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Abstract: This research is based on computing the new wave packets and conserved quantities to the
nonlinear low-pass electrical transmission lines (NLETLs) via the group-theoretic method. By using
the group-theoretic technique, we analyse the NLETLs and compute infinitesimal generators. The
resulting equations concede two-dimensional Lie algebra. Then, we have to find the commutation
relation of the entire vector field and observe that the obtained generators make an abelian algebra.
The optimal system is computed by using the entire vector field and using the concept of abelian
algebra. With the help of an optimal system, NLETLs convert into nonlinear ODE. The modified
Khater method (MKM) is used to find the wave packets by using the resulting ODEs for a supposed
model. To represent the physical importance of the considered model, some 3D, 2D, and density
diagrams of acquired results are plotted by using Mathematica under the suitable choice of involving
parameter values. Furthermore, all derived results were verified by putting them back into the
assumed equation with the aid of Maple software. Further, the conservation laws of NLETLs are
computed by the multiplier method.

Keywords: nonlinear low-pass electrical transmission lines; modified khater method; multiplier
approach; lie analysis; travelling wave patterns; conservation laws

1. Introduction

The nonlinear evolution equations (NLEEs) explain the physical problems in different
branches of engineering and nonlinear science, for example, plasma physics, biology, fluid
mechanics, optics, solid-state physics, etc. [1,2]. Numerical and analytical solutions of
NLEEs play a significant role in understanding the nonlinear physical models that are
appearing in nonlinear sciences as well as many other branches of science, including
natural sciences. Furthermore, the effort in computing the exact travelling wave patterns
of NLEEs through different methods has developed speedily in the last few years, which
is one of the important and advanced subjects of nonlinear science, engineering, and
theoretical physics. Subsequently, we know the hypothesis of the exceptional waves in a
particular soliton. Solitons have an important role in several physical phenomena and they
show up in different shapes, for example, kink, bright breather, pulse, dark, envelope, and
many others.

Many numbers of significant techniques for the analytical and stable soliton and wave
patterns of physical models have presently been created with the help of Matlab, Mathematica,
etc., such as the differential transformation technique [3], the modified exponential-function [4]
method, the (G′/G)-expansion [5] technique, the improved (G′/G)-expansion [6] technique,
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the rational (G′/G) [7] technique, the generalized Kudryashov [8] method, the homotopy
analysis [9] scheme, the mean finite difference Monte-Carlo [10] technique, the Hirota’s
bilinear technique [11], the approach of modified simple [12] equation, the F-expansion [13]
technique, the Exp-function [14] scheme, the sine-Gordon expansion [15] scheme, the
modified Kudryashov [16] method, the extended trial Equation [17] scheme, the improved
tan(Ψ(η)/2)-expansion [18] scheme, the first integral [19] technique, the Adomian de-
composition [20] method, the exponential rational function [21] technique, the rational
function [22] technique, the unified scheme [23], the generalized projective Riccati [24]
scheme, the multi-symplectic Runge-Kutta [25] technique, the modified extended tanh [26]
scheme, the generalized unified technique [27], the modified auxiliary [28] technique, and
other many methods and details are described in [29–45].

Many kinds of solutions are computed by using different analytical schemes such as e
homogeneous balance technique, the auxiliary equation technique and the Jacobi elliptic
expansion scheme, and many other techniques which are described and cited here. In this
research, we are using the MKM, which has not been used previously for this model. Using
this useful method on our supposed equation, we find some new kinds of wave patterns
which are fruitful and very interesting results. We have used a MKM to get the required
results and we obtain bright solutions, soliton-like solutions, singular bright solutions,
periodic soliton solutions, and combined soliton solutions. These results are in the form
of trigonometric and hyperbolic functions. There are different kinds of solutions for low
pass electrical transmission lines that are computed in [46–50] and many other related data
of this model can be seen in the literature which is cited in this article. As far as we know,
the outcomes represented in this paper generally have not been described in the literature.
The solutions we have developed here are new and very useful in the different branches
of science.

Lie method [51–54] is employed to analyse the NLETLs. We have to construct the
classical symmetries of the assumed model. We see that the obtained vector field forms
an abelian algebra. We find some new travelling wave results for the NLETLs by utilizing
an optimal system of Lie symmetry vectors by using the concept of abelian algebra. With
the help of an optimal system, NLETLs convert into nonlinear ODE. Using the theory
of the Lie symmetry method [55–57], we get the various forms of significant results to
the assumed PDE. Then, we explore the wave solutions with the help of the integration
technique, namely the modified Khater method [58,59], to solve the NLPDEs depicting
the wave proliferation in the NLETLs. By using the translational vectors and their linear
combinations, the NLETLs are converted to an equation wave proliferation in ordinary
differential equation NLETLs. MKM is employed to find some new trigonometric and
hyperbolic results which represent the consistency by Maple. To represent the physical
importance of the considered model, some 3D, 2D, and density diagrams of the acquired
results are plotted by using Mathematica under the suitable choice of involving parameters
values. Furthermore, all derived results were verified by putting them back into the as-
sumed equation with the aid of Maple software. Further, the conservation laws of NLPETLs
are computed by the multiplier method. In recent years, many scientists have developed
the use of the Lie theory, including Ibragimov [60], Olver [61], A.F Cheviakov [62] and
Bluman [63].

