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1. Introduction

It is well-known that inequalities, such as the Gronwall–Bellman–Bihari–Henry in-
equality, play an important role in the study of existence, uniqueness, boundedness, stabil-
ity, and other qualitative properties of solutions of differential equations, integral equations,
and differential inclusions (see, for example, [1–7]). For nonlinear integral inequalities,
perhaps one of the most important contributions was made by Bihari [8] for

v(t) ≤ k +
∫ t

0
f (s)ψ(v(s))ds, k ∈ R+. (1)

This integral inequality was generalized by many authors. For example, Agarwal et al. [9]
replaced k, t, f , and ψ with the functions a(t), (bi(t))

p
i=1, ( fi)

p
i=1, and (ψi)

p
i=1, respectively,

and investigated the retarded Gronwall type inequality

v(t) ≤ a(t) +
p

∑
i=1

∫ bi(t)

bi(0)
fi(s)ψi(v(s))ds, b(t) ≤ t, 0 ≤ t ≤ T. (2)

In recent years, ordinary and partial differential equations of fractional order have
been investigated more in the literature due to their applicability to many problems in
engineering and other scientific disciplines; see [10–15] and the references therein for
recent work. The question of the existence of solutions and other mathematical aspects of
fractional differential equations and inclusions have been extensively studied and have
attracted much attention; many important contributions have been obtained so far (see the
monographs [16–18] as well as papers listed in the references below).

Linear and nonlinear integral inequalities with singular kernels have received consid-
erable attention in the literature since 1981 when Henry [3] established the following result:
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If w is a non-negative locally integrable function, a ≥ 0 is a constant, 0 < γ < 1, and

v(t) ≤ w(t) + a
∫ t

0

v(s)
(t− s)γ

ds,

then there exists a constant K = K(γ) such that

v(t) ≤ w(t) + Ka
∫ t

0

w(s)
(t− s)γ

ds, for t ∈ [0, b].

Henry’s result has been extended to more general linear integral inequalities by many
authors such as in [3,19–23]. All these results are proved by an iteration argument and the
results expressed as integrals with singular kernels often defined by power series of very
complicated forms that are sometimes not very convenient for applications.

In [24,25], Medved studied the nonlinear integral inequality of Henry type

v(t) ≤ w(t) + a
∫ t

0
(t− s)α−1ψ(v(s))ds

where α < 1 and ψ is a positive nondecreasing function.
The aim of the present paper is to establish some new and useful nonlinear general-

izations of the integral inequality given in [3]; we also generalize the singular inequality
of Agarwal et al. [9]. In our proofs, we make use of the Young and Hölder inequalities
combined with a classical Bihari type inequality to obtain our results.

It is also our goal to establish a new multivalued version of the Leray–Schauder fixed
point theorem. In order to accomplish this, we first recall some notions from multivariate
analysis in Section 3. In Section 4, we prove our Leray–Schauder type fixed point theorem
for multivalued mappings. Then, in Section 5, we use the fractional inequalities derived in
Section 2 and apply our fixed point theorem from Section 4 to an initial value problem for
a fractional delay differential inclusion in star shaped sets.

2. A Nonlinear Integral Inequality

In this section, we wish to establish some nonlinear integral inequalities that can be
used in the analysis of fractional differential equations and inclusions. The proofs are based
on Young’s and Hölder’s inequalities.

Theorem 1. Let 0 < α < 1, q > 1
α , and k0, k1, k2 > 0. For i = 1, 2, . . . , n, let fi, λi, γi, and g be

non-negative functions that are locally integrable on I = [0, T], and let ψi : [0, ∞) → [0, ∞) be
nondecreasing continuous functions. If u(t) is a non-negative continuous function on I satisfying

u(t) ≤ k0 +
n

∑
i=1

k1

∫ t

0
(t− s)α−1g(s)γi(s)u(s)ds +

n

∑
i=1

k2

∫ t

0
(t− s)α−1 fi(s)λi(s)ψi(u(s))ds,

then

u(t) ≤ Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
,

where
1
p
+

1
q
= 1,

m(t) = max

(
n

∑
i=1

1
q
(γi(t)g(t))q,

n

∑
i=1

1
q
(λi(t) fi(t))q

)
, k̃ = k0 +

(kp
1 + kp

2)nTp(α−1)+1

p(p(α− 1) + 1)
,

Ψ(z) =
∫ z

k0

dy
yq + ψ̃(y)

, ψ̃(y) = max{ψq
i (y) : i = 1, 2, . . . , n},
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Ψ−1 is the inverse function of Ψ, Dom(Ψ−1) is the domain of Ψ−1, and for every t ∈ [0, T],

Ψ(k̃) +
∫ t

0
m(s)ds ∈ Dom(Ψ−1).

Proof. By Young’s inequality, we see that

k1(t− s)α−1g(s)γi(s)u(s) ≤
kp

1
p
(t− s)p(α−1) +

1
q
(γi(s)g(s)u(s))q,

and

k2(t− s)α−1 fi(s)λi(s)ψi(u(s)) ≤
kp

2
p
(t− s)p(α−1) +

1
q
(λi(s) fi(s))q(ψi(u(s)))q.

Then,

u(t) ≤ k0 +
n

∑
i=1

(
kp

1
p

∫ t

0
(t− s)p(α−1) +

1
q

∫ t

0
(γi(s)g(s)u(s))qds

)

+
n

∑
i=1

(
kp

2
p

∫ t

0
(t− s)p(α−1) +

1
q

∫ t

0
(λi(s) fi(s))q(ψi(u(s)))qds

)

≤ k0 +
(kp

1 + kp
2)nTp(α−1)+1

p(p(α− 1) + 1)
+

n

∑
i=1

1
q

∫ t

0
(γi(s)g(s)u(s))qds

+
n

∑
i=1

1
q

∫ t

0
(λi(s) fi(s))q(ψi(u(s)))qds

≤ k̃ +
n

∑
i=1

1
q

∫ t

0
(γi(s)g(s)u(s))qds +

n

∑
i=1

1
q

∫ t

0
(λi(s) fi(s))q(ψi(u(s)))qds,

where

k̃ = k0 +
(kp

1 + kp
2)nTp(α−1)+1

p(p(α− 1) + 1)
.

Setting

v(t) = k̃ +
n

∑
i=1

1
q

∫ t

0
(γi(s)g(s)u(s))qds +

n

∑
i=1

1
q

∫ t

0
(λi(s) fi(s))q(ψi(u(s)))qds,

we see that

v′(t) =
n

∑
i=1

1
q
(γi(t)g(t)u(t))q +

n

∑
i=1

1
q
(λi(t) fi(t))q(ψi(u(t)))q, and v(0) = k̃.

Since the ψi are nondecreasing and u(t) ≤ v(t),

v′(t) ≤
n

∑
i=1

1
q
(γi(t)g(t)v(t))q +

n

∑
i=1

1
q
(λi(t) fi(t))q(ψi(v(t)))q, (3)

so
v′(t) ≤ m(t)(vq(t) + ψ̃(v(t))),

where

m(t) = max

(
n

∑
i=1

1
q
(γi(t)g(t))q,

n

∑
i=1

1
q
(λi(t) fi(t))q

)
and ψ̃(v) = max{ψq

i (v) : i = 1, 2, . . . , n}.
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Therefore,
v′(t)

vq(t) + ψ̃(v(t))
≤ m(t), t ∈ [0, T].

Integrating the above inequality from 0 to t, we obtain∫ t

0

v′(s)
vq(s) + ψ̃(v(s))

ds ≤
∫ t

0
m(s)ds,

or ∫ v(t)

v(0)

dx
xq + ψ̃(x)

≤
∫ t

0
m(s)ds.

Now∫ v(t)

v(0)

dx
xq + ψ̃(x)

=
∫ v(t)

k0

dx
xq + ψ̃(x)

−
∫ k̃

k0

dx
xq + ψ̃(x)

= Ψ(v(t))−Ψ(k̃)

since v(0) = k̃. Thus, it follows that

Ψ(v(t)) ≤ Ψ(k̃) +
∫ t

0
m(s)ds,

and hence

v(t) ≤ Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
.

