space variations of the diffusion coefficient [8]. In this
case, since the diffusion coefficient alters how fast diffusion happens, the overall spreading
of particles changes. This may happen due to several factors, including molecular crowd-
ing [35–37], bulk modulation [38] and porous media or traps [39,40]. Indeed, it has been
shown that the above facts have a great deal of influence on the diffusive regime on the
bulk, so probing diffusion can provide insights about surface and bulk phenomena [41–45].
In this work, in order to provide a general framework and model to study systems where
both spatial variation on the diffusion coefficient and adsorption phenomena occur, we
investigate a heterogeneous system, which is governed by the diffusion equation

∂

∂t
ρ(x, t) =

∂

∂x

(
K(x)

∂

∂x
ρ(x, t)

)
(1)

where ρ(x, t) is the bulk particle distribution, with the diffusion coefficient given by
K(x) = D|x|−η , where D is a constant and −1 < η. This spatial dependence for the
diffusion coefficient has been used to model several situations and is usually associated
with stretched exponential distributions, which are typical in different systems, including
diffusion on fractals [46,47], turbulence [48,49], diffusion and reaction on fractals [50], so-
lute transport in fractal porous media [51], and atom deposition in a porous substrate [52].
This feature shows that this choice for the diffusion coefficient connects our results with
these heterogeneous structures. We consider this system subjected to boundary conditions:

K(x)
∂

∂x
ρ(x, t)

∣∣∣∣
x=0

=
d
dt

Φ(t) , (2)

where Φ(t) stands for the surface coverage and

K(x)
∂

∂x
ρ(x, t)

∣∣∣∣
x=∞

= 0 , (3)

with the initial condition ρ(x, 0) = ϕ(x). These equations lead us the following conserva-
tion equation:

Φ(t) +
∫ ∞

0
dxρ(x, t) = constant . (4)

This result implies that the number of particles of the system is constant, i.e., when
we consider the contribution of the surface and the bulk. In this scenario, Φ(t), which
is related to the surface effects, may represent the particle flow injected into the system
by a source or a desorption process and removal rate of particles from the system by a
sorption process.

For the sorption–desorption processes on the surface, we may assume that they are
modeled by the following balance equation:

τγ dγ

dtγ
Φ(t) =

∫ t

0
κ(t− t′)ρ(0, t′)dt′ −Φ(t) . (5)
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In Equation (5), ρ(0, t) is the subsurface density. The kernel κ(t) may be connected
to the adsorption phenomena and the second term on the right side of Equation (5), i.e.,
−Φ(t), is related to a desorption process. In other words, this equation is a modified
version, with fractional derivatives, of a balance equation stating that the time variation on
the surface density is equal to the amount available to be adsorbed from the bulk minus the
amount desorbed back to the bulk [45]. This equation, on the other hand, is a simplification
of the classical Langmuir dynamics for a system where the number of particles is much
smaller than the number of available adsorption sites. The presence of the kernel represents
the importance of the previous state of a given particle in the bulk to the adsorption process,
while the fractional derivative can be used to interpret any anomalous behavior during the
dynamics of the surface. The fractional derivative used in Equation (5) is the Caputo one,
defined as follows:

dγ

dtγ
Φ(t) =

1
Γ(n− γ)

∫ t

0
dt′

Φ(n)(t′)
(t− t′)γ+1−n (6)

for n− 1 < γ < n, where Φ(n)(t) ≡ dnΦ(t)/dtn corresponds to the nth time derivative,
respectively. In particular, in our analysis, we consider 0 < γ ≤ 1. Equation (5) may
be considered an extension of the usual kinetic equations (Langmuir approximation) to
situations characterized by non-usual relaxations, i.e., non-Debye relaxations for which
a non-exponential behavior of the densities can be obtained, depending on the choice of
the γ and the kernel [41,43]. From a phenomenological point of view, the choice of the
kernel of the Equations (5) can be related to surface irregularities, which are important in
adsorption–desorption, to diffusion, to catalysis processes, and to microscopic parameters
representing the van der Waals interaction between the particles and the surfaces. It is also
interesting to mention that Equation (1) is coupled with Equation (5) in such a way that
processes occurring for each part of the system (surface and bulk) modify the dynamic of
the other.

This work is organized as follows. Next, Section 2 is devoted to investigate the solu-
tions and the processes related to Equation (1) when considering the set of Equations (1)
to (6). We show the behavior of the adsorption process for different scenarios and, in
particular, consider two different adsorption processes in order to illustrate the influence
on the bulk processes. In Section 3, we present a summary of the results, discussion and
our conclusions.

