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Abstract: The quantum evolution of wave functions controlled by the spectrum of Lévy random
matrices is considered. An analytical treatment of quantum recurrences and revivals in the Hilbert
space is performed in the framework of a theory of almost periodic functions. It is shown that the
statistics of quantum recurrences in the Hilbert space of quantum systems is sensitive to the statistics
of the corresponding quantum spectrum. In particular, it is shown that both the Poisson energy
level statistics and the Brody distribution correspond to the power law of the quantum recurrences,
while the Wigner–Dyson and Lévy–Smirnov statistics of the energy spectra are responsible for the
exponential statistics of the quantum returns of the wave function.
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periodic functions; quantum revivals

1. Introduction

The introduction of Lévy processes in quantum mechanics by means of fractional–
integral operators [1,2] is a natural procedure also supported by the experimental realiza-
tion of a fractional harmonic oscillator by means of optical Airy beams [3]. Apparently, the
implementation of Lévy matrices (LM)s [4] leads to essential extension of the consideration
of the Lévy processes in many body quantum systems with long-range interactions [4],
as well as nonlinear systems [5]. These interactions are described by matrix elements Hi,j,
which are independent random variables distributed by the power law

P(H) ≡ P(Hi.j) ∼ µ|Hi,j|−µ−1 , (1)

where 0 < µ < 2. When µ ≤ 0, then P(H) cannot be normalized, while for µ ≥ 2, the
distribution has a finite variance and corresponds to the Gaussian orthogonal ensemble
(GOE) case. Such matrices have been introduced and called “Lévy matrices” in Refer-
ence [4], where an Anderson delocalization–localization transition from the GOE to the
Poisson distribution was proposed and observed for µ < 1 as a function of energies as
well; see discussion in Reference [6–8]. It should be noted that such a situation takes place
also in dynamical systems such as quantum chaos, where the quantum spectrum follows
either chaotic or regular dynamics of corresponding classical counterparts, e.g., [9–12]. In
particular, in the semiclassical limit, the quantum spectrum follows the classical dynamics.
Namely, for integrable systems, the uncorrelated spectrum is distributed according to the
Poisson statistics [13,14]

P(P)(∆) =
1

∆0
exp(−∆/∆0) , (2)

where ∆0 is the mean level spacing. By contrast, in quantum counterparts of chaotic
systems, the quantum spectrum is strongly repelled, and the level spacing is described by
the Wigner–Dyson statistics [14–16]

P(WD)(∆) = Cβ(∆0)∆β exp(−∆2/∆2
0) , (3)
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where Cβ(∆0) is the normalization constant and β = 1, 2, 4 for the orthogonal, unitary,
and symplectic Gaussian ensembles, GOE, GUE, and GSE, respectively. Note that the
properties of the LMs are well studied for systems with long-range interactions, including
Lévy–Smirnov statistics (see discussions, e.g., in References [4,17–20]) and theory of random
matrices in quantum chaos [9–12].

In this paper, we apply the theory (namely properties) of the LMs to study statistics
of quantum (Poincaré) recurrences, as the return probabilities in the Hilbert space of the
LMs. This approach can be considered also as a quantum analogy of classical Poincaré
recurrences in classical systems with chaotic and regular dynamics [21]. Our main interest
here is the investigation of the statistics of the quantum recurrences (QR)s and the average
characteristics of recurrent times.

Return probabilities are a specific realization of the first passage problem, which is an
important characteristic in random walk theory, including random search theory [22]. The
same role belongs to Poincaré recurrences in dynamical systems. In particular, Poincaré
recurrences reflex the topology of the phase space of dynamical systems and segregate the
return statistics of regular and chaotic regions which can coexist [21]. That is, this sensitivity
is reflected in different statistics of the topological structure of the phase space. Namely, for
the chaotic systems with a uniform mixing property, the distribution is exponential [23]
P(τ) = 1

τrec
exp(−τ/τrec) with the mean recurrence time τrec =

∫ ∞
0 τP(τ)dτ ∝ 1/h0, which

is finite and inversely proportional to the metric entropy h0. In systems with nonuniform
mixing, the distribution of recurrences is algebraic in the large recurrence times and
asymptotic: P(τ) ∼ 1/τγ, (τ → ∞) , where γ is the recurrence exponent [21]. Another
important property of the phase space topology is the Kac lemma, which states that the
mean recurrence time is finite, τrec < ∞ for the area preserving and bounded dynamics [24].