Since u(t) ≤ v(t), we obtain

u(t) ≤ Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
,

which proves the theorem.

In the particular case where g(t) ≡ 0, we have the following corollary to Theorem 1.

Corollary 1. Let k0, k1 > 0, q > 1
α , and the functions fi, λi, ψi, and u be as in Theorem 1. If

u(t) ≤ k0 +
n

∑
i=1

k1

∫ t

0
(t− s)α−1 fi(s)λi(s)ψi(u(s))ds,

then

u(t) ≤ Ψ−1

(
Ψ(k̄) +

n

∑
i=1

1
q

∫ t

0
( fi(s)λi(s))qds

)
,

where

Ψ(z) =
∫ z

k0

dy
ψ̃(y)

, ψ̃(y) = max{ψq
i (y) : i = 1, 2, . . . , n}, k̄ = k0 +

nkp
1 Tp(α−1)+1

p(p(α− 1) + 1)
,

Ψ−1 is the inverse function of Ψ, and for every t ∈ [0, T],

Ψ(k̄) +
n

∑
i=1

1
q

∫ t

0
( fi(s)λi(s))qds ∈ Dom(Ψ−1).

Proof. Proceeding exactly as in the proof of Theorem 1, we again arrive at (3). Define the
function ψ̃ by

ψ̃(x) = max{ψq
i (x) : i = 1, 2 . . . , n},
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where
1
p
+

1
q
= 1. Then,

v′(t) ≤
n

∑
i=1

1
q
( fi(t)λi(t))qdsψ̃(v(t))

which implies that
v′(t)

ψ̃(v(t))
≤

n

∑
i=1

1
q
( fi(t)λi(t))qds.

Integrating the above inequality from 0 to t gives

∫ v(t)

v(0)

dy
ψ̃(y)

≤
n

∑
i=1

1
q

∫ t

0
( fi(s)λi(s))qds.

Therefore,

v(t) ≤ Ψ−1

(
Ψ(k̄) +

n

∑
i=1

1
q

∫ t

0
( fi(s)λi(s))qds

)
.

In view of the fact that u(t) ≤ v(t), this proves the corollary.

If α = 1 and fi(t) ≡ 1 for i = 1, 2, . . . , n in Corollary 1, we have the following version
of the result of Agarwal et al. ([9], Theorem 2.1).

Corollary 2. Let k0, k1 > 0, and the functions λi, ψi, and u be as in Theorem 1. If

u(t) ≤ k0 +
n

∑
i=1

k1

∫ t

0
λi(s)ψi(u(s))ds,

then

u(t) ≤ Ψ−1
n

(
Ψn(kn−1) +

∫ t

0
λn(s)ds

)
,

where
Ψi(z) =

∫ z

zi

dy
ψi(y)

, z > zi > 0, i = 1, 2, . . . , n,

the constants ki are given by

ki = Ψ−1
i [Ψi(ki−1) + ‖λi‖T1 ],

and T1 ∈ I is the largest number such that

‖λi‖T1 :=
∫ T1

0
λi(s)ds ≤

∫ ∞

ki−1

dy
ψi(y)

ds.

For n = 1, g ≡ 0, and f1 ≡ 1 ≡ λ1 in Theorem 1, we obtain the following fractional
Bihari type inequality on bounded intervals.

Corollary 3. Let k0, k1 > 0, q > 1
α , and the functions ψ and u be as in Theorem 1 such that

u(t) ≤ k0 + k1

∫ t

0
(t− s)α−1ψ(u(s))ds.

Then, for t ∈ [0, T], we have

u(t) ≤ Φ−1
(

Φ(k̄) +
t
q

)
, (4)
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where
1
p
+

1
q
= 1, Φ(z) =

∫ z

k0

dz
(ψ(z))q , k̄ = k0 +

kp
1 Tp(α−1)+1

p(p(α− 1) + 1)
,

and
Φ(k̄) +

t
q
∈ Dom(Φ−1).

If n = 1 and λ1(t) ≡ 1 in Corollary 1, then by using Hölder’s inequality, we have the
following result.

Corollary 4. Let k0, k1 > 0, the functions f , ψ, and u be as in Theorem 1, p
(

1− 1
q

)
= 1,

and q > 1
α . If

u(t) ≤ k0 + k1

∫ t

0
(t− s)α−1 f (s)ψ(u(s))ds,

then

u(t) ≤
[

Ψ−1

(
2qkq

1Tq(p(α−1)+1)

(p(α− 1) + 1)q

∫ t

0
f q(s)ds

)] 1
q

, t ∈ [0, T], (5)

where
Ψ(z) =

∫ z

2qkq

dx
(ψ( q
√

x))q , z ≥ 2qkq.

Next, for convenience, we introduce a class of functions to be used to obtain new
fractional Bihari type inequalities.

Definition 1. A function ψ : [0, ∞)→ [0, ∞) is said to belong to the class H if:

(H1)ψ is positive, continuous, and nondecreasing for z > 0.
(H2)There exists a continuous function φ : [0, ∞)→ [0, ∞) such that

ψ(γz) ≤ φ(γ)ψ(z), for every z ≥ 0 and γ > 0.

For additional details on this class of functions, see [26].

Theorem 2. Let 0 < α < 1, q > 1
α , and assume that for i = 1, 2, . . . , n, the functions f , λi, γi, h,

and g are non-negative and locally integrable, f and g are increasing, and ( f g)/h is decreasing on
I = [0, T]. Additionally, let ψi ∈ H, i = 1, 2, . . . , n, with corresponding multiplier functions φi.
If u(t) is a non-negative continuous function on I satisfying

u(t) ≤ h(t) + g(t)
n

∑
i=1

∫ t

0
(t− s)α−1γi(s)u(s)ds + f (t)

n

∑
i=1

∫ t

0
(t− s)α−1λi(s)ψi(u(s))ds, (6)

then

u(t) ≤ h(t)Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
,

where

m(t) = max

(
n

∑
i=1

1
q
(γi(t)g(t))q,

n

∑
i=1

1
q

(
f (t)λi(t)φi(h(t))

h(t)

)q
)

, k̃ = 1 +
2nTp(α−1)+1

p(p(α− 1) + 1)
,

Ψ(z) =
∫ z

1

dy
yq + ψ̃(y)

, and ψ̃(y) = max{ψq
i (y), i = 1, . . . , n}.
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Proof. From (6), we have

u(t)
f (t)g(t)

≤ h(t)
g(t) f (t)

+
n

∑
i=1

∫ t

0
(t− s)α−1 γi(s)

f (s)
u(s)ds +

n

∑
i=1

∫ t

0
(t− s)α−1 λi(s)

g(s)
ψi(u(s))ds,

which implies that

u(t)
h(t)

≤ 1 +
n

∑
i=1

∫ t

0
(t− s)α−1 g(s)γi(s)

h(s)
u(s)ds +

n

∑
i=1

∫ t

0
(t− s)α−1 f (s)λi(s)

h(s)
ψi(u(s))ds

≤ 1 +
n

∑
i=1

∫ t

0
(t− s)α−1g(s)γi(s)

u(s)
h(s)

ds

+
n

∑
i=1

∫ t

0
(t− s)α−1 f (s)λi(s)φi(h(s))

h(s)
ψi

(
u(s)
h(s)

)
ds.

With z(t) = u(t)
h(t) , we see that this last inequality is equivalent to

z(t) ≤ 1 +
n

∑
i=1

∫ t

0
(t− s)α−1g(s)γi(s)z(s)ds +

n

∑
i=1

∫ t

0
(t− s)α−1 f (s)λi(s)φi(h(s))

h(s)
ψi(z(s))ds.

If we replace fi by f (s)φi(h(s))
h(s) in Theorem 1, we obtain

z(t) ≤ Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
.

Therefore,

u(t) ≤ h(t)Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
,

which completes the proof.

For n = 1, g ≡ 0, and f (t) ≡ k, we next have a another fractional Bihari type inequality
on a bounded interval.