In this article, we will discuss the nonlinear low-pass electrical transmission line
(NLPETL) Equation [64,65] of the following form:

Uττ − l1(U2)ττ + l2(U3)ττ − δ2Uθθ −
δ4

12
Uθθθθ = 0, (1)

where U = U(θ, τ) is the voltage and l1, l2, δ are the constants. Spatial component θ and
temporal component τ represent the proliferation distance and slow time, respectively.
The actual parts of the derivation of Equation (1) applying Kirchhoff’s laws are presented
in [47], which are precluded here for brevity. The travelling wave and soliton solutions of
Equation (1) are derived in [48]. The expansion method for describing given model and the
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generalized projective Riccati equations method and its applications to non-linear PDEs
describing the given equation are in [49,50].

The investigation of NLETLs and their care arrangements are significant for differ-
ent applied fields, for example, interfacing radio transmitters and collectors with their
receiving wires, appropriating satellite TV signals, trunk lines directing calls between
phone exchanging focuses, PC network associations, and rapid PC information transports.
Furthermore, in interchanges and electronic designing, a transmission line is a specific
medium or other construction intended to convey exchanging current of radio recurrence.
NLTLs are additionally given a valuable method to check how the nonlinear excitations act
inside the medium and to show the colourful properties of new frameworks [66].

Conservation laws play a very important role in constructing the analytical results
of different types of nonlinear physical models. Furthermore, conservation laws are used
for the reduction of PDEs, to construct the numerical, analytical, and solitary wave results.
Various methods are developed to find the conservation laws, including Naz et al. [67],
Herman et al. [68] and A.F. Cheviakov [69], who constructed the package GeM on Maple to
find the conservation laws for PDEs. Here, we are using the multiplier scheme [70] to find
the conservation laws for the assumed model. To the best of our knowledge, the supposed
equation is not described by the MKM and no one has computed the conservation laws
of this physical model. The pattern of this paper is as follows, in Section 2, preliminaries
are presented. Classical symmetries are computed in Section 3. The optimal system, wave
patterns, and graphical diagrams are described in Section 4. Conservation laws of the
NLETLs are constructed in Section 5. At the end of this article, the conclusion is stated.

2. Preliminaries
2.1. Modified Khater Method

We describe the modified Khater method [71,72] to construct a new wave pattern for
a supposed model. In this regard, some details of this method are given below;

(Step 1): Suppose a general nth order PDE:

H(U, Uθ , Uθθ , ..., Uτ , Uττ , ...) = 0, (2)

where U = U(θ, τ) is unknown and H is a polynomial function w.r.t specified variables.
(Step 2): Introducing the wave transformation

$ = τ − aθ, U(θ, τ) = Q($), (3)

using above transformation (3) to convert the partial differential Equation (2) into ordinary
differential equation below:

F(Q, Q′, Q′′, ...) = 0. (4)

(Step 3): It is assumed that the general solution of nonlinear ODE (4) can be written as:

Q($) =
m

∑
j=0

k jB
j($), (5)

where k j (0 < j ≤ n) are the arbitrary constants and B($) is the solution of the equation:

B′($) = ln(ϑ)(γ1 + γ2B($) + γ3B
2($)), (6)

where ϑ 6= 0, 1 and γ1, γ2, and γ3 are the constants.
After assuming ∆ = γ2

2 − 4γ3γ1, the solutions of Equation (6) represented as:
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1: If ∆ < 0 and γ3 6= 0, then

B1($) =−
γ2

2γ3
+

√
−∆

2γ3
tanϑ(

√
−∆
2

$),

B2($) =−
γ2

2γ3
−
√
−∆

2γ3
cotϑ(

√
−∆
2

$),

B3($) =−
γ2

2γ3
+

√
−∆

2γ3
(tanϑ(

√
−∆$)±

√
rs secϑ(

√
−∆$)),

B4($) =−
γ2

2γ3
−
√
−∆

2γ3
(cotϑ(

√
−∆$)±

√
rs cscϑ(

√
−∆$)),

B5($) =−
γ2

2γ3
+

√
−∆

4γ3
(tanϑ(

√
−∆
4

$)− cotϑ(

√
−∆
4

$)).

(7)

2: If ∆ > 0 and γ3 6= 0, then

B6($) =−
γ2

2γ3
−
√

∆
2γ3

tanhϑ(

√
∆

2
$),

B7($) =−
γ2

2γ3
−
√

∆
2γ3

cothϑ(

√
∆

2
$),

B8($) =−
γ2

2γ3
−
√

∆
2γ3

(tanhϑ(
√

∆$)± ι
√

rs sech ϑ(
√

∆$)),

B9($) =−
γ2

2γ3
−
√

∆
2γ3

(cothϑ(
√

∆$)±
√

rs csch ϑ(
√

∆$)),

B10($) =−
γ2

2γ3
−
√

∆
4γ3

(tanhϑ(

√
∆

4
$) + cothϑ(

√
∆

4
$)).