2. Diffusion Equation and Solutions

Let us start our discussion about the time-dependent solutions of Equation (1) by
considering it subjected to the boundary conditions previously discussed, in particular the
Equation (5), which represents an adsorption–desorption process at the surface located
in x = 0. To face this problem, we consider the eigenfunctions that emerge from the
Sturm–Liouville theory related to the equation

∂

∂x

(
x−η ∂

∂x
ψ(x, k)

)
= −k2ψ(x, k) (7)

with the boundary conditions, x−η∂xψ(x, k)|x=0 = 0 and x−η∂xψ(x, k)|x=∞ = 0,
which implies

ψ(x, k) = x
1
2 (1+η)J−ν

(
2k

2 + η
x

1
2 (2+η)

)
(8)

where J−ν(x) is the Bessel function [53] and ν = (1 + η)/(2 + η). In order to solve
Equation (7) and obtain Equation (8), we use the result presented in Reference [54] related
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to the differential equations satisfied by the Bessel functions. By using these results, it is
possible to show that

ρ̄(k, t) =
∫ ∞

0
dxψ(x, k)ρ(x, t) and ρ(x, t) =

2
2 + η

∫ ∞

0
dkkψ(x, k)ρ̄(k, t) , (9)

which may be related to a generalized Hankel transform. By using the previous equations,
it is possible to obtain from Equations (1)–(3) that

∂

∂t
ρ̄(k, t) = −k2Dρ̄(k, t)− 2 + η

kΓ
(

1
2+η

)( k
(2 + η)

) 1
2+η d

dt
Φ(t) (10)

and, consequently,

ρ̄(k, t) = ϕ̄(k)e−k2Dt

− 2 + η

kΓ
(

1
2+η

) ∫ t

0

(
k

(2 + η)

) 1
2+η

e−k2D(t−t′) d
dt′

Φ(t′)dt′ . (11)

By substituting Equation (11) into Equation (9) and performing some calculations, we
obtain that

ρ(x, t) =
∫ ∞

0
dx̄ϕ(x̄)G(x, x̄, t)−

∫ t

0
dt′G(x, 0, t− t′)

d
dt′

Φ(t′) (12)

with

G(x, x̄, t) =
1

(2 + η)Dt
(xx̄)

1
2 (1+η)e

− x2+η+x̄2+η

(2+η)2Dt I−ν

(
2(xx̄)

1
2 (2+η)

(2 + η)2Dt

)
(13)

(I−ν(x) is a Bessel function of modified argument [53]) where

G(x, 0, t) =
(2 + η)e

− x2+η

(2+η)2Dt

((2 + η)2Dt)
1

2+η Γ
(

1
2+η

) . (14)

From Equations (5) and (12), it is possible to obtain the equation that governs the
adsorption–desorption process on the surface under the influence of the diffusion process.
In particular, we have that

τγ dγ

dtγ
Φ(t)+

∫ t

0
dt′κ(t− t′)

∫ t′

0
dt̄G(0, 0, t′ − t̄)

d
dt̄

Φ(t̄) = I(t)−Φ(t) (15)

with

I(t) =
∫ ∞

0
dx̄ϕ(x̄)

∫ t

0
dt′κ(t− t′)G(0, x̄, t′) . (16)

It is worth mentioning that Equation (15) is an integro–differential equation with two
terms. One of them represents an exponential relaxation and the second one relies on
the time dependence of the diffusion coefficient. It can be related with a fractional time
derivative yielding,
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∫ t

0
dt′G(0, 0, t− t′)

d
dt′

Φ(t′) ∝
∫ t

0
dt′

1

(t− t′)
1

2+η

d
dt′

Φ(t′) , (17)

which is essentially a fractional time derivative in the Caputo sense, where η defines the
order of the fractional time derivative. This feature implies that Equation (15) can be
written as

τ
d
dt

Φ(t)+κ̄τη̄ dη̄

dtη̄ Φ(t)=I(t)−Φ(t) (18)

for γ = 1 and κ(t) = κδ(t) where η̄ = 1/(2 + η),

dη̄

dtη̄ Φ(t) =
1

Γ(1− η̄)

∫ t

0
dt′

1
(t− t′)η̄

d
dt′

Φ(t′) , (19)

and

κ̄ =
Γ
(

1+η
2+η

)
κ(

(2 + η)2Dτ
) 1

2+η Γ
(

3+η
2+η

) . (20)

Consequently, when subjected to the diffusion of the particles in the bulk, the adsorption-
desorption process on the surface presents two different diffusion regimes. One of them
is governed by the usual differential operator, and a fractional time derivative controls
another. The fractional time derivative present in Equation (18) is directly related to the
bulk effects and, in particular, depends on the heterogeneity of the substrate, where the
particles diffuse. The solution for Equation (18) by considering Φ(0) = 0, i.e., the particles
are initially in bulk may be obtained by considering the Laplace transform (L{ρ(x, t); s} =∫ ∞