Corollary 5. Let q > 1
α , u, λ : [0, ∞)→ [0, ∞) be continuous functions, ψ ∈ H have correspond-

ing multiplier function φ on [0, ∞), h(t) > 0 be a nondecreasing continuous function on [0, ∞),
and k > 0 be a constant. If

u(t) ≤ h(t) + k
∫ t

0
(t− s)α−1λ(s)ψ(u(s))ds, t ∈ [0, T], (7)

then

u(t) ≤ h(t)Ψ−1
(

Ψ(k̄) +
1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q
ds
)

, t ∈ [0, T],

where

Ψ(z) =
∫ z

1

du
(ψ(u))q du, k̄ = 1 +

kpTp(α−1)+1

p(p(α− 1) + 1)
,

and

Ψ(k̄) +
1
q

∫ t

0

(
φ(h(s)) f (s)

h(s)

)q
ds ∈ Dom(Ψ−1), t ∈ [0, T].
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Proof. From (7) and the fact that h is nondecreasing,

u(t)
h(t)

≤ 1 + k
∫ t

0
(t− s)α−1 λ(s)

h(s)
ψ

(
h(s)u(s)

h(s)

)
ds

≤ 1 + k
∫ t

0
(t− s)α−1 φ(h(s))λ(s)

h(s)
ψ

(
u(s)
h(s)

)
ds.

Applying Young’s inequality gives

u(t)
h(t)

≤ 1 +
kp

p

∫ t

0
(t− s)p(α−1)ds +

1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q(
ψ

(
u(s)
h(s)

))q
ds

≤ 1 +
kpTp(α−1)+1

p(p(α− 1) + 1)
+

1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q(
ψ

(
u(s)
h(s)

))q
ds

where 1
p + 1

q = 1. Define

v(t) = 1 +
kpTp(α−1)+1

p(p(α− 1) + 1)
+

1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q(
ψ

(
u(s)
h(s)

))q
ds.

It follows that

v′(t) =
1
q

(
φ(h(t))λ(t)

h(t)

)q(
ψ

(
u(t)
h(t)

))q
, v(0) = k̄.

Since ψ is nondecreasing,

v′(t) ≤ 1
q

(
φ(h(t))λ(t)

h(t)

)q
(ψ(v(t)))q.

An integration from 0 to t yields

∫ v(t)

k̄

dz
(ψ(z))q ≤

1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q
ds.

Therefore,

v(t) ≤ Ψ−1
(

Ψ(k̄) +
1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q
ds
)

, t ∈ [0, T],

and so

u(t) ≤ h(t)Ψ−1
(

Ψ(k̄) +
1
q

∫ t

0

(
φ(h(s))λ(s)

h(s)

)q
ds
)

, t ∈ [0, T],

which completes the proof.

As another result in this same spirit, we have the following theorem.

Theorem 3. Let 0 < α < 1, q > 1
α , and assume that u, λi, and h are non-negative functions,

i = 1, 2, . . . , n, that are locally integrable on I = [0, T], and let ψi ∈ H with corresponding
multiplier functions φi. In addition, assume that the function h is nondecreasing and satisfies

(H̃) for each t ∈ I there exists a continuous function χ such that h(z(t)) ≤ χ(t)
z(t) .

If

u(t) ≤ h(u(t)) +
n

∑
i=1

∫ t

0
(t− s)α−1λi(s)

u(s)
φi(h(u(s)))

ψi(u(s))ds, (8)
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then

u(t) ≤
[

χ(t)Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)] 1
2
,

where

m(t) = max

(
n
pq

,
n

∑
i=1

1
q2 λ

q2

i (t)

)
, k̃ = 1 +

nTp(α−1)+1

p(p(α− 1) + 1)
,

Ψ(z) =
∫ z

1

dy
ypq + ψ̃(y)

, and ψ̃(y) = max{ψq2

i (y) : i = 1, 2, . . . , n}.

Proof. From (8) and the facts that Ψ satisfies (H2) and h is increasing, we obtain

u(t)
h(u(t))

≤ 1 +
n

∑
i=1

∫ t

0
(t− s)α−1λi(s)

u(s)
h(u(s))

ψi

(
u(s)

h(u(s))

)
ds. (9)

With z(t) = u(t)
h(u(t)) , this becomes

z(t) ≤ 1 +
n

∑
i=1

∫ t

0
(t− s)α−1λi(s)z(s)ψi(z(s))ds.

By Young’s inequality,

z(t) ≤ 1 +
n

∑
i=1

(
1
p

∫ t

0
(t− s)p(α−1) +

1
q

∫ t

0
λ

q
i (s)z

q(s)ψq
i (z(s))

)
ds

≤ 1 +
nTp(α−1)+1

p(p(α− 1) + 1)
+

n

∑
i=1

1
q

(
1
p

∫ t

0
z(s)pqds +

1
q

∫ t

0
λ

q2

i (s)ψq2

i (z(s))
)

ds

≤ k̃ +
n

∑
i=1

1
pq

∫ t

0
zpq(s)ds +

n

∑
i=1

1
q2

∫ t

0
λ

q2

i (s)ψq2

i (z(s))ds,

where k̃ = 1 + nTp(α−1)+1

p(p(α−1)+1) .
Letting

v(t) = k̃ +
n

∑
i=1

1
pq

∫ t

0
zpq(s)ds +

n

∑
i=1

1
q2

∫ t

0
λ

q2

i (s)ψq2

i (z(s))ds,

we define the functions m and ψ̃ by

m(t) = max

(
n
pq

,
n

∑
i=1

1
q2 λ

q2

i (t)

)
and ψ̃(t) = max{ψq2

i (t) : i = 1, . . . , n}.

Since the ψi are nondecreasing,

v′(t) =
n
pq

zpq(t) +
n

∑
i=1

1
q2 λ

q2

i (t)ψq2

i (z(t)) ≤ m(t)
(
vpq(t) + ψ̃(v(t))

)
.

Hence,
v′(t)

vpq(t) + ψ̃(v(t))
≤ m(t),

and integrating from 0 to t, we obtain

∫ v(t)

v(0)

dx
xpq + ψ̃(x)

≤
∫ t

0
m(s)ds.
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With v(0) = k̃, we have

Ψ(v(t)) ≤ Ψ(k̃) +
∫ t

0
m(s)ds,

which implies that

v(t) ≤ Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
.

Since u(t)
h(u(t)) = z(t) ≤ v(t) and (H̃) holds, we finally obtain

u(t) ≤ h(u(t))Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
≤ χ(t)

u(t)
Ψ−1

(
Ψ(k̃) +

∫ t

0
m(s)ds

)
.

Thus,

u2(t) ≤ χ(t)Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)
,

and so

u(t) ≤
[

χ(t)Ψ−1
(

Ψ(k̃) +
∫ t

0
m(s)ds

)] 1
2
.

This completes the proof of the theorem.

3. Multivalued Analysis

In order to apply the inequalities obtained above to fractional differential inclusions,
we need to recall some basic notions from multivalued analysis (see, for example, [27,28]).

For any set X, we employ the following notation.

P(X) = {Y ⊂ X : Y 6= ∅};
Pcl(X) = {Y ∈ P(X) : Y closed};
Pb(X) = {Y ∈ P(X) : Y bounded};
Pcv(X) = {Y ∈ P(X) : Y convex};
Pcp(X) = {Y ∈ P(X) : Y compact};
Pwcp(X) = {Y ∈ P(X) : Y weakly compact}.

A multi-valued map G : X −→ P(X) has convex (closed) values if G(x) is convex (closed)
for all x ∈ X. We say that G is bounded on bounded sets if G(B) is bounded in X for each
bounded set B ⊂ X, i.e., supx∈B{sup{|y| : y ∈ G(x)}} < ∞.

Definition 2. ([28], Definition 2.30) A multifunction F : X → P(Y) is said to be upper semi-
continuous (weakly upper semi-continuous) at the point x0 ∈ X if for every open W ⊆ Y (W
weakly open) such that F(x0) ⊂ W, there exists a neighborhood V(x0) (weakly open) of x0 such
that F(V(x0)) ⊂W. A multifunction is called upper semi-continuous (u.s.c.) on X if it is u.s.c. at
x for each x ∈ X.

Definition 3. ([28], Definition 2.30) A multifunction F : X → P(Y) is lower-continuous at the
point x0 ∈ X if for every open W ⊆ Y such that F(x0) ∩W 6= ∅, there exists a neighborhood
V(x0) of x0 such that F(x)∩W 6= ∅ for all x ∈ V(x0). A multifunction is lower semi-continuous
(l.s.c.) provided that is lower semi-continuous at every point x ∈ X.