Albeit, the classical methodology fails in the quantum system, because of the absence
of trajectories, and a straightforward relation between statistical properties of the quan-
tum spectrum and statistics of quantum recurrences has been established in preliminary
studies [25]. In turn, as admitted above, according to quantum chaos, e.g., [11,12], this also
relates to the topology of classical trajectories in phase space either chaotic or regular [25]. It
is worth be mentioning that, for systems with chaotic, or stochastic dynamics, a sequence of
recurrence times {t}rec = {t1, t2, . . . }rec is a stochastic process with properties that depend
on both the type of the dynamics and a noise nature. One can expect a similar process in the
quantum case without confusing this situation with the phenomenon of periodic revivals
of the wave functions. In the latter case, a truncation of the energy expansion near some
level n0 is possible, namely, En = En0 + E

′
n0
(n− n0) + E

′′
n0
(n− n0)

2 + O[(n− n0)
3], e.g.,

review [26] and references therein. This situation is considered separately in Section 4.
However, both cases can be considered as quantum walks in Hilbert space. It is shown
here, that the situation depends on statistical properties of the spectrum of the LMs (see
Appendix A), which are also functions of µ and the energy E of the quantum system. In
particular, we study the recurrence time statistics for the GOE, the Poisson and the Brody
(of sparse matrices) distributions of energy levels [4,9,19].

The Lévy matrices are the real symmetric matrices Ĥ of size N with independent
and identically distributed elements Hi,j according to the asymptotic distribution given by
Equation (1). Some properties of the LMs are presented in Appendix A. The distribution of
the eigenvalues is determined by the trace T(z) of the resolvent R̂(z) = (z− Ĥ)−1. Then,
the density of states ρ(z) is given by the imaginary part of the trace as follows:

T(z) =tr
[
R̂(z)

]
= N−1

N

∑
j=1

Ri,i(z) , (4a)

ρ(z) =
1
π

lim
ε→0

lim
N→∞

Im[T(z− iε)] . (4b)

As is shown in Reference [4], when the variance of the matrix elements H̄2
i,j = σN

is finite, then the density of states obeys the semicircle law: ρ(z) = (2π)−1
√

4− z2/σ
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that corresponds to the GOE of Ĥ with a possible transition to the Poisson distribution.
When the variance is divergent, the density of states corresponds to the Lévy statistics; see
Appendix A.

Mobilizing the standard notion of recurrences for the evolution of a finite length vector
C = (C1, . . . , CN) in the Hilbert space, a distance between any vectors Ca and Cb is defined
as follows:

d2
ab = |Ca − Cb|2 =

N

∑
j=1
|Ca

j − Cb
j |2 . (5)

Exploration of this heuristic definition can show how quantum walks in the Hilbert
space reflect the topology of the classical phase space [25]. However, considering QRs
for the LMs, one extends this consideration to pure quantum processes, which have no
analogy in the classical topology of phase space.

2. Quantum Recurrences

In this section, we consider the unitary evolution of an initial wave function Ψ0, accord-
ing to the evolution operator Û(t) with the Hamiltonian Ĥ, such that Û(t)ψk = e−iEktψk,
where Ek is the energy spectrum of the Hamiltonian. Correspondingly, the wave function
at time t reads

Ψ(t) = Û(t)Ψ0 = ∑
k

ak exp(−iEkt)ψk . (6)

This also defines the evolution of the distance (5) in the Hilbert space

d2(t) = |Ψ(t)−Ψ0|2 = ∑
k
|ak|2|e−iEkt − 1|2 . (7)

According to the exact analysis in the theory of almost periodic functions [27,28],
expression (7) is the squared translation function. By definition [28], the translation func-
tion is

v f (τ) = sup
−∞<t<∞

| f (t + τ)− f (t)| , (8)

where τ is the translation time. Therefore, d2(t) = v2
Ψ(t) = d2(t + τ). All possible values of

τ for which d2(τ) < ε2 form a set of translation numbers, which is denoted E = E{ε, Ψ(t)}.
Therefore, for the QRs, the set E is determined by the condition

d2(τ) = ∑
k
|ak|2|e−iEkτ − 1|2 < ε2 . (9)

Here, without restriction of generality, we set t = 0.
To proceed, we take into account that the wave function is normalized ∑k |ak|2 = 1;

therefore, there exists an integer N [29,30] such that

∞

∑
k=N+1

|ak|2 < ε2 � 1 , (10)

This expression justifies the finiteness of the summation in Equation (9), which now
reads with the well-defined N

d2(τ) =
N

∑
k=1
|ak|2|e−iEkτ − 1|2 < ε2 . (11)

Following the theory of almost periodic functions [28], let all the translation numbers
belong to a set E = E

{
ε2, Ψ(t)

}
, which is determined by Equation (9). Then, all numbers

τ ∈ E of the set E satisfy the following N Diophantine inequalities [28] (Theorem 2, page 53)

|e−iEkτ − 1|2 < δ2
1 , (12)
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where δ1 = max|e−iEkτ − 1| is the maximum of the modulus. Substituting Equation (12) in
Equation (9), one obtains that

N

∑
k=1
|ak|2|e−iEkτ − 1|2 < δ2

1

N

∑
k=1
|ak|2 < ε2 . (13)