(8)

3: If γ3γ1 > 0 and γ2 = 0, then

B11($) =

√
γ1

γ3
tanϑ(

√
γ3γ1$),

B12($) =−
√

γ1

γ3
cotϑ(

√
γ3γ1$),

B13($) =

√
γ1

γ3
(tanϑ(2

√
γ3γ1$)±

√
rs secϑ(2

√
γ3γ1$)),

B14($) =

√
γ1

γ3
(− cotϑ(2

√
γ3γ1$)±

√
rs cscϑ(2

√
γ3γ1$)),

B15($) =
1
2

√
γ1

γ3
(tanϑ(

√
γ3γ1

2
$)− cotϑ(

√
γ3γ1

2
$)).

(9)

4: If γ3γ1 < 0 and γ2 = 0, then

B16($) =−
√
−γ1

γ3
tanhϑ(

√
−γ3γ1$),

B17($) =−
√
−γ1

γ3
cothϑ(

√
−γ3γ1$),

B18($) =−
√
−γ1

γ3
(tanhϑ(2

√
−γ3γ1$)± ι

√
rs sech ϑ(2

√
−γ3γ1$)),

B19($) =−
√
−γ1

γ3
(cothϑ(2

√
−γ3γ1$)±

√
rs csch ϑ(2

√
−γ3γ1$)),

B20($) =−
1
2

√
−γ1

γ3
(tanhϑ(

√
−γ3γ1

2
$) + cothϑ(

√
−γ3γ1

2
$)).

(10)
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5: If γ2 = 0 and γ3 = γ1, then

B21($) = tanϑ(γ1$),

B22($) =− cotϑ(γ1$),

B23($) = tanϑ(2γ1$)±
√

rs secϑ(2γ1$),

B24($) =− cotϑ(2γ1$)±
√

rs cscϑ(2γ1$),

B25($) =
1
2
(tanϑ(

γ1

2
$)− cotϑ(

γ1

2
$)).

(11)

6: If γ2 = 0 and γ3 = −γ1, then

B26($) =− tanhϑ(γ1$),

B27($) =− cothϑ(γ1$),

B28($) =− tanhϑ(2γ1$)± ι
√

rs sech ϑ(2γ1$),

B29($) =− cothϑ(2γ1$)±
√

rs csch ϑ(2γ1$),

B30($) =−
1
2
(tanhϑ(

γ1

2
$) + cothϑ(

γ1

2
$)).

(12)

7: If γ2
2 = 4γ3γ1, then

B31($) =
−2γ1(γ2$ ln(ϑ) + 2)

γ22$ ln(ϑ)
. (13)

8: If γ2 = λ , γ1 = pλ(p 6= 0) and γ3 = 0, then

B32($) = ϑλ$ − p. (14)

9: If γ2 = γ3 = 0, then
B33($) = γ1$ ln(ϑ). (15)

10: If γ2 = γ1 = 0, then

B34($) =
−1

γ3$ ln(ϑ)
. (16)

11: If γ1 = 0 and γ2 6= 0, then

B35($) = −
rγ2

γ3(coshϑ(γ2$)− sinhϑ(γ2$) + r)
,

B36($) = −
γ2(sinhϑ(γ2$) + coshϑ(γ2$))

γ3(sinhϑ(γ2$) + coshϑ(γ2$) + s)
.

(17)

12: If γ2 = λ , γ3 = pλ(p 6= 0) and γ1 = 0, then

B37($) =
rϑλ$

s− prϑλ$
. (18)

Here, we define the hyperbolic and trigonometric functions as follows:
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sinhϑ($) =
rϑ$ − sϑ−$

2
, coshϑ($) =

rϑ$ + sϑ−$

2
,

tanhϑ($) =
rϑ$ − sϑ−$

rϑ$ + sϑ−$ , cothϑ($) =
rϑ$ + sϑ−$

rϑ$ − sϑ−$ ,

csch ϑ($) =
2

rϑ$ − sϑ−$ , sech ϑ($) =
2

rϑ$ + sϑ−$ ,

sinϑ($) =
rϑι$ − sϑ−ι$

2ι
, cosϑ($) =

rϑι$ + sϑ−ι$

2
,

tanϑ($) =− ι
rϑι$ − sϑ−ι$

rϑι$ + sϑ−ι$ , cotϑ($) = ι
rϑι$ + sϑ−ι$

rϑι$ − sϑ−ι$ ,

cscϑ($) =
2ι

rϑι$ − sϑ−ι$ , sech ϑ($) =
2

rϑι$ + sϑ−ι$ ,

(19)

where r and s are arbitrary constants.
(Step 4): By using the balancing method to find the value of m by comparing the

highest order linear and nonlinear term in ODE (4), the value of j is always positive.
(Step 5): Plugging Equations (5) and (6) into Equation (4) and equating the coefficients

of powers of B($) to zero, which gives us the system of algebraic equations which can be
solved by Mathematica.