Definition 4. ([27], Definition 2.1.1) A mapping G : X → Y is closed if the graph Gr(G) is
a closed subset of X × Y, i.e., for sequences (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y, if xn → x∗ and
yn → y∗ as n→ ∞ with yn ∈ G(xn), then y∗ ∈ G(x∗).
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A mapping G is said to be completely continuous if it is u.s.c. and for every bounded
set A ⊆ X, G(A) is relatively compact, i.e., there exists a relatively compact set K ⊂ X
such that G(A) =

⋃{G(x) : x ∈ A} ⊂ K. Additionally, G is compact if G(X) is relatively
compact and it is called locally compact if for each x ∈ X, there exists U ∈ V(x) such that
G(U) is relatively compact.

Definition 5. ([27], Definition 2.6.2) Let X be a metric space and E be a Banach space. A mul-
tivalued map F : X → P(E) is upper hemicontinuous if for each x∗ ∈ E∗, the function
σ(x∗, F(·)) : X → R∪ {+∞} given by

σ(x∗, F(x)) = sup
y∈F(x)

〈x∗, y〉

is upper semicontinuous.

Next, we recall the following results.

Lemma 1. ([29], Proposition 1.2) If G : X → Pcl(Y) is u.s.c., then Gr(G) is a closed subset of
X×Y. Conversely, if G is locally compact, has nonempty compact values, and a closed graph, then
it is u.s.c.

Lemma 2. ([30]) If F : X → Pwcp,cv(E) is upper hemicontinuous, then it is weakly u.s.c.

Lemma 3. ([30]) If F : X → Pwcp,cv(E) is weakly u.s.c. if and only if for sequences (xn)n∈N ⊂ X
and (yn)n∈N ⊂ E, if xn ⇀ x∗, as n → ∞ with yn ∈ F(xn), then there is a subsequence
ynk ⇀ y∗ ∈ F(x∗).

Theorem 4. ([31]) Let X be a reflexive Banach space and F : X → Pcl,cv(X) be a upper-
hemicontinuous multivalued map. Let J be a finite interval of R and the sequences (xn : J → X)n∈N
and (yn : J → X)n∈N satisfy the following conditions:

1) (xn)n∈N converges to a function x : J → X;
2) (yn)n∈N converges weakly to y ∈ Lp(J, E), 1 ≤ p < ∞;
3) yn(t) ∈ coB(F(B(xn(t), εn), εn)) for a.e. all t ∈ J, where εn → 0 as n→ ∞.

Then y(t) ∈ F(x(t)) for a.e. t ∈ J.

Definition 6. ([28], Definition 9.8) A space A is closed acyclic if:

(a) H0(A) = Q;
(b) Hn(A) = 0 for every n > 0, where H∗ = {Hn}n≥0 is the Čech-homology functor with

compact carriers and coefficients in the field of rationals Q.

That is, a space A is acyclic if the map j : {p} → X, with j(p) = x0 ∈ A, induces an
isomorphism j∗ : H∗({p})→ H∗(A).

Remark 1. If Rδ− is a compact connected space that is acyclic with respect to the Čech-homology
functor, then it has the same homology as a one-point space.

Definition 7. ([28], Definition 9.9) A u.s.c. map F : X → P(Y) is called acyclic if for each
x ∈ X, F(x) is compact acyclic.

Definition 8. ([28], Definition 9.15) Let X be a metric space and E be a Banach space. A map
N : X → E is proper if it is continuous and for every compact K ⊂ E the set N−1(K) is compact.

Definition 9. ([28], Definition 2.29) A map L : X → Y is said to be a Vietoris map if the
following conditions are satisfied:

(i) L : X → Y is proper;



Fractal Fract. 2021, 5, 173 12 of 27

(ii) L is surjective;
(iii) the set L−1(y) is acyclic for every y ∈ Y.

It is clear that any multivalued operator F : X → P(Y) admits the standard factoriza-
tion through the graph Gr(F), i.e., there exists a diagram

X F−−−−→ P(Y)

pF

x xi

Gr(F) −−−−→
qF

Y

where pF : Gr(F)→ X and qF : Gr(F)→ Y are the projections such that

F(x) = qF(p−1
F (x)) for all x ∈ X.

This suggests the following definition and properties.

Definition 10. ([32], Definition 40.1) A multivalued operator F : X → P(Y) is called admissible
if there exists a metric space X̃ and two continuous maps p̃ : X̃ → X and q̃ : X̃ → Y such that

(i) p̃ is a Vietoris map, and
(ii) F(x) = q̃( p̃−1(x)) for any x ∈ X.

Proposition 1. ([32]) If F : X → P(Y) and G : Y → P(Z) are two admissible maps, then the
composition G ◦ F is admissible.

Given a Banach space (X, ‖ · ‖), for a multivalued map F : J × X → P(X), set

‖F(t, x)‖P := sup{‖v‖ : v ∈ F(t, x)}.

A multivalued map G : J −→ Pcp(X) is said to be measurable if for each x ∈ R the
function Y : J −→ R defined by

Y(t) = d(x, G(t)) = inf{‖x− z‖ : z ∈ G(t)}

is measurable.
A multifunction F : [a, b]→ Pcp(X) is strongly measurable if there exists a sequence

{Fn : n ∈ N} of step multifunctions such that

Hd(Fn(t), F(t))→ 0 as n→ ∞ for µ a.e t ∈ [a, b],

where µ denotes a Lebesgue measure on [a, b] and Hd is the Hausdorff metric on Pcp(X).
In what follows, Lp([a, b], X) denotes the Banach space of functions y : J −→ X, that

are Bochner integrable with norm

‖y‖p =

(∫ b

a
‖y(t)‖pdt

) 1
p

, p ∈ [1, ∞).

For each y ∈ C(J, X), the set

SF,y =
{

f ∈ L1(J, X) : f (t) ∈ F(t, y(t)) for a.e. t ∈ [0, b]
}

is known as the set of selection functions for F.

Lemma 4. ([32], Theorem 19.7) Let X be a separable metric space and G be a multivalued map
with nonempty closed values. Then G has a measurable selection.
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Definition 11. ([28], Definition 2.80) A multivalued map F is a Carathéodory function if

(a) the function t 7→ F(t, x) is strong measurable for each x ∈ X;
(b) for a.e. t ∈ J, the map x 7→ F(t, x) is upper semi-continuous.

Furthermore, F is L1−Carathéodory if it is locally integrably bounded, i.e., for each positive r,
there exists hr ∈ L1(J,R+) such that

‖F(t, x)‖P ≤ hr(t), for a.e. t ∈ J and all ‖x‖ ≤ r.

Measures of Noncompactness (MNC)

For more details on measure of noncompactness than given below, we refer the reader
to [33–35] and the references therein.

Definition 12. ([28], Definition 2.91) Let E be a Banach space and (A,≥) be a partially ordered
set. A map β : P(X)→ A is called a measure of noncompactness on X (MNC), if

β(co Ω) = β(Ω)

for every Ω ∈ P(X).

Notice that if D is dense in Ω, then co Ω = co D and hence

β(Ω) = β(D).

Definition 13. ([28], Definition 2.92) A measure of noncompactness β is:

(a) Monotone if Ω0, Ω1 ∈ P(X) with Ω0 ⊂ Ω1, implies β(Ω0) ≤ β(Ω1).
(b) Nonsingular if β({a} ∪Ω) = β(Ω) for every a ∈ X, Ω ∈ P(X).
(c) Invariant with respect to the union with compact sets if β(K ∪Ω) = β(Ω) for every relatively

compact set K ⊂ X, and Ω ∈ P(X).
(d) Real if A = R+ = [0, ∞] and β(Ω) < ∞ for every bounded Ω.
(e) Semi-additive if β(Ω0 ∪Ω1) = max(β(Ω0), β(Ω1)) for every Ω0, Ω1 ∈ P(X).
(f) Regular if the condition β(Ω) = 0 is equivalent to the relative compactness of Ω.