0 dte−stρ(x, t) = ρ̃(x, s) and L−1{ρ̃(x, s); t} = 1
2πi
∫ c+i∞

c−i∞ dsestρ̃(x, s)) = ρ(x, t), yielding

Φ̃(s) =
Ĩ(s)

1 + τs + κ̄(τs)η̄ . (21)

By performing the inverse of Laplace transform, we obtain that the solution is given by

Φ(t) = κ
∫ t

0
dt′Λη(t− t′)

∫ ∞

0
dξϕ(ξ)G(0, ξ, t′) , (22)

with

Λη(t) = L−1

{
1

1 + τs + κ̄(τs)η̄ ; t

}

=
κ̄

πτ
sin(πη̄)

∫ ∞

0
dv

vη̄e−vt/τ

(1− v)2 + 2κ̄ cos(πη̄)(1− v)vη̄ + κ̄2v2η̄
. (23)

Note that Equation (23) was obtained by using the integration on the complex plane
to perform the inverse Laplace transform as discussed in Reference [55] by taking the
Bromwich’s contour into account (see Figure 1).
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Figure 1. The contour used to invert the Laplace transform given in Equation (23), see Reference [55]
for more details.

Figure 2 shows the time behavior of Φ(t) for different values of η. We may also
observe from this figure that the diffusive behavior has a direct influence on the adsorption
process of the particles by the surface. In fact, the heterogeneity of the media, which is
measured by the parameter η, may promote a faster spreading of the system by allowing a
large amount of particles, in comparison with other regimes, to reach the surface where the
adsorption process is present.

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

  η =   1/2
  η = −1/2
    η =  0

Φ
(t
)

t/τ
Figure 2. This figure shows the behavior of Equation (22) obtained from Equation (19) for different
values of η, where κ(t) = κδ(t) and ϕ(x) = δ(x− x′). It is possible to verify that the choice of η has a
direct influence on the asymptotic behavior of Φ(t). We consider, for simplicity, κ̄ = 1, x′ = 1/2, and
Dτ = 1.
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For the case γ 6= 1, the previous result obtained for Φ(t) changes to

Φ(t) = κ
∫ t

0
dt′Λη,γ(t− t′)

∫ ∞

0
dξϕ(ξ)G(0, ξ, t′) , (24)

with

Λη,γ(t) =
1

πτ

∫ ∞

0
dv

[κ̄vη̄ sin(πη̄) + vγ sin(πγ)]e−vt/τ

1 + 2vγ cos(πγ) + v2γ + 2κ̄vη̄ [cos(πη̄) + vγ cos(π(γ− η̄)] + κ̄2v2η̄
. (25)

Similar to the previous case, Equation (25) was also obtained by performing the in-
verse Laplace transform with the Bromwich’s contour [55], as performed for Equation (23).
Figure 3 shows the behavior of the adsorption process for the case η 6= 0 and γ 6= 1. In this
case, we have an interplay between two different phenomena, one related to the hetero-
geneity of the bulk, and the other is related to the factional nature of the kinetic equation.
In the three curves, a general behavior where a rapid adsorption process followed by a
slow desorption is observed. However, it is quite interesting how this dynamic process is
altered by the heterogeneity of the bulk and by the processes taking place at the surface,
which in turn could be applied in the phenomenological approach of several systems as
previously discussed.

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

Φ
(t
)

t/τ

 η = 1/2 ,  γ = 1/2 
 η = −1/2, γ = 1/2
     η =  0, γ = 1

Figure 3. This figure shows the behavior of the Equation (24) for different values of η and γ, where
κ(t) = κδ(t) and ϕ(x) = δ(x− x′). It is possible to verify that the choice of η may be directly related
to the asymptotic behavior of Φ(t). We consider, for simplicity, κ̄ = 1, x′ = 1/2, and Dτ = 1.