2.2. Multiplier Approach

In this portion, we will portray the technique in detail:
1. The total differential operator defined as:

Di =
∂

∂θi + Ui
∂

∂U
+ Uij

∂

∂Uj
+ ..., i = 1, 2, 3...m, (20)

where Ui denotes the derivative w.r.t θi and Uij shows the derivative w.r.t θi and θ j.
2. We define the Euler operator is of the form:

δ

δU
=

∂

∂U
− Di

∂

∂Ui
+ Dij

∂

∂Uij
− Dijk

∂

∂Uijk
+ ... , (21)

3. An n-tuple F = (F1,F2,F3, ...,Fm), i = 1, 2, ...m, we have

DiF
i = 0, (22)

fulfils the all solutions of (2). Equation (22) is called the local conservation law.
4. The property of multiplier Λ(θ, τ, G) of the Equation (2):

DiF
i = ΛH, (23)

for some function U(µ1, µ2, ..., µm) [61].
5. We get the determining equations for multiplier Λ(θ, τ, U) when we take the deriva-

tive of Equation (23) (see [61]):

δ

δU
(Λ(θ, τ, U)H) = 0. (24)

Equation (24) consists for some function U(µ1, µ2, ..., µm) not only for solutions of
Equation (2).

When the multiplier Λ(θ, τ, U) are obtained with help of (24), the conservation laws
can be determined by Equation (23) as the determining equation.
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3. Lie Symmetry Analysis

Lie algebra of Equation (1) is generated by the vector field below:

F = ξ1(θ, τ, U)
∂

∂θ
+ ξ2(θ, τ, U)

∂

∂τ
+ η(θ, τ, U)

∂

∂U
, (25)

we define the fourth prolongation of F as the form:

F[4] = F+ ητ ∂

∂Uτ
+ ηττ ∂

∂Uττ
+ ηθθ ∂

∂Uθθ
+ ηθθθθ ∂

∂Uθθθθ
, (26)

applying F[4] to Equation (1), which gives:

F[4](Uττ − l1(U2)ττ + l2(U3)ττ − δ2Uθθ −
δ4

12
Uθθθθ

)
|Equation (1) = 0, (27)

− 2l1Uττ + 6l2U2
τ + 6l2UUττ − 4l1ητUτ + 12l2ητUUτ + ηττ − 2l1ηττU

+ 3l2ηττU2 − δ2ηθθ − δ4

12
ηθθθθ = 0 ,

(28)

where Uττ = ∂2U
∂τ2 , Uθθ = ∂2U

∂θ2 , and ητ , ηττ , ηθθ , and ηθθθθ , etc., are the coefficients of F4.
Furthermore, we have

ητ = Dτ(η)−Uθ Dτ(ξ1)−Uτ Dτ(ξ2),
ηθ = Dθ(η)−Uθ Dθ(ξ

1)−Uτ Dθ(ξ
2),

ηθθ = Dθ(η
θ)−Uθθ Dθ(ξ

1)−Uτθ Dθ(ξ
2),

ηττ = Dτ(ητ)−Uττ Dτ(ξ1)−Uθτ Dτ(ξ2),
ηθθ = Dθ(η

θθ)−Uθθθ Dθ(ξ
1)−Uτθθ Dθ(ξ

2),
ηθθθθ = Dθ(η

θθθ)−Uθθθθ Dθ(ξ
1)−Uτθθθ Dθ(ξ

2).

(29)

Let (x1, x2) = (θ, τ), we define the derivative operator Di as the form:

Di =
∂

∂xθi + Ui
∂

∂U
+ Uij

∂

∂Uj
+ ..., i = 1, 2.

Put (29) into (28), we obtain the following determining equations:

ξ1
τ = 0, ξ1

θ = 0, ξ1
U = 0, η(θ, τ, U)U = 0,

ξ2
τ = 0, ξ2

θ = 0, ξ2
U = 0,

(30)

where ηU = ∂η
∂U , ξθ = ∂ξ

∂θ , ξτ = ∂ξ
∂τ , etc. Solving the system (30), gives:

ξ1 = C2 , ξ2 = C1 , η(θ, τ, U) = 0, (31)

where Ci, i = 1, 2 are all constants.
Equation (31) gives the entire vector field of Equation (1):

Z1 =
∂

∂τ
, Z2 =

∂

∂θ
. (32)

We note that
[Zr, Zs] = 0, where r, s = 1, 2.
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4. Optimal System

We observe that P = {Z1, Z2}make an abelian subalgebra. So the one-dimensional
optimal system for the entire vector field (32) is:

£1 = < Z1 >,

£2 = < Z1 + κZ2 > .
(33)

4.1. Similarity Reduction of Equation (1)

In this portion, we aim to find the similarity variables for (33), obtained similarity
variables are used to convert the considered PDE into nonlinear ODE and help us to
compute the analytical solution for Equation (1).