As an example of a MNC, consider the Hausdorff MNC

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.

Recall that a bounded set A ⊂ X has a finite ε−net if there exits a finite subset S ⊂ X
such that A ⊂ S + εB where B is a closed ball in X. Other examples are given by the
following measures of noncompactness defined on the space of continuous functions
C([0, b], X) with values in a Banach space X:

(i) the modulus of fiber noncompactness

ϕ(Ω) = sup
t∈[0,b]

χX (Ω(t)),

where χX is the Hausdorff MNC in X and Ω(t) = {y(t) : y ∈ Ω}.
(ii) the modulus of equicontinuity

modC(Ω) = lim
δ→0

sup
y∈Ω

max
|τ1−τ2|≤δ

‖y(τ1)− y(τ2)‖.

It should be mentioned that these MNC satisfy all above-mentioned properties except
regularity.
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Definition 14. ([28]) LetM be a closed subset of a Banach space X and β : P(X) → (A,≥)
be a MNC on E. A multivalued map F : M→ Pcp(X) is said to be β−condensing if for every
Ω ⊂M, the relation

β(Ω) ≤ β(F (Ω))

implies the relative compactness of Ω.

Some important results on fixed point theory with MNCs are recalled next (see,
for example, [34] for proofs and additional details). The first one is a compactness criterion.

Lemma 5. ([34], Theorem 5.1.1) Let N : L1([a, b], X)→ C([a, b], X) be an operator satisfying
the following conditions:

(S1) N is ξ−Lipschitz: there exists ξ > 0 such that for every f , g ∈ L1([a, b], X),

‖N f (t)− Ng(t)‖ ≤ ξ
∫ b

a
‖ f (s)− g(s)‖ds, for all t ∈ [a, b].

(S2) N is weakly-strongly sequentially continuous on compact subsets: for any compact K ⊂ X and
any sequence { fn}∞

n=1 ⊂ L1([a, b], X) such that { fn(t)}∞
n=1 ⊂ K for a.e. t ∈ [a, b], the weak

convergence of fn ⇀ f0 implies the strong convergence of N( fn)→ N( f0) as n→ +∞.

Then for every semi-compact sequence { fn}∞
n=1 ⊂ L1([0, b], X), the image sequence N({ fn}∞

n=1)
is relatively compact in C([a, b], X).

Lemma 6. ([34], Theorem 5.2.2]) Let an operator N : L1([a, b], X)→ C([a, b], X) satisfy condi-
tions (S1)–(S2) together with

(S3) There exits η ∈ L1([a, b]) such that for every integrably bounded sequence { fn}∞
n=1, we have

χ({ fn(t)}∞
n=1) ≤ η(t), for a.e. t ∈ [a, b],

where χ is the Hausdorff MNC.
Then

χ({N( fn)(t)}∞
n=1) ≤ 2ξ

∫ b

a
η(s)ds, for all t ∈ [a, b],

where ξ is the constant in (S1).

4. Fixed Point Theory

We begin with some basics of fixed point theory.

Theorem 5. ([32]) Let D ⊂ X be a nonempty closed convex and bounded subset of X and
N : D → P(D) an β-condensing admissible multivalued operator, where γ is a nonsingular
measure of noncompactness defined on subsets of X. Then FixN is nonempty and compact.

The next result is concerned with the nonlinear alternative for β−condensing u.s.c.
multi-valued maps.

Lemma 7. Let V ⊂ X be a bounded open neighborhood of zero and N : V → P(X) be a β-
admissible multi-valued map, where β is a nonsingular measure of noncompactness defined on
subsets of X, that satisfies the Leray–Schauder boundary condition

x 6∈ λN(x)

for all x ∈ ∂V and 0 < λ < 1. Then FixN is nonempty and compact.

Proof. Let C be the set defined by

C = {x ∈ V : x ∈ λN(x) for some λ ∈ [0, 1]}.
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It is clear that C is nonempty set since 0 ∈ C. To show that C is closed, let (xn)n∈N ⊂ C be a
sequence converging to x; then there exists (λn)n∈N ⊂ [0, 1] such that

xn ∈ λnN(xn) for n ∈ N.

Since [0, 1] is compact, there exists a subsequence of (λn)n∈N that converges to λ ∈
[0, 1].

If λ ∈ (0, 1], then using the fact that N is admissible, we see that N has a closed graph,
so x ∈ λN(x).

If λ = 0, it is clear that N
(
{xn : n ∈ N}

)
is a compact set, so there exists M > 0 such

that
‖y‖ ≤ M for any y ∈ N

(
{xn : n ∈ N}

)
.

This implies
‖xn‖ ≤ λn M, n ∈ N,

that is, x = 0 ∈ 0N(0), and we conclude that C is closed set in X.
Since C ∩ X\V = ∅, Urysohn’s lemma guarantees the existence of a continuous

function µ : X → [0, 1] such that µ(x) = 1 for x ∈ C and µ(x) = 0 for x ∈ X\V. Let
r : X → V be a retraction of the space X onto V.

We introduce the multivalued operator Ñ : X → P(X) defined by

Ñ(x) =


µ(x)N(x), x ∈ V,

{0}, x ∈ X\V.

Observe that
Ñ(x) = f ◦ (µ(x)× N(r(x))), x ∈ X,

where f : [0, 1]× X → X is defined by

f (λ, x) = λx, x ∈ X.

Let C∗ = co
(

N(V) ∪ {0}
)
; it is easy to show that

Ñ(C∗) ⊂ C∗.

It follows from the definition of Ñ that it is an admissible multivalued map.
Next, we show that Ñ is β−condensing. Let D ∈ Pb(C∗) be such that

β(D) ≤ Ñ(D).

If D ∩V = ∅, then from the definition of Ñ, we have

β(D) ≤ β(Ñ(D)) ≤ β({0}) = 0,

so D is relatively compact. On the other hand, if D ∩V 6= ∅, then

β(D ∩V) ≤ β(D) ≤ β(Ñ(D)) ≤ β(Ñ(D ∩V)).

From the definition of Ñ,

β
(

Ñ(D ∩V)
)
= β

(
µ(D ∩V)N(D ∩V)

)
= β

 ⋃
x∈D∩V

µ(x)N(D ∩V)

.
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From Definition 13, for every x ∈ X, we have

β
(
µ(x)N(D ∩V)

)
= |µ(x)|β

(
N(D ∩V)

)
≤ β

(
N(D ∩V)

)
.

Hence,
β(D ∩V) ≤ β(D) ≤ β(Ñ(D)) ≤ β

(
N(D ∩V)

)
.

Since N is β−condensing, we obtain that D ∩V is relatively compact. Moreover, since
N is u.s.c., β(D) = 0, so D is relatively compact. Therefore, Ñ is β−admissible since it is
admissible and β-condensing.

We now use Theorem 5 to show that Ñ has at least one fixed point x ∈ C∗ such that
x ∈ Ñ(x). Since 0 ∈ V, x ∈ V and x ∈ µ(x)N(x). Hence, x ∈ C. This implies that x ∈ N(x)
so Fix(N) 6= ∅.

To see that Fix(N) is compact, first note that

Fix(N) ⊂ N(Fix(N)).

Therefore,
β(Fix(N)) ≤ β(N(Fix(N))).

Since N is β−admissible, we conclude that Fix(N) is compact. This completes the
proof of the lemma.

An additional result on the set of fixed points of F is contained in the following proposition.

Proposition 2. Let X be a Banach space and N : X → P(X) be a β−admissible multivalued map,
where β is a nonsingular measure of noncompactness defined on subsets of X. If the set

M = {x ∈ X : x ∈ λN(x), for some λ ∈ (0, 1)}

is bounded, then FixN 6= ∅ and is compact.

Proof. SinceM is a bounded set, there exists M > 0 such that

‖x‖ < M for each x ∈ M.

We can easily prove that N : B(0, M)→ P(X) is a β−admissible operator and

x 6∈ λN(x) for all x ∈ ∂B(0, M).

Consequently, from Lemma 7, the set Fix(N) 6= ∅ and is compact.

Similarly, we have the following result.