For an arbitrary adsorption process, i.e., for a general kernel, it is possible to obtain a
formal expression, which can be used to obtain particular cases. In this sense, we start by
expanding the solution obtained from Equation (15), for the initial condition Φ(0) = 0, in
the Laplace space as follows

Φ̃(s) =
Ĩ(s)

1 + (τs)γ + κ̃η(s)(τs)η̄

=
Ĩ(s)

1 + (τs)γ

{
1 +

∞

∑
n=1

(−1)n

[
κ̃η(s)

(τs)η̄

1 + (τs)γ

]n}
(26)
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where κ̃η(s) = κ̃(s)/κ̄. By applying the inverse of Laplace transform in Equation (26), we
obtain that

Φ(t) = Ξγ(t) +
∞

∑
n=1

∫ t

0
dtnΥη,γ(t− tn)

∫ tn

0
dtn−1Υη,γ(tn − tn−1) · · ·

∫ t2

0
dt1Υη,γ(t2 − t1)Ξγ(t1) (27)

with

Ξγ(t) =
∫ t

0

dt′

t′
I(t− t′)

(
t′

τ

)γ

Eγ,γ

(
−
(

t′

τ

)γ)
(28)

and

Υη,γ(t) =
∫ t

0

dt′

t′
κη(t− t′)

(
t′

τ

)γ−η̄

Eγ,γ−η̄

(
−
(

t′

τ

)γ)
. (29)

Figure 4 shows the behavior of the mean square displacement for the cases related
to the super-, usual and subdiffusive cases. Figures 5–7 show the behavior of the system
for κ(t) = (κ/τ′)e−t/τ′ , where an exponential is considered for the kernel related to the
adsorption process. We observe a similar behavior for the mean square displacement in
the asymptotic limits of short and long times. For intermediate times, a different behavior
is observed. The feature is connected to the different processes of adsorption present in
each case.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-2

10
0

10
2

10
4

10
6

 η =   1/2, γ = 1/2 
 η = −1/2, γ = 1/2
    η =   0, γ = 1

σ2 x
(t
)

t/τ
Figure 4. Behavior of the mean square displacement for different values of η and γ, where
κ(t) = κδ(t) and ϕ(x) = δ(x − x′). It is possible to verify that the choice of η may be directly
related to the asymptotic behavior of Φ(t). We consider, for simplicity, κ̄ = 1, x′ = 1/2, and Dτ = 1.
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0 2 4 6 8 10 12 14 16 18 20

0.0

0.1

0.2

0.3
 η=   1/2, γ= 1/2
 η= −1/2, γ= 1/2
    η=  0, γ= 1

Φ
(t
)

t/τ
Figure 5. This figure shows the behavior of the distribution for different values of η and γ, with
κ(t) = (κ/τ′)e−t/τ′ . We consider, for simplicity, κ̄ = 1, τ′ = τ, x′ = 1/2, and Dτ = 1.
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-2
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-1
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2

10
3

10
4

10
-2

10
0
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10
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10
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η= 0, γ= 1

η= 1/2, γ=
 1/2

σ2 x
(t
)

t/τ

η= −1/2, γ=
 1/2

Figure 6. This figure shows the behavior of the mean square displacement for different values of η

and γ, for the initial condition ϕ(x) = δ(x− x′). The colored lines were obtained by considering
κ(t) = κδ(t) and the black lines were obtained for κ(t) = (κ/τ′)e−t/τ′ . We consider, for simplicity,
κ̄ = 1, τ′ = τ, x′ = 1/2, and Dτ = 1.
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0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

 η=   1/2, γ= 1/2
 η= −1/2, γ= 1/2
    η=  0, γ= 1

ρ(
x
,t
)

x

Figure 7. This figure shows the behavior of the Equation (27) for different values of η and γ, with
κ(t) = (κ/τ′)e−t/τ′ . We consider, for simplicity, κ̄ = 1, τ′ = τ, x′ = 1/2, and Dτ = 1.

3. Discussion and Conclusions

We have investigated the adsorption–desorption process of a system governed by
a diffusion equation with a spatial dependence on the diffusion coefficient. The spatial
dependence present on the diffusion coefficient given byK(x) = D|x|−η has been related to
several physical contexts as mentioned before. In particular, an interesting point about this
spatial dependence concerns the shape of the solution. It is given in terms of a stretched
exponential, characteristic of a system subjected to a heterogeneous process. For the
processes on the surface, we consider a fractional kinetic equation by taking memory effects
into account on the adsorption term. This kinetic equation may cover different scenarios
and related to non-Debye relaxations. The boundary conditions couple the processes
present in the bulk and surface so that one modifies the other with the time evolution. For
this system, we have found a general solution and analyzed particular cases for different
scenarios. The first one considers the effect of heterogeneity on the adsorption–desorption
process. In this sense, Figure 2 shows the influence of the different regimes on the effects
of the surface related to the parameter η. Following, we consider γ 6= 1 in the previous
scenario, and an interplay between two different effects may be present while the particles
diffuse (see Figures 3 and 4). One of them is related to the heterogeneity and the other to
the connected kinetic process, which determines the interaction between the surface and
bulk. In this scenario, we also consider the case κ(t) = (k/τa)e−t/τa , (see Figures 5–7). In
particular, the mean square displacement has shown a wide range of behaviors related to
anomalous diffusion.
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