4.2. £1 =< Z1 >

The characteristic equation for this vector field can be written as:

dt
1

=
dx
0

=
dU
0

,

after solving the above characteristic equation, we obtain

U(θ, τ) = Q($), where $ = θ, (34)

putting Equation (34) into Equation (1), which gives us the following ODE below:

δ2Q′′($) +
δ4

12
Q′′′′($) = 0, (35)

integrating (35) once w.r.t $, we get the following solution:

U(θ, τ) = C1 + C2θ + C3 sin
(

2
√

3θ

δ

)
+ C4 cos

(
2
√

3θ

δ

)
, (36)

where C1, C2, C3, and C4 are all integration constants.

4.3. £2 =< Z1 + κZ2 >

In this case, we have the transformation

U(θ, τ) = Q($), where $ = τ − κθ, (37)

plugging Equation (37) into Equation (1), which gives us the following ODE:

Q′′ − 2l1(Q′)2 − 2l1QQ′′ + 6l2Q(Q′)2 + 3l2Q2Q′′ − δ2κ2Q′′ − δ4κ4

12
Q′′′′ = 0. (38)

4.4. Travelling Wave Solutions of Equation (1)

In this portion, wave patterns are computed by MKM for the NLETLs from Equation (38).
Using the balancing scheme described in preliminaries to find the value of m, choos-

ing the linear and nonlinear terms Q′′′′ and Q2Q′′ from Equation (38), we get m = 1,
substituting in Equation (5), and we get:

Q($) = ko + k1B($). (39)

Assume that the B($) is the solution of the ODE:

B′($) = ln(ϑ)(γ1 + γ2B($) + γ3B
2($)), (40)
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plugging Equations (39) and (40) into an (38), after some routine calculations we acquired a
system of equations which gives us the following set of solutions:

κ =

√
2m1 − 12γ32

m2δ
,

ko =
γ2

δγ3 ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

,

k1 =
2

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

,

(41)

where
m1 =

[
24γ3

5 ln(ϑ)2γ1δ2 − 6γ3
4 ln(ϑ)2γ2

2δ2 + 36γ3
4] 1

2 ,

and
m2 =

[
4γ3

3 ln(ϑ)2γ1δ2 − γ3
2 ln(ϑ)2γ2

2δ2],
we get the following set of solutions for Equation (1) with the use of Equation (41):

1: If ∆ < 0 and γ3 6= 0, then

U1(θ, τ) =
1

δγ3 ln(ϑ)

√
−∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

tanϑ(

√
−∆
2

$),

U2(θ, τ) =
−1

δγ3 ln(ϑ)

√
−∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

cotϑ(

√
−∆
2

$),

U3(θ, τ) =
1

δγ3 ln(ϑ)

√
−∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
tanϑ(

√
−∆$)±

√
rs secϑ(

√
−∆$)

)
,

U4(θ, τ) =
−1

δγ3 ln(ϑ)

√
−∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
cotϑ(

√
−∆$)±

√
rs cscϑ(

√
−∆$)

)
,

U5(θ, τ) =
−1

2δγ3 ln(ϑ)

√
−∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
tanϑ(

√
−∆
4

$)− cotϑ(

√
−∆
4

$)
)
.

2: If ∆ > 0 and γ3 6= 0, then

U6(θ, τ) =
−1

δγ3 ln(ϑ)

√
∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

tanhϑ(

√
∆

2
$),

U7(θ, τ) =
−1

δγ3 ln(ϑ)

√
∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

cothϑ(

√
∆

2
$),

U8(θ, τ) =
−1

δγ3 ln(ϑ)

√
∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
tanhϑ(

√
∆$)± ι

√
rs sech ϑ(

√
∆$)

)
,

U9(θ, τ) =
−1

δγ3 ln(ϑ)

√
∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
cothϑ(

√
∆$)±

√
rs csch ϑ(

√
∆$)

)
,

U10(θ, τ) =
−1

2δγ3 ln(ϑ)

√
∆(12γ32 + 2m1 + m2)

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
tanhϑ(

√
∆

4
$) + cothϑ(

√
∆

4
$)
)
.

3: If γ3γ1 > 0 and γ2 = 0, then



Fractal Fract. 2021, 5, 170 10 of 21

U11(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2
√

γ1

γ3
tanϑ(

√
γ3γ1$)

)
,

U12(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2
√

γ1

γ3
cotϑ(

√
γ3γ1$)

)
,

U13(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2
√

γ1

γ3

(
tanϑ(2

√
γ3γ1$)±

√
rs secϑ(2

√
γ3γ1$)

))
,

U14(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2
√

γ1

γ3

(
− cotϑ(2

√
γ3γ1$)±

√
rs cscϑ(2

√
γ3γ1$)

))
,

U15(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+

√
γ1

γ3

(
tanϑ(

√
γ3γ1

2
$)− cotϑ(

√
γ3γ1

2
$)
))

.

4: If γ3γ1 < 0 and γ2 = 0, then

U16(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2
√
−γ1

γ3
tanhϑ(

√
−γ3γ1$)

)
,

U17(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2
√
−γ1

γ3
cothϑ(

√
−γ3γ1$)

)
,

U18(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2
√
−γ1

γ3

(
tanhϑ(2

√
−γ3γ1$)± ι

√
rs sech ϑ(2

√
−γ3γ1$)

))
,

U19(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2
√
−γ1

γ3

(
cothϑ(2

√
−γ3γ1$)±

√
rs csch ϑ(2

√
−γ3γ1$)

))
,

U20(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
−
√
−γ1

γ3

(
tanhϑ(

√
−γ3γ1

2
$) + cothϑ(

√
−γ3γ1

2
$)
))

.