Lemma 8. ([34]) Let W be a closed subset of a Banach space E and N : W → Pcp(X) be a closed
β−condensing multivalued map, where β is a nonsingular measure of noncompactness defined on
subsets of X. If the fixed point set Fix(N) is bounded, then it is compact.

In what follows, we wish to replace the Leray–Schauder boundary condition with the
following “star-shaped” condition.

Definition 15. ([27], Definition 4.2.7) Let X be a Banach space. An open bounded neighborhood
of the origin, V, is strictly star-shaped with respect to the origin if for any x ∈ ∂V, we have

{λx : λ > 0} ∩ ∂V = {x}.
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Remark 2. If V is a bounded open neighborhood of the origin, the following strict inclusions hold
(see ([36], Proposition 1)):

Convex ⊂ Strictly Star-shaped ⊂ Star-shaped.

For any strictly star-shaped open and bounded neighborhood V of the origin, we can
define the Minkowski function µV : X → [0, ∞) by

µV(x) = inf{λ > 0 : x ∈ λV}.

This function satisfies the properties:

• µv(tx) = tµ(x), for all x ∈ X and t ≥ 0.
• µV(x) > 0 for any x ∈ X.
• V = {x : µV(x) < 1}, V = {x : µV(x) ≤ 1}, and ∂V = {x : µV(x) = 1}.

Remark 3. For a strictly star set, the Minkowski function can equivalently be defined as: µ(0) = 0
and, for x 6= 0, µV(x) is the unique positive number such that x

µV(x) ∈ V.

Proposition 3. ([37]) Let X be a Banach space and V be an open bounded neighborhood of zero.
If V is strictly star-shaped, then the Minkowski function µV is continuous and the mapping
RV : X → V given by

RV(x) =


x

µV(x) , x ∈ X\V,

x, x ∈ V,

is a continuous retract of X into closure of V.

In 2005, Jiménez-Melado and Morales [36] introduced the so-called interior condition
for single valued maps. In the following definition, we introduce a multivalued version of
this condition.

Definition 16. ([36], Page 501) Let X be a real Banach space and V be open subset of X with
0 ∈ V. We say that the multivalued map N : V → P(X) satisfies the interior condition if there
exists δ > 0 such that

λx 6∈ N(x) for x ∈ Vδ, λ > 1, and N(x) ∩ X\V 6= ∅,

where
Vδ = {x ∈ V : d(x, ∂V) < δ}.

The following result is taken from González, Jiménez-Melado, and Llorens-Fuster ([37],
Proposition 2).

Proposition 4. Let X be a Banach space and V be a strictly star-shaped open bounded neighborhood
of the origin. Let 0 ≤ k ≤ K̃, where k = d(0, ∂V) and K̃ = sup{‖x‖ : x ∈ ∂V}, and choose
δ ∈ (0, k]. Define Lδ

V : X → X by

Lδ
V(x) =


r+(1−r)µV(x)

µ2
V(x)

x, x ∈ X\V,

x, x ∈ V.

Then Lδ
V is continuous, Lδ

V(X\V) ⊂ Vδ, and Lδ
V(x) ∈ co({0} ∪ {x}) for all x ∈ X.

The following fixed point theorem is for multivalued maps satisfying the interior condition.
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Theorem 6. Let X be a real Banach space and let V be a bounded open and strictly star-shaped
subset of X with 0 ∈ V. If the multivalued map N : V → P(X) is β−condensing, admissible,
and satisfies the interior condition, then N has at least one fixed point.

Proof. Let RV : X → V be a retraction of X into V. Define the multivalued operator
N∗ : V → P(X) by

N∗(x) =


r+(1−r)µV(x)

µ2
V(x)

N(RV(x)), x ∈ X\V,

N(x), x ∈ V.

We can write N∗ as

Ñ∗(x) = g ◦ (µ̃(x)× N(RV(x))), x ∈ X,

where g : [0, 1]× X → X is defined by

g(λ, x) = λx, x ∈ X,

and

µ̃(x) =


r+(1−r)µV(x)

µ2
V(x)

, x ∈ X\V,

1, x ∈ V,

are continuous functions. Then, by Proposition 1, N∗ is an admissible operator, and we see
that co(N(V) ∪ {0}) is invariant under N∗. Let D ∈ Pb(V); then from the definition of N∗,

β(N∗(D)) = β(N(D)).

Therefore,
β(N∗(D)) ≤ β(N(D)) for all D ∈ Pb(V).

From this it follows that N∗ is a β−condensing admissible operator. We wish to show
that the conditions of Mönch’s theorem [38] hold. Let D ⊂ V with D ⊂ co({0} ∪ N∗(D));
then

β(D) ≤ β(co({0} ∪ N∗(D))) = β(co(N∗(D))).

Hence,
β(D) ≤ β(N∗(D)).

Using the fact that N∗ is β-condensing, we see that D is relatively compact.
Next, we show that N∗ satisfies the Leray–Schauder condition. Since N satisfies the

interior condition, there exists δ ∈ I := (0, K̃) such that

λx 6∈ N(x) for x ∈ Vδ, λ > 1, and N(x) ∩ X\V 6= ∅,

where
K̃ = sup{‖x‖ : x ∈ ∂V}.

As in the proof of ([36], Theorem 1), for any t ∈ (1− δ
K̃

, 1), the set Vt = {tx : x ∈ V}
is an open subset of V, tV = tV, and tV ⊂ V.

Additionally, we can easily show that⋃
t∈I

Vt = V.

Thus,
∂V ⊂

⋃
t∈I

∂Vt ⊂
⋃
t∈I

∂Vt.
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Now suppose there exist λt > 1 and xt ∈ ∂Vt such that λtxt ∈ N∗(xt). Then by the
definition of N∗,

λtxt ∈ N(xt), λt > 1, and xt ∈ ∂Vt. (10)

Since V is strictly star-shaped and xt ∈ ∂Vt ⊂ V, there exists a unique zt ∈ ∂V such
that xt = tzt (see Remark 3). Hence, we obtain

d(xt, ∂V) ≤ ‖xt − zt‖ ≤ (1− t)K̃ < δ, (11)

and consequently, by the interior condition, we have λtxt ∈ V. This implies that λtxt ∈
[xt, zt] since that is a strictly star-shaped set. Thus, we conclude that

‖xt‖ ≤ ‖λtxt‖ ≤ ‖zt‖ ≤ K̃.

Therefore, the set

D∗ = {xt : xt satisfies the relation (10), t ∈ I}

is bounded and D∗ ⊂ co{N(D∗)∪{0}}. Since N is β−condensing, D∗ is relatively compact,
and hence there exists a sequence (xn)n∈N converging to x in V and a sequence (λn)n∈N in
R such that

λnxn ∈ N(xn), λn → 1, tn → 1, and xn → x as n→ ∞.

It is easy to see that (11), implies lim
n→∞

xn = lim
n→∞

zn = x and there exists n ∈ N such

that xn ∈ V. We then have that

d(xn, ∂V) < δ implies xn ∈ Vδ.

The interior condition of N implies that

λnxn 6∈ N(xn) and N(xn) ∩ X\V = ∅,

which contradicts (10).
Therefore, N∗ satisfies the Leray–Schauder condition. Since V is a retract of X, N∗ is

an admissible map and satisfies Mönch’s theorem. Then, by ([39], Theorem 5), there exists
x ∈ V such that x ∈ N∗(x). From the definition of N∗, it follows that x ∈ N(x), and this
completes the proof of the theorem.

5. Fractional Differential Inclusions with Delay

In this section we wish to apply some of the inequalities obtained in Section 2 and
the new Leray–Schauder type fixed point theorem obtained in Section 4 to proving the
existence of solutions to the Cauchy problem for the fractional delay differential inclusion

cDαx(t) ∈ F(t, xt), t ∈ J,

x(t) = ϕ(t), t ∈ J0,

(12)

where 0 < α ≤ 1, J := [0, T], J0 := [−r, 0], and F : J×C(J0, E)→ Pcp,cv(E) is a multivalued
function. For any function x defined on [−r, T] and any t ∈ J, we denote by xt the element
of C(I, E) defined by

xt(θ) = x(t + θ), θ ∈ I.