Therefore, the normalization condition yields δ1 ∼ ε� 1. Note that according to the
rigorous analysis, δ1 < ε

3 [28]. Rewriting Equation (12) in the sine-function form

|e−iEkτ − 1|2 = 4 sin2
(

Ekτ

2

)
< δ2

1 ∼ ε2 , (14)

where the argument can be taken by modulus 2π, one arrives at the expression

|Ekτ − 2πnk| < ε/2 . (15)

where integer numbers nk relate to the energies Ek. Equations (14) and (15) are equivalent to

Ekτ = 2πnk + ηk , |ηk| < ε/2 . (16)

From these expressions, one can also define nk, considering the level spacing ∆k = Ek −
Ek+1 of the ordered spectrum E1 < E2, · · · < EN < EN+1 for k = 1, 2, . . . , N. The r.h.s. of
the equality in Equation (14) can be rewritten by means of Equation (16) as follows:

sin2
(

Ekτ

2

)
= sin2

[
1
2
(Ekτ + Ek+1τ)− Ek+1τ)

]
= sin2

[
1
2
(∆kτ + Ek+1τ)

]
= sin2

[
1
2
(∆kτ ± ε/2)

]
<

ε2

4
, (17)

where we used

|∆kτ|(mod 2π) = |Ekτ − Ek+1τ|(mod 2π) = |2π(nk − nk+1) + ηk − ηk+1|2π

= |ηk − ηk+1| < |ηk|+ |ηk+1| < ε ,

which is valid for each k. These expressions also yield the following N Diophantine
inequalities ∣∣ sin

[
∆kτ

2

]∣∣ < ε . (18)

Eventually, one obtains that the translation times τ of QRs are determined by a new set of
the N Diophantine inequalities, related to the level spacing ∆k as follows:

|∆kτ − 2πmk| < 2ε , (19)

where mk are integers and correspondingly τ ∈ E{2ε, Ψ(t)}.
Equation (19) yields the structure of the translations, which is

τ = 2π
m̃({∆k})

∆k
. (20)

Note that while it is the same value for each fixed k, defined by ∆k in denominator, m̃({∆k})
in numerator is a function of all N random variables ∆k, such that

|m̃({∆k})−mk| <
ε

π
, k = 1, . . . , N . (21)

These quantum walks correspond to independent random processes for every trial of the
returning/recurrence in the dynamics of the wave function in the Hilbert space. The set



Fractal Fract. 2021, 5, 171 5 of 14

of translations–recurrences E{2ε, Ψ(t)} is constructed by the system of N Diophantine
inequalities (15), (18), and (19).

One should recognize that the translation times τ and correspondingly m̃({∆k}) are
random values defined quite implicitly. However, their averaged values

〈τ〉 = 〈m̃({∆k})〉N =
∫

m̃({∆k})P({∆k})dN{∆k} < ∞

with the corresponding level spacing statistics P({∆k}) are well-defined values according
to the Kac lemma [24,31]. This also means that N − 1 dimensional integrals 〈m̃({∆k})〉N−1
are well defined, and their explicit form is observed and ensured by the validity of the
Kac lemma. These integrations are discussed and dealt with in Section 3, where the
relation between the form of the level spacing statistics of the LMs and statistics of QRs is
established.

3. Statistics of Quantum Recurrences

The recurrent property of random walks can be specified by their distribution function
ρQR(τ) of QRs. To find the distribution function ρQR(τ), we determine the mean value of
the translation numbers and the mean squared translation numbers. An important property
used here is the Kac lemma [24] for the Poincare recurrences and its quantum generalization
for the QRs [31] on the finiteness of the recurrent times τ. Therefore, although the recurrence
times τ, described by Equations (20) and (21), are extremely large values, the mean value
of the QR times is however finite. This property relates to the spectral statistics with the
density of states ρ(E) (or the level spacing distribution P(∆)) of the LMs, which in its turn,
depends on the statistical properties of the matrix elements of the LMs, namely on the
finiteness of the variance of the matrix elements of the LMs [4].

Therefore, for a finite N, the mean recurrent time (or translation number) reads

〈τ〉 =
∫

ρQR(τ)τdτ < ∞ , (22)

where ρQR(τ) is the distribution function of the QR times. Equation (22) is also the
expression of the quantum Kac lemma that sounds that for every spectral statistic of the
LMs, the averaged recurrence times are finite values. Since the recurrence time is the
function of the spectrum according to Equation (20), its averaged value can be defined by
the level spacing distribution of the LMs that yield

〈τ〉 =
∫

τ({∆})P({∆})
N

∏
k=1

d∆k , (23)

where P({∆}) is a many-dimensional joint level spacing distribution function.