5: If γ2 = 0 and γ3 = γ1, then

U21(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2 tanϑ(γ1$)

)
,

U22(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2 cotϑ(γ1$)

)
,

U23(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2 tanϑ(2γ1$)± 2

√
rs secϑ(2γ1$)

)
,

U24(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2 cotϑ(2γ1$)± 2

√
rs cscϑ(2γ1$)

)
,

U25(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ tanϑ(

γ1

2
$)− cotϑ(

γ1

2
$)

)
.

6: If γ2 = 0 and γ3 = −γ1, then
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U26(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2 tanhϑ(γ1$)

)
,

U27(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2 cothϑ(γ1$)

)
,

U28(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2
(
− tanhϑ(2γ1$)± ι

√
rs sech ϑ(2γ1$)

))
,

U29(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2
(
− cothϑ(2γ1$)±

√
rs csch ϑ(2γ1$)

))
,

U30(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2
(

tanhϑ(
γ1

2
$) + cothϑ(

γ1

2
$)
))

.

7: If γ2
2 = 4γ3γ1, then

U31(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 4γ1(γ2$ ln(ϑ) + 2)

γ22$ ln(ϑ)

)
.

8: If γ2 = λ , γ1 = pλ(p 6= 0) and γ3 = 0, then

U32(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2ϑλ$ − 2p

)
.

9: If γ2 = γ3 = 0, then

U33(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+ 2γ1$ ln(ϑ)

)
.

10: If γ2 = γ1 = 0, then

U34(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2

γ3$ ln(ϑ)

)
.

11: If γ1 = 0 and γ2 6= 0, then

U35(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2rγ2

γ3(coshϑ(γ2$)− sinhϑ(γ2$) + r)

)
,

U36(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
− 2γ2(sinhϑ(γ2$) + 2 coshϑ(γ2$))

γ3(sinhϑ(γ2$) + coshϑ(γ2$) + s)

)
.

12: If γ2 = λ , γ3 = pλ(p 6= 0) and γ1 = 0, then

U37(θ, τ) =
1

δ ln(ϑ)

√
12γ32 + 2m1 + m2

l2(16γ1
2γ32 − 8γ1γ22γ3 + γ24)

(
γ2

γ3
+

2rϑλ$

s− prϑλ$

)
.

4.5. Graphical Behaviour of Wave Patterns

Here, we represent the physical importance of the considered model, some 3D, 2D,
and density diagrams of acquired results that are plotted by using Mathematica under the
suitable choice of involving parameters values. Figure 1 represent the 3D and 2D graph
U1(θ, τ) for l1 = 1.5, l2 = 0.75, δ = 0.5, γ1 = 0.50, γ2 = 0.50, γ3 = 0.75. We have shown
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the graphical structure of U2(θ, τ) for l1 = 0.25, l2 = 0.50, δ = 0.25, γ1 = 1.5, γ2 = 0.10,
and γ3 = 1.5 in Figure 2.

3D and 2D graphical behaviour of U4(θ, τ) for l1 = 1.5, l2 = 0.75, δ = 2, γ1 = 2,
γ2 = 0.5, and γ3 = 1.7 is shown in Figure 3 Graphical representation of U5(θ, τ) for
l1 = 1.5, l2 = 0.75, δ = 0.5, γ1 = 0.50, γ2 = 0.50, and γ3 = 0.75 is presented in Figure 4.
Furthermore, 2D and 3D diagrams of U6(θ, τ) for l1 = 0.25, l2 = 0.50, δ = 0.25, γ1 = 1.5,
γ2 = 0.10, and γ3 = 1.5 are shown in Figure 5.

In Figure 6, we represent the 3D and 2D diagrams of U7(θ, τ) for l1 = 1.5, l2 = 0.75,
δ = 2, γ1 = 2, γ2 = 0.5, γ3 = 1.7. 3D and 2D graphical representations of U8(θ, τ) for
l1 = 0.2, l2 = 0.1, δ = 1.5, γ1 = 0.5, γ2 = 0.15, γ3 = 1.7 are shown in Figure 7.

Figure 8 show the 3D and 2D diagrams of U9(θ, τ) for l1 = 0.2, l2 = 0.1, δ = 1.5,
γ1 = 0.5, γ2 = 0.15, and γ3 = 1.7. We represent the 3D and 2D diagrams of U19(θ, τ) for
l1 = 1.5, l2 = 0.75, δ = 0.1, γ1 = 0.1, beta = 0.15, γ3 = 1.2 in Figure 9.

Moreover, In Figures 10 and 11, we have represented the 2D comparison graphical
behaviour of choosing different values of U8(θ, τ) for l1 = 0.5, l1 = 1.0, and l1 = 1.5 and
l2 = 0.5, l2 = 1.0, and l2 = 1.5.