Here xt(·) represents the history of the state from time t− r up to the present time t.
The study of differential inclusions has emerged as an important area of research due

to their applicability to problems in optimal control theory and other areas; see, for example,
the monographs [40,41] and the references contained therein. Additionally, differential
inclusions can incorporate differential equations with discontinuities in the right hand
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side (or even for the case where the right hand side is inaccurately known) [34,42–44].
Additional background on differential inclusions and multivalued analysis can be found
in [27–29,32,45–48]. For recent results on the existence of solutions to fractional differential
equations and inclusions with various types of delays, we refer the reader to [49–55].

We begin by recalling the definitions of a fractional integral and the Caputo fractional
derivative. Here, Γ denotes the well-known gamma function.

Definition 17. ([49], Definition 1.4) The fractional integral of order β > 0 with lower limit 0 for
a function f is defined as

Iβ f (t) =
1

Γ(β)

∫ t

0
(t− s)β−1 f (s)ds, t > 0,

provided the right-hand side is pointwise defined on [0, ∞).

Definition 18. ([49], Definition 1.6) The Caputo fractional derivative of order β with 0 ≤
n− 1 < β < n and lower limit 0 for a function f is given by

cDβ f (t) =
1

Γ(n− β)

∫ t

0
(t− s)n−β−1 f (s)ds = In−β f (t), t > 0, 0 ≤ n− 1 < β < n.

We will need to make use of the following assumptions in our results in this section.

(H1)The mulivalued map F(t, ·) has a strong measurable selection for u ∈ C(J0, E).
(H2)The map F(t, ·) is upper hemicontinuous for almost all t ∈ J.
(H3)There exist functions ψ ∈ H and f ∈ Lq(J,R+) with q > 1

α such that

‖F(t, u)‖ ≤ f (t)ψ(‖u‖)

for every t ∈ J and u ∈ C(J0, E).
(H4)There exists g ∈ Lq(J,R+) such that for all bounded D ∈ C(J0, E), we have

α(F(t, D)) ≤ g(t) sup
θ∈J0

α(D(θ)), for a.e. t ∈ J0

where
D(θ) = {φ(θ) : φ ∈ D}.

In the following proposition we establish some properties of the selection function operator.

Proposition 5. If E is a reflexive space and the multifunction F satisfies conditions (H1)–(H3)
for 1 < q < ∞, then the selection function operator Sq

F : C([−r, T], E)→ Lq([−r, T], E) given by

Sq
F(x) = {v ∈ Lq([0, T], E) : v(t) ∈ F(t, xt) a.e. t ∈ J}

has nonempty convex weakly compact values and is a weakly upper semicontinuous multivalued
operator.

Proof. The convexity of Sq
F follows immediately from the convexity of F. Let x ∈ C([−r, T],

E); there exists a step sequence (xn) converging uniformly to x in [−r, T]. By conditions
(H1) and (H3), there is a sequence (vn) of strong measurable selections of F such that

vn(t) ∈ F(t, (xn)t) a.e. t ∈ J (13)

and
‖vn(t)‖ ≤ f (t)ψ(ρ) a.e. t ∈ J,

where
‖xn‖∞ ≤ ρ for all n ∈ N.
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Hence,
vn ∈ Sq

F(xn) for each n ∈ N,

and (vn) is bounded sequence in Lq(J, E). Since E is a reflexive space, by the duality
theorem ([56], Theorem V.1.1), the space Lq(J, E) is also reflexive. By the Eberlein–S̆mulian
Theorem (see Brezis [57]), there exists a subsequence, still denoted by (vn), that converges
weakly to v ∈ Lq(J, E). Additionally, we have

v(t) ∈
⋂

n≥1

{vk(t) : k ≥ n} ⊂
⋂

n≥1

co{vk(t) : k ≥ n}, a.e. t ∈ J. (14)

Since F(t, ·) is upper hemicontinuous,

lim sup
n→∞

σ(x∗, F(t, (xn)t)) ≤ σ(x∗, F(t, xt)), for all x∗ ∈ E∗. (15)

From (13) it follows that

vn(t) ∈ coB
(

F(t, (xn)t),
1
n

)
a.e. t ∈ J. (16)

By (14)–(16), and applying the Lebesgue dominated convergence theorem, we obtain

v(t) ∈ F(t, xt), a.e. t ∈ J.

Therefore, Sq
F(x) 6= ∅ and Sq

F(x) ∈ Pwcp,cv(C([−r, T], E)).
Let {(xn, vn)}n∈N ∈ Gr(Sq

F) such that (xn) converges to x ∈ C([−r, T], E). Then,
for each n ∈ N, we have

vn(t) ∈ F(t, (xn)t), a.e. t ∈ J.

Applying a similar argument, we can prove that the Nemytskii operator is weakly
upper semicontinuous.

Now consider the operator N : C([−r, T], E)→ P(C([−r, T], E)) defined by

N(x)(t) =

{
h ∈ C([−r, T], E) : h(t) =

{
ϕ(t), t ∈ J0,
ϕ(0) + 1

Γ(α)

∫ t
0 (t− s)α−1v(s)ds, t ∈ J,

} }
, (17)

where v ∈ Sq
F(x). Notice that N can be written in the form

N(x) = L(x) + (K ◦ Sq
F)(x), x ∈ C([−r, T], E), (18)

where L : C(| − r, T], E)→ C([−r, T], E) is defined by

L(x(t)) =
{

ϕ(t), t ∈ J0,
ϕ(0), t ∈ J,

and K : Lq([0, T], E)→ C([−r, T], E) by

K(v(t)) =

{
0, t ∈ J0,

1
Γ(α)

∫ t
0 (t− s)α−1v(s)ds, t ∈ J.

Next, we establish an important property of the operator N(x) defined in (17).

Proposition 6. If conditions (H1)–(H4) hold, then the operator N is u.s.c. and β−condensing.

Proof. We will divide the proof into several steps. We begin by showing that N is u.s.c.
and has nonempty convex values.
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Step 1: N(·) ∈ Pcv(E). Since L is single valued, K is a bounded linear operator,
and Sq

F has nonempty convex values, for each x ∈ C([−r, T], E) we have N(x) ∈ Pcv(E).
Step 2: N is u.s.c. We first show that N maps bounded sets into bounded subsets of

C([−r, T], E). Let Bρ := {x ∈ C([−r, T], E) : ‖x‖∞ ≤ ρ}. For x ∈ Bρ and h ∈ N(x), there
exists v ∈ SF,x such that

h(t) =

{
ϕ(t), t ∈ J0,
ϕ(0) + 1

Γ(α)

∫ t
0 (t− s)α−1v(s)ds, t ∈ J.

Then, by (H3) and Hölder’s inequality

‖h(t)‖ ≤ ‖ϕ(0)‖+
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

∥∥∥∥
≤ ‖ϕ‖∞ +

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ψ(‖xs‖)ds

≤ ‖ϕ‖∞ +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ψ(‖x‖∞)ds

≤ ‖ϕ‖∞ +
ψ(ρ)

Γ(α)

(∫ t

0
(t− s)pα−pds

) 1
p
‖ f ‖Lq .

Hence,

‖h‖∞ ≤ ‖ϕ‖∞ +
Tα−1+ 1

p ψ(ρ)

Γ(α)
‖ f ‖Lq .

Next, we wish to show that N maps bounded sets into equicontinuous subsets of
C([−r, T], E). Let t1, t2 ∈ J with t1 < t2 and let Bρ be a bounded subset of C([−r, T], E).
If x ∈ Bρ, then for each h ∈ N(x), we have

‖h(t2)− h(t1)‖ ≤
ψ(ρ)

Γ(α)

∫ t2

t1

(t2− s)α−1 f (s)ds +
ψ(ρ)

Γ(α)

∫ t1

0
|(t2− s)α−1− (t1− s)α−1| f (s)ds.

