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Abstract: This paper is an analysis of the flow of magnetohydrodynamics (MHD) second grade fluid
(SGF) under the influence of chemical reaction, heat generation/absorption, ramped temperature
and concentration and thermodiffusion. The fluid was made to flow through a porous medium.
It has been proven in many already-published articles that heat and mass transfer do not always
follow the classical mechanics process that is known as memoryless process. Therefore, the model
using classical differentiation based on the rate of change cannot really replicate such a dynamical
process