(a) 3D-Graph

-4 -2 2 4
θ

-200

-100

100

200

U

(b) 2D-Graph
Figure 1. Diagrams a− 3D and b− 2D representation of U1(θ, τ) for l1 = 1.5, l2 = 0.75, δ = 0.50, γ1 = 0.5, γ2 = 0.50, and
γ3 = 0.75.

(a) 3D-Graph

-2 -1 1 2
θ

-200

-100

100

200

U

(b) 2D-Graph
Figure 2. Diagrams a− 3D and b− 2D representation of U2(θ, τ) for l1 = 0.25, l2 = 0.50, δ = 0.25, γ1 = 1.5, γ2 = 0.10, and
γ3 = 1.5.
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(a) 3D-Graph

-1.0 -0.5 0.5 1.0
θ

-200

-100

100

200

U

(b) 2D-Graph
Figure 3. Diagrams a− 3D and b− 2D representation of U4(θ, τ) for l1 = 1.5, l2 = 0.75, δ = 2, γ1 = 2, γ2 = 0.5, and
γ3 = 1.7.

(a) 3D-Graph

-10 -5 5 10
θ

-30

-20

-10

10

20

30

U

(b) 2D-Graph
Figure 4. Diagrams a− 3D and b− 2D representation of U5(θ, τ) for l1 = 1.5, l2 = 0.75, δ = 0.5, γ1 = 0.50, γ2 = 0.50, and
γ3 = 0.75.

(a) 3D-Graph

-10 -5 5 10
θ

-100

-50

50

100

U

(b) 2D-Graph
Figure 5. Diagrams a− 3D and b− 2D representation of U6(θ, τ) for l1 = 0.25, l2 = 0.50, δ = 0.25, γ1 = 1.5, γ2 = 0.10, and
γ3 = 1.5.
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(a) 3D-Graph

-4 -2 2 4
θ

-20

20

40

U

(b) 2D-Graph
Figure 6. Diagrams a− 3D and b− 2D representation of U7(θ, τ) for l1 = 1.5, l2 = 0.75, δ = 2, γ1 = 2, γ2 = 0.5, and
γ3 = 1.7.

(a) 3D-Graph

-10 -5 5 10
θ

-150

-100

-50

50

100

150

U

(b) 2D-Graph
Figure 7. Diagrams a− 3D and b− 2D representation of U8(θ, τ) for l1 = 0.2, l2 = 0.1, δ = 1.5, γ1 = 0.5, γ2 = 0.15, and
γ3 = 1.7.

(a) 3D-Graph

-10 -5 5 10
θ

-400

-200

200

400

U

(b) 2D-Graph
Figure 8. Diagrams a− 3D and b− 2D show graphically U9(θ, τ) for l1 = 0.2, l2 = 0.1, δ = 1.5, γ1 = 0.5, γ2 = 0.15, and
γ3 = 1.7.
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(a) 3D-Graph

-10 -5 5 10
θ

-30

-20

-10

10

20

30

U

(b) 2D-Graph
Figure 9. Diagrams a− 3D and b− 2D representation of U19(θ, τ) for l1 = 1, l1 = 1.5, l2 = 0.75, δ = 0.1, γ1 = 0.1, γ2 = 0.15,
and γ3 = 1.2.

l1=0.5

l1=1.0

l1=1.5

-10 -5 0 5 10

-3
-2
-1
0
1
2
3

τ

U

Figure 10. Comparison of different values if l1.

l2=0.5

l2=1.0

l2=1.5

-10 -5 0 5 10
-3
-2
-1
0
1
2
3

τ

U

Figure 11. Comparison of different values if l2.
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5. Conservation Laws

Here the multiplier technique is used to construct the conservation laws for (1). From
Equation (24), we obtain the determining equation for lambda Λ(θ, τ, U):

δ

δU

[
Λ(θ, τ, U)(Uττ − l1(U2)ττ + l2(U3)ττ − δ2Uθθ −

δ4

12
Uθθθθ = 0)

]
= 0. (42)

From Equation (21), the Euler operator is defined as

δ

δU
=

∂

∂U
− Dτ

∂

∂Uτ
− Dθ

∂

∂Uθ
+ D2

τ
∂

∂Uττ
+ D2

θ

∂

∂Uθθ
+ Dθ Dτ

∂

∂Uτθ
+ ..., (43)

total derivative operator Dτ and Dθ can be written as with help of Equation (20):

Dθ =
∂

∂θ
+ Uθ

∂

∂U
+ Uθθ

∂

∂Uθ
+ Uτθ

∂

∂Uτ
...,

Dτ =
∂

∂τ
+ Uτ

∂

∂U
+ Uττ

∂

∂Uτ
+ Uτθ

∂

∂Uθ
...,

(44)

solving Equation (42), and we obtain the eight multipliers:

Λ(1)(θ, τ, U) = τ, Λ(2)(θ, τ, U) = τθ,

Λ(3)(θ, τ, U) = τ sin
(

2
√

3θ

δ

)
, Λ(4)(θ, τ, U) = τ cos

(
2
√

3θ

δ

)
,

Λ(5)(θ, τ, U) = 1, Λ(6)(θ, τ, U) = θ,

Λ(7)(θ, τ, U) = sin
(

2
√

3θ

δ

)
, Λ(8)(θ, τ, U) = cos

(
2
√

3θ

δ

)
(45)

Equations (23) and (45) give us conservation laws. Two components, F1 and F2, of the
conservation laws for Equation (1).