From the Hölder and Biernacki inequalities, it follows that

‖h(t2)− h(t1)‖

≤ pψ(ρ)(t2 − t1)
α−1+ 1

p

(pα− p + 1)Γ(α)
‖ f ‖Lq +

ψ(ρ)

Γ(α)

(∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)p
ds
) 1

p
‖ f ‖Lq

≤ pψ(ρ)(t2 − t1)
α−1+ 1

p

(pα− p + 1)Γ(α)
‖ f ‖Lq +

ψ(ρ)

Γ(α)

(∫ t1

0
((t1 − s)pα−p − (t2 − s)pα−p)ds

) 1
p
‖ f ‖Lq

≤ pψ(ρ)(t2 − t1)
α−1+ 1

p

(pα− p + 1)Γ(α)
‖ f ‖Lq +

ψ(ρ)
(

tpα−p+1
1 + (t2 − t1)

pα−p+1 − tpα−p+1
2

) 1
p

(pα− p + 1)Γ(α)
‖ f ‖Lq .

The left-hand side tends to zero as t2 − t1 → 0, so N(Bρ) is equicontinuous in
C([−r, T], E).

Step 3: N is a condensing operator for a suitable MNC γ. Given a bounded subset
D ∈ Pb([−r, T], E), let modC(D) be the modulus of equicontinuity of the set of functions
D, i.e.,

modC(D) = lim
δ→0

sup
x∈D

max
|τ2−τ1|≤δ

|x(τ1)− x(τ2)|.

It is well known (see, for example, ([34], Example 2.1.2)) that modC(D) defines an
MNC in C([−r, T], E) that satisfies all of the properties in Definition 13 except regularity.
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Given the Hausdorff MNC χ, let γ be the real MNC defined on bounded subsets of
C([−r, T], X) by

γ(D) = sup
t∈[0,T]

e−τ
∫ t

0 f q(s)dsχ(D(t)),

where τ > 0 chosen such that

q∗ =
2Tα−1+ 1

p

p
√

qτ(pα− p + 1)Γ(α)
< 1. (19)

Then we define the MNC on bounded subsets of C([−r, T], E) by

γ(D) = max
D∈∆(C([−r,T],E))

(γ(D), modC(D)),

where ∆(C([−r, T], E)) is the collection of all countable subsets of B. The MNC γ is
monotone, regular, and nonsingular (see ([34], Example 2.1.4)). To show that N is γ-
condensing, let B ⊂ C([−r, T], E) be a bounded set in C([−r, T], E) such that

γ(B) ≤ γ(N(B)). (20)

To show that B is relatively compact, let {xn : n ∈ N} ⊂ B. From (18), each hn in
N(xn) can be represented as

hn = L(xn) + K(vn), with vn ∈ SF(xn). (21)

Moreover, (20) yields

γ({hn : n ∈ N}) ≥ γ({xn : n ∈ N}). (22)

From condition (H4), for a.e. t ∈ [0, T],

χ({vn(t) : n ∈ N}) ≤ χ(F(t, {xn(t)}∞
n=1) ≤ g(t)χ({(xt)n}∞

n=1)

≤ g(t) sup
0≤s≤t

χ({(xs)n}∞
n=1) ≤ eτ

∫ t
0 gq(s)dsg(t)γ({xn}∞

n=1). (23)

It is clear that s→ (t− s)α−1g(s) ∈ Lq((0, t)). Then, Lemma 6 implies

χ({K(vn)(t)}∞
n=1) ≤ γ({xn}∞

n=1)
2

Γ(α)

∫ t

0
(t− s)α−1g(s)eτ

∫ s
0 gq(r)drds

≤ γ({xn}∞
n=1)

2
Γ(α)

(∫ t

0
(t− s)pα−pds

) 1
p
(∫ t

0
gq(s)eqτ

∫ s
0 gq(r)dr

) 1
q
ds

≤ γ({xn}∞
n=1)

2tα−1+ 1
p

p
√
(pα− p + 1)Γ(α)

(∫ t

0
gq(s)eqτ

∫ s
0 gq(r)dr

) 1
q
ds

≤ γ({xn}∞
n=1)

2tα−1+ 1
p

p
√

qτ(pα− p + 1)Γ(α)
eτ
∫ t

0 gq(s)ds.

Therefore,

γ({xn}∞
n=1) ≤ γ({hn}∞

n=1) = sup
t∈[0,b]

e−τ
∫ t

0 gq(s)dsχ({hn(t)}∞
n=1) ≤ q∗γ({xn}∞

n=1). (24)

Using (19), we have

γ({xn}∞
n=1) = 0. (25)
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Moreover, γ(xn) = 0 implies that χ({xn(t)}) = 0 for a.e. t ∈ [−r, T]. In turn, (23)
implies that

χ({vn(t)}) = 0, for a.e. t ∈ [0, T].

Hence, (21) implies that χ({hn}∞
n=1) = 0. By an argument similar to the one we used

to prove that N maps bounded sets into equicontinuous sets, we can prove that the set
{hn} is equicontinuous, and so modC(B) = 0. It follows that γ({hn}∞

n=1) = 0, which by
(22) implies that γ({xn}∞

n=1) = 0. Thus, B is relatively compact. By the Arzelà–Ascoli
theorem, N is completely continuous, from which we have that N is γ-condensing.

Step 4: N has a closed graph. Let {xn}n∈N ∈ C([−r, T], E) be a sequence such that
{xn}n∈N converges to x̃, hn ∈ N(xn), and {hn}n∈N converges to h̃. We need to show that
h̃ ∈ N(x̃). So for each n ∈ N there exist vn ∈ Sq

F(xn) such that

hn(t) = L(xn(t)) + K(vn(t)), t ∈ J0 ∪ J.

Similar to the proof of Proposition 5, we can conclude that there exists a subsequence
of vn converging weakly to v in Lq and satisfying

v(t) ∈ F(t, x̃t), a.e. t ∈ J.

Since K is a continuous linear operator,

K(vn(t))→ K(v(t)) as n→ ∞.

On the other hand, the continuity of L implies that

L(xn(t))→ L(x̃(t)) as n→ ∞.

Therefore,
hn(t)→ L(x̃(t)) + K(v(t)) as n→ ∞.

This implies
h = L(x̃)) + K(v) ∈ N(x̃).

Hence, the multivalued operator N has a closed graph.
In view of Steps 1–3, the proof of the proposition is complete.

We are now ready to give our main existence result for problem (12).

Theorem 7. Assume that (H1)–(H4) hold. Then the problem (12) has at least one solution on
[−r, T] and the set FixN is compact.

Proof. It is clear that the solutions of Problem (12) correspond to the set FixN of fixed
points of the multivalued operator N defined in Proposition 6. By Propositions 5 and 6,
N(·) ∈ Pcv,wcp(C([−r, T], E)) and it is u.s.c., admissible, and γ-condensing.

Let x ∈ C([−r, T], E) be such that

x ∈ λN(x) for some 0 < λ < 1.

Then,

‖x(t)‖ ≤ ‖ϕ‖∞ +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ψ(‖xs‖)ds.

Let µ(t) = sup
−r≤s≤t

‖x(s)‖; then

µ(t) ≤ ‖ϕ‖∞ +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ψ(µ(s))ds.
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From Corollary 3

µ(t) ≤ Ψ−1
(

Ψ(k̄) +
t
q

)
, t ∈ J,

where

Ψ(z) =
∫ z

1

dx
(ψ(x))q , q

(
1− 1

p

)
= 1, q >

1
α

, and k̄ = ‖ϕ‖∞ +
kpTp(α−1)+1

p(p(α− 1) + 1)
.

Hence,

‖x‖∞ ≤ Ψ−1
(

Ψ(k̄) +
T
q

)
=: M∗,

and so the set
M = {x ∈ C([−r, T], E) : x ∈ λN(x), λ ∈ (0, 1)}

is bounded. As a consequence of Lemma 7, N has a fixed point x in U that is a solution
to Problem (12). Finally, since FixN is bounded, by Lemma 8, FixN is also compact. This
proves the theorem.

Remark 4. In all our results in Section 2 and in the main theorem in Section 5 (see condition
(H3), we have asked that q > 1

α . It would be of interest to see what might be proved in the case
where q ≤ 1

α .

6. Conclusions

We first established some new singular versions of the Gronwall–Bihari–Henry in-
equality. Then we proved a multivalued version of the Leray–Schauder alternative in
strictly star-shaped sets. Using these new tools, we show how they can be applied to obtain
new existence results for fractional differential inclusions with a delay.
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