3.1. Poisson Distribution

We start the calculation of the averaged values of the translation time 〈τ〉 from the
Poisson statistics (2), which is the simplest form of the level spacing distributions. From
another point of view, its knowledge is important to understand the structure of the
recurrent times, which is the same for all LMs. In this case, the sequence of levels Ej is
an uncorrelated random set, e.g., [11], and the joint distribution P(P)({∆}) is a product of
distributions (2). Thus, substituting Equation (20) into Equation (23), we have

〈τ〉(P) = 2π
∫ ∞

0

m̃({∆k})
∆k

N

∏
j=1

P(P)(∆j)d∆j . (24)

It is worth noting that although the Poisson statistics takes place only for the energies
related to the localization states, the limits of the integration for the level spacing are
determined by the infinite interval ∆j ∈ [0, ∞). Performing integration of m̃({∆k}) with



Fractal Fract. 2021, 5, 171 6 of 14

respect to N − 1 variables ∆j, besides ∆k, we obtain 〈m̃(∆)〉, which is the function of only
one variable ∆k ≡ ∆. Another important condition for the integration (24) is the Kac
lemma, which states that the integral is finite: 〈τ〉(P) < ∞. This, eventually, imposes the
condition for the lower limit ∆ → 0 due to the singular-pole behavior of the integrand,
which according to the Kac lemma reads 〈m̃(∆)〉 ∼ M∆γ with 0 < γ � 1 and M � 1.
Taking this condition into account, one obtains that the integral in Equation (24) is the
Gamma function Γ(γ). Indeed, it reads

〈τ〉(P) =
2π

∆0

∫ ∞

0

〈m̃(∆)〉
∆

e−
∆

∆0 d∆ ∼ 2πM
∆0

∫ ∞

0
∆γ−1e−

∆
∆0 d∆ = 2πM∆γ−1

0 Γ(γ) . (25)

Note that for γ → 0, the mean recurrent time diverges. Therefore, by suggesting a
reasonable structure of the recurrent times in the form τ = 2π∆γ−1

k M({∆k}) with M({∆k})
being singular in the vicinity of ∆ → 0 not stronger than ∏l 6=k ∆−δl

l , one obtains the
following estimation of the QRs times

τ ∝
N

∏
l=1

∆−δl
l ∼ ∆−Nδ , (26)

where 0 < δ, δl < 1.
Calculations of the second moment and the variance show that these are divergent

values, 〈τ2〉(P)
= ∞. Therefore, the recurrent times are distributed according to the

power law

ρ
(P)
QR(τ) ∼

(
τ0

τ0 + τ

)α

, 2 < α < 3 , (27)

where τ0 is a characteristic time scale that is taken in such a way that
∫

ρ
(P)
QR(τ)τdτ =

2πMΓ(γ).

3.2. Gaussian Orthogonal Ensemble

One can easily observe that for the Wigner–Dyson distribution (3), the second moment
and the variance are finite values. This fact results from the correlations between the levels
Ej. Our interest however is in the GOE with β = 1. Then, the joint distribution of levels for
the GOE reads (see for example [11])

P(GOE)({E}) = C(A)×
1...N

∏
k<l
|Ek − El | exp

(
−A

N

∑
k=1

E2
k

)
, (28)

where A fixes the unit of energy (for example, it can be the mean squared level spacing, as
in Equation (3)) and C(A) is a normalization constant. Let us estimate the second moment
for the GOE and show that it is finite (in this case, the variance is finite as well). From
Equations (26) and (28), we arrive at the integral

〈τ2〉(GOE)
=

∫ ∞

0
τ2ρQR(τ)dτ

= C̃
∫ ∞

−∞

1...N

∏
k<l
|Ek − El | exp

(
−A

N

∑
k=1

E2
k

)
×∏

r 6=s
|Er − Er+1|−2δl |Es − Es+1|2γ−2dN E

≡ C̃
∫ ∞

−∞
|Es − Es+1|2γ−2F ({Ej})dN E , (29)

Here, for brevity sake, we define the rest of the integrand in Equation (29) by F ({Ej})
and dN E ≡ ∏N

j=1 dEj, and C̃ = (2π)2C1(A). Rewriting this integration in the form of an
additional integration with the Dirac δ function and using the definition ∆ = Es+1 − Es,
one obtains
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〈τ2〉(GOE)
=
∫ ∞

0
d∆|∆|2γ−2

∫ ∞

−∞
δ(∆ + Es − Es+1)F ({Ej})dN E ≡

∫ ∞

0
d∆|∆|2γ−2P(GOE)(∆) . (30)

As discussed in the literature, e.g., References [11,12,15], the level spacing distribution
for N× N random matrices can be well approximated by 2× 2 random matrix distribution.
Therefore, integration in the N dimensional energy space can be reduced to integration
with the GOE in Equation (3) with β = 1. Therefore, following this standard approach, one
arrives at the following integral

〈τ2〉(GOE) ∼ πMC1(∆0)
∫ ∞

0
∆2γ−1e

− ∆2

∆2
0 d∆ = πMC1(∆0)∆

2γ−2
0 Γ(γ) . (31)

The existence of the first and the second moments for the Gaussian recurrent process
means that the distribution of the recurrent times (as some “trapping” times outside the
ε1-cone) is well approximated by exponential, e.g., [32]

ρ
(GOE)
QR (τ) ∼ 1

τ0
exp

(
− τ/τ0

)
, (32)

where τ0 now is the averaged recurrence time:

τ0 = 2πMC1(∆0)
∫ ∞

0
∆β−1+γe

− ∆2

∆2
0 d∆ = 2πMC1(∆0)∆

β+γ
0 Γ

(
β + γ

2

)
. (33)

3.3. Brody Distribution for Sparse Matrices

The Brody distribution [33] can be considered as in intermediate case between the
Poisson and Wigner–Dyson level spacing statistics. Although it is not proven that it belongs
to an LM ensemble [19], it is suitable to describe the spectral statistical of quantum Hamilto-
nian systems in the regime of transition between integrability and chaos of corresponding
classical counterparts [9]. The Brody distribution reads

P(B)(∆) = a∆β exp
(
−b∆1+β

)
, a = (1 + β)b , b =

[
Γ
(

2 + β

1 + β

)]β+1
, (34)

where b is the bandwidth of the banded LM, while the level repulsion parameter β now
ranges as β ∈ (0 , 1). Although it has a simple analytic form, it still has no rigorous physical
justification. A detailed discussion of the issue with respect to the energy level statistics
and localization in sparse banded random matrix ensembles can be found in Reference [9].

Taking into account Equation (34), integration for the second moment in Equation (31)
now is divergent, while for the mean value, we obtain

〈τ〉(B) ∼ (1 + β)b
∫ ∞

0
∆γ−1+βe−b∆1+β

d∆ = b
1−γ
1+β Γ

(
γ + β

1 + β

)
. (35)

Therefore, the recurrent times are distributed according to the power law by analogy
with Equation (27):

ρ
(B)
QR(τ) ∼

(
τ0

τ0 + τ

)α

, 2 < α < 3 , (36)

where τ0 is a characteristic time scale.
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3.4. A Comment on Lévy–Smirnov Distribution

The spectrum for the Lévy–Smirnov distribution of the LMs was studied in Refer-
ence [17]. In this case, the Lévy–Smirnov ensemble is described by the distribution

P(LS)(E) ∼
N

∏
i=1

(
e−N/Ei

E2
i N

)
1...N

∏
i>j

(Ei − Ej)
2 , Ei ≥ 0 . (37)

Properties of the LMs are briefly discussed in Appendix A, where the Lévy–Smirnov
distribution for the LMs spectrum is defined in Equation (A3), which reads

L̃(Ek; 1/2) =
1

2
√

πE3
k

exp
(
− 1

4Ek

)
, Ek > 0 . (38)

The correct structure of QRs in the energy space Ek is determined by Equation (15):
|Ekτ − 2πnk| < ε/2 where nk are integer numbers, which corresponds to the energies
Ek > 0. Then, Equation (20) for the recurrent times τ = τ(∆) can be used, as well.
However, there is no any reasonably simple expression for the level spacing distribution,
which makes it possible to treat the problem. Therefore we make a crude approximation,
accounting for the level spacing correlation. Following Reference [17] and performing the
variable change Ek = 1/xk in Equation (37), one obtains Equation (37) in the form of the
chiral GUE [17] as follows:

∏
i

dxie−Nxi ∏
i>j

(xi − xj)
2 . (39)

Then, the average characteristics of the QR times are

〈τ〉(LS) ∼
∫ ∞

0
∏

i
dxie−Nxi ∏

i>j
(xi − xj)

2−δ < ∞ , (40a)

〈τ2〉(LS) ∼
∫ ∞

0
∏

i
dxie−Nxi ∏

i>j
(xi − xj)

2−2δ < ∞ . (40b)

The existence of the first and the second moments ensures the exponential distribution
of the recurrent times.

4. Quantum Revivals

Let us consider a continuous time quantum walk of a wave packet with revivals. In
this case, instead of the distance (7), our main concern is the autocorrelation functions of
the form

R(t) = 〈Ψ0|Ψ(t)〉 = Ψ0Û(t)Ψ0 = ∑
n
|an|2 exp(−iEnt/h̃) , (41)

which determines the probability density |R(t)| to find a wave packet in the initial state
after time t and h̃ is a dimensionless Planck constant. If, however, the dynamics of this local-
ized wave packet has an energy spectrum En, which is tightly spread around the quantum
number, n0, then the spectrum can be approximated by polynomials as follows [26]:

En ≡ E(n) ≈ E(n0) + E′(n0)∆n +
E′′(n0)

2
∆n2 + . . . , ∆n ≡ n− n0 , (42)

where the expansion is truncated. Therefore, this restricted quantum dynamics is analogous
to a periodic quantum dynamics determined by a quantum nonlinear oscillator with
the Hamiltonian

Ĥ0 = h̃ωâ† â + κh̃2
(

â† â
)2

, (43)
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where we use the Fock representation (the occupation-number representation) â† â|∆n〉 =
∆n|∆n〉, and a linear frequency ω and nonlinearity κ are related to the coefficients of the
expansion (42), while creation and annihilation operators commute according to [â, â†] = 1.

In particular, one can consider this process in the form of stability of wave functions
with respect to a small variation, ε of the spectrum that is called fidelity of the wave func-
tions, which is a measure of quantum reversibility [34] and it is also known as “Loschmidt
echo” [35]. Note also that the fidelity amplitudes can be directly measured in Ramsey-type
interferometry experiments, e.g., [36].

For the initial condition, we consider a coherent state basis, which is the eigenfunction
of the annihilation operator â|α〉 = α|α〉. It is also defined as a superposition of the Fock
states |n〉 as follows:

|α〉 = e−|α|
2/2

∞

∑
0

αn
√

n!
|n〉 . (44)

Here, we just replaced |∆n〉 with |n〉. The evolution of the coherent states is due to
the nonlinear oscillators Ĥ0 and Ĥε. For the latter Hamiltonian, there are two possibilities
of the perturbation. The first one is ω → ω + ε, while the second is κ → κ + ε̃ with the
“dimensionality” relation [ε] = [h̃ε̃]. Therefore, we have two possibilities for the correlation
functionRε(t) = 〈α|eiĤεt−iĤ0t|α〉, which yields

Rε(t) = e−|α|
2

∞

∑
0

|α|2n
n!

eiεnt = exp
[
|α|2

(
eiεt − 1

)]
, (45a)

Rε̃(t) = e−|α|
2

∞

∑
0

|α|2n
n!

eih̃ε̃n2t . (45b)

The first result (45a) leads to known golden rule decay of the fidelity of the wave
functions |Rε(t)| ∼ e−|α|

2ε2t2
[37] for εt � 1. The second expression in Equation (45b)

can be evaluated in the framework of the Schrödinger equation consideration as follows:
Let us define the new functionM(x, τ) = exRε̃(t), where x = |α|2 and τ = h̃ε̃t (here τ
should not be confused with the translation time in Sections 2 and 3). Then, we have from
Equation (45b)

− i∂τM = (x∂x)
2M , M(τ = 0) = ex , x ≥ 0 . (46)

Taking into account that for any entire function f (x) the dilatation operator x∂x acts
as follows e−iτx∂x f (x) = f (e−iτx), and one obtains from Equation (46) a formal solution
for the correlation function in the form

Rε̃(t) =
√

iτ/4π
∫

dξe−iτ ξ2
4 exp

[
−x(1− e−iτξ)

]
. (47)

Performing integration in the stationary phase approximation, we obtain again the
golden rule decay,Rε̃(t) ∼ e−(ξ0 h̃ε̃t)2/2 for ξ0h̃ε̃t� 1, where ξ0 is defined from the equation
ξ = 2 cos(h̃ε̃tξ).

5. Conclusions

In the present research, we focus on a quantum evolution of wave functions, which is
controlled by the spectrum of Lévy random matrices. An analytical treatment of quantum
recurrences and revivals in the Hilbert space is performed in the framework of the theory
of almost periodic functions. In this case, the analytical expression for the return time τ
as a function of the level spacing ∆ is obtained: τ = τ(∆). It is shown that the statistics of
quantum recurrences in the Hilbert space of quantum systems is sensitive to the statistics
of the corresponding quantum spectrum. In particular, it is shown that both the Poisson
energy level statistics and the Brody distribution correspond to the power law distribution
of the quantum recurrences, while the GOE and Lévy–Smirnov statistics of the energy
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spectra are responsible for the exponential statistics of the quantum return times of the
wave functions.

Along with the unitary evolution of the wave function, which is completely controlled
by the spectrum of the Lévy matrices, the Kac lemma and its quantum generalization play
an important role in the observation of the analytical form of the return time statistics as the
function of the spectrum. The statement that the mean return time is finite, applied to the
Poisson level spacing distribution, yields the explicit expression for the return time, τ(∆) ∼
∆γ−1, which results from N− 1 dimensional integration in the N dimensional energy space.
Since the Kac lemma is the only restriction for the return times, the analytical form of τ(∆)
is universal and used for all statistics of the Lévy matrices for the analytical estimation of
the statistics of the quantum recurrences in the Hilbert space. It should be admitted that the
mean recurrent times and corresponding statistics of the quantum recurrences are sensitive
to the statistics of the corresponding quantum spectrum in spite of the universal form of
τ(∆). The essential difference in the statistics of the quantum recurrences in the Hilbert
space for the chaotic–delocalized systems and integrable–localized systems results from
the essential difference between the level statistics of the Lévy matrices. In turn, it also
depends on the integrability of the corresponding dynamics of the classical counterparts.
It should be stressed that this statement is valid for both Lévy matrices with µ ∈ (0 , 2)
and “exponential” matrices with µ > 2; see Equation (1). The parameter µ = 2 separates
also corresponding physical phenomena described by the matrices. The typical examples
belonging to the “exponential” matrices (with Poisson and GUE) is discussed below.

The quantum dynamics is described by the almost periodic wave functions [27–30];
however, the quantum walks in the Hilbert space are random, and the returning times are
functions of the level spacing ∆, which are random variables with different distributions.
An important property of integrable systems is that the quantum walks establish revivals
of wave functions in the Hilbert space. Apparently, this situation is suitable for the Poisson
ensemble and relates to the expansion (42) (probably, this situation can be also realized for
the Brody distribution). The situation changes dramatically, when the expansion of the
energy (42) cannot be performed. For example, for the Hamiltonian Ĥε of the form

Ĥε = Ĥ0 − h̃ε(â + â†)∑
l

δ(t− lT) , (48)

where T is a period of the train of delta kicks and ε now is an amplitude of the perturbation.
This model has been suggested to observe the Ehrenfest time on the order of ln(1/h̃), which
specifies the time scale of the quantum-to-classical correspondence, firstly observed in
Reference [38] with further studies in quantum chaos [39–46]. In this case, the correlation
function Rε(t) describes the Loschmidt echo [45,47,48] with the exponential decay, and
it reads

Rε(t) = 〈α| exp
{

i
∫ t

0

[
Ĥε(τ)− iĤ0(τ)

]
dτ

}
|α〉 ∝ e−Λt . (49)

This decay ofRε(t) in Equation (49) is determined by the classical Lyapunov exponent
Λ that reflexes the classical nature and is independent of the h̃, while it is valid on the
Ehrenfest time scale, which depends on h̃. In this case, there are no revivals, and quantum
recurrences are determined by the GUE ensemble due to the Hamiltonian Ĥε.

Considering this quantum dynamics with a relaxation process [46], we take into ac-
count that the frequency ως = Ω− iς/2 can be a complex value in the Hamiltonian (48),
which determines the effective frequency ω = [Ω2 + ς2/4]1/2 in the presence of a fi-
nite width of the levels, ς/2. In this case, the correlation function decays exponen-
tially fast as well, according to Equation (49) on the Ehrenfest time scale, which now
reads ∼ ln(1/h̃)/(Λ − ςT), while the corresponding classical counterpart is a strange
attractor [46,49]. In the limit Λ− ςT → +0, the Ehrenfest time can be extremely large.

It is also worth noting that the quantum Kac lemma is proven for open quantum sys-
tems [31]. In this connection, the fidelity for mixed quantum states [50] can be an interesting
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issue for future exploration of the geometry of quantum phase transitions, in particular
quantum phase transitions and nonequilibrium dissipative phase transitions [51].
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Appendix A. Lévy Matrices

Theory of Lévy matrices (LM)s was suggested in Reference [4]. It supposes that
random matrix elements are determined by the Lévy distribution. We follow discussions
of the issue in References [52–54], related to the Lévy stable distribution and properties of
the spectra of the LMs [4].

Appendix A.1. Lévy Distributions

Lévy distribution L(x; α, β) is defined by its Fourier transform

L(x; α, β) =
1

2π

∞∫
−∞

L̃(k; α, β)eikxdk , (A1a)

L̃(k; α, β) = exp{−|k|α[1− iβsign(k) tan(πα/2)]} , (A1b)

where 0 < α ≤ 2 and β ∈ [−1 , 1]. When the skewness parameter β = 0, the distribution is
symmetrical. We used here two subclasses, which are mostly popular in applications [54].
These are: (i) the symmetrical stable distribution formed by the stable characteristic function

L̃(k; α, 0) ≡ L̃(k; α) = e−|k|
α

. (A2)

In particular, L(x : 2) = (2
√

π)−1e−x2/4 is a Gaussian distribution, when all moments
are finite, while L(x, 1) = [π(1 + x2)]−1 is a Cauchy distribution, when all moments
diverge.

(ii) Another example is the Lévy–Smirnov distribution:

L̃(x; 1/2) =
1

2
√

πx3
exp

(
− 1

4x

)
, x > 0 . (A3)

In general cases, the characteristic function (A2) corresponds to the Lévy distribution,
which is determined by the Fox H-function [55].

e−|k|
α
= H1,0

0,1

[
|k|α
∣∣∣∣ −
(0, 1)

]
. (A4)

Then, the Mellin-cosine transformation [56,57] yields

L(x; α) =
1

2π

∞∫
−∞

e−|k|
α
eikxdx =

π

|x|H
1,1
2,2

[
|x|α

∣∣∣∣ (1.1), (1, α/2)
(1, α), (1, α/2)

]

= (πα)−1
∞

∑
l=0

(−1)l x2l

(2l)!
Γ(1/α + 2lα) , (A5)

where the expansion of the Fox H-function results from the integration [52].
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Note that the Fox H function is defined in terms of the Mellin–Barnes integral [55,58],

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (a1, A1) , . . . , (ap, Ap)

(b1, B1) , . . . , (bq, Bq)

]
=

1
2πi

∫
Ω

Θ(s)z−sds , (A6)

where

Θ(s) =

{
∏m

j=1 Γ(bj + sBj)
}{

∏n
j=1 Γ(1− aj − sAj)

}
{

∏
q
j=m+1 Γ(1− bj − sBj)

}{
∏

p
j=n+1 Γ(aj + sAj)

} , (A7)

with 0 ≤ n ≤ p, 1 ≤ m ≤ q and ai , bj ∈ C, while Ai , Bj ∈ R+, for i = 1 , . . . , p, and
j = 1 , . . . , q. The contour Ω starting at c− i∞ and ending at c + i∞, separates the poles
of the functions Γ(bj + sBj), j = 1 , . . . , m from those of the function Γ(1 − ai − sAi),
i = 1 , . . . , n.

Appendix A.2. Spectrum of the Lévy Matrices

In Reference [4], the LMs are the real symmetric matrices Ĥ of size N with inde-
pendent and identically distributed (iid) elements Hi,j according to Equation (A1), while
asymptotically given by Equation (1). The distribution of the eigenvalues is determined by
the resolvent R̂(z) = (z− Ĥ)−1, namely by the trace T(z) = tr

[
R̂(z)

]
= N−1 ∑N

j=1 Ri,i(z).
Then, the density of the states ρ(z) is given by the imaginary part of the trace as follows:

ρ(z) =
1
π

lim
ε→0

lim
N→∞

Im[T(z− iε)] . (A8)

Matrix elements Ri,j(z) can be expressed by means of a Gaussian integral over auxiliary
fields φi as follows [4,59]:

ZN =

∞∫
−∞

N

∏
i=1

dφi exp

[
−2−1

N

∑
k,l=1

Kk,l(z)φkφl −∑
k

hkφk

]

=
N

∏
n=1

∞∫
−∞

dξn exp
(
−2−1Kn(z)ξ2

n − h̄nξn

)
=

N

∏
n=1

√
2πK−1

n exp
(

2−1h̄nK−1
n h̄n

)

=
√
(2π)N/ det K̂ exp

(
2−1

N

∑
k,l=1

hkK−1
k,l hl

)
. (A9)

Here, diagonalization of the quadratic form, takes place according to the unitary
transformation

φTK̂φ = φTÛ−1ÛK̂Û−1Ûφ = ∑
n

Knξ2
n,

where Û = ‖e1, . . . , eN‖, and en are eigenfunctions of the LM Ĥen = Enen and Kn = z− En
are elements of the diagonal matrix similar to (z− Ĥ). The Jacobian of the transformation
is unity. Taking into account that Rk,l(z) = K−1

k,l (z), we have

Ri,j(z) =
1

ZN

∂2

∂hi∂hj
ZN
∣∣
hi ,hj=0 . (A10)

After generating this N × N matrix, a new row and a symmetric column are added
to the LM Ĥ, which is called H0,i in Reference [4]. The size of the matrix is N + 1, and
according to Equation (A10) where hk = 2−1[K0,k + Kk,0]φ0 = Kk,0φ0, we have that RN+1

0,0 (z)
corresponds to the expression
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RN+1
0,0 (z) =

1
ZN+1

∫
dφ0φ2

0e−2−1K0,0(z)φ2
0

∫ N

∏
i=1

dφi exp

[
−2−1

N

∑
k,l=1

Kk,l(z)φkφl −∑
k

hkφk

]

=
1

ZN+1

∫
dφ0φ2

0e exp exp

(
−2−1K0,0(z)φ2

0 + 2−1
N

∑
k,l=1

hkK−1
k,l hl

)
. (A11)

This eventually yields the recursion relation [4] as follows:

z− 1
RN+1

0,0 (z)
=

N

∑
i=1

H2
i,0RN

ii (z) . (A12)

As shown in Reference [4], the properties of the density of states and the corresponding
statistics of the LMs depend on the variance of the matrix elements H0,i in Equation (A12).
In particular, when the variance H̄2

0,i = σN is finite, then the density of states obeys
the semicircle law: ρ(z) = (2π)−1

√
4− z2/σ which corresponds with the GOE of Ĥ.

By contrast, when the variance is divergent, the density of states corresponds to the
Lévy statistics.
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