Case 1. Conserved vectors relating to

Λ(1)(θ, τ, U) = τ,

can be written as:

F
(1)
τ = 3l2τU2Uτ − 2l1τUUτ − l2U3 + l1U2 + τUτ −U,

F
(1)
θ = −τδ2Uθ −

1
12

τδ4Uθθθ .
(46)

Case 2. The conservation laws relating to

Λ(2)(θ, τ, U) = τθ,

can be written as:

F
(2)
τ = 3l2τθU2Uτ − 2l1τθUUτ − l2θU3 + l1θU2 + τθUτ − θU,

F
(2)
θ = τδ2U − τθδ2Uθ +

1
12

τδ4Uθθ −
1

12
τθδ4Uθθθ .

(47)
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Case 3. The conservation laws relating to

Λ(3)(θ, τ, U) = τ sin
(

2
√

3θ

δ

)
,

can be written as:

F
(3)
τ = − sin

(
2
√

3θ

δ

)(
2l1τUUτ − 3l2τU2Uτ + l2U3 − l1U2 − τUτ + U

)
,

F
(3)
θ =

1
12

τδ3
[

2
√

3Uθθ cos
(

2
√

3θ

δ

)
− 2δUθθθ sin

(
2
√

3θ

δ

)]
.

(48)

Case 4. The conservation laws relating to

Λ(4)(θ, τ, U) = τ cos
(

2
√

3θ

δ

)
,

can be written as:

F
(4)
τ = − cos

(
2
√

3θ

δ

)(
2l1τUUτ − 3l2τU2Uτ + l2U3 − l1U2 − τUτ + U

)
,

F
(4)
θ =

−1
12

τδ3
[

2
√

3Uθθ sin
(

2
√

3θ

δ

)
+ δUθθθ cos

(
2
√

3θ

δ

)]
.

(49)

Case 5. The conservation laws relating to

Λ(5)(θ, τ, U) = 1,

can be written as:
F
(5)
τ = 3l2U2Uτ − 2l1UUτ + Uτ ,

F
(5)
θ = −δ2Uθ −

1
12

δ4Uθθθ .
(50)

Case 6. The conservation laws relating to

Λ(6)(θ, τ, U) = θ,

can be written as:
F
(6)
τ = 3l2θU2Uτ − 2l1θUUτ + θUτ ,

F
(6)
θ = δ2U − θδ2Uθ +

1
12

δ4Uθθ −
1
12

δ4θUθθθ .
(51)

Case 7. The conservation laws relating to

Λ(7)(θ, τ, U) = sin
(

2
√

3θ

δ

)
,

can be written as:

F
(7)
τ = −Uτ sin

(
2
√

3θ

δ

)(
− 3l2U2 + 2l1U − 1

)
,

F
(7)
θ =

1
12

δ3
[

2
√

3Uθθ cos
(

2
√

3θ

δ

)
− δUθθθ sin

(
2
√

3θ

δ

)]
.

(52)
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Case 8. The conservation laws relating to

Λ(8)(θ, τ, U) = cos
(

2
√

3θ

δ

)
,

can be written as:

F
(8)
τ = −Uτ cos

(
2
√

3θ

δ

)(
− 3l2U2 + 2l1U − 1

)
,

F
(8)
θ =

−1
12

δ3
[

δUθθθ cos
(

2
√

3θ

δ

)
+ 2
√

3Uθθ sin
(

2
√

3θ

δ

)]
.

(53)

6. Conclusions

In this work, we have studied the nonlinear model depicting the wave proliferation
in NLETLs employing integration scheme modified Khater method. NLETLs have been
discussed by the Lie analysis approach. This method is employed to analyse the NLETLs
and construct the infinitesimal generators. We found the entire vector field and discuss the
different solutions of the NLETLs. We can see that generated vector field forms an abelian
Lie algebra. The assumed NLETLs were converted into nonlinear ODE by using an optimal
system. Then, we explored the wave solutions with the help of the integration technique,
namely the MKM, to solve the nonlinear partial differential depicting the wave proliferation
in the NLETLs. We have used a MKM to get the new wave solutions. These results are in
the form of trigonometric and hyperbolic functions. The benefits of the proposed technique
are that they are simple, direct, reliable, and it addresses its wide-range appropriateness. It
is hoped that our proposed technique is much better and can be used for the many types
of NLPDE’s. To represent the physical importance of the considered model, some 3D,
2D, and density diagrams of acquired results are plotted by using Mathematica under
the suitable choice of involving parameters values. We have shown some comparison
graphical behaviour of the solution for taking different values of l1 and l2. Further, the
conservation laws of NLETLs are computed by the multiplier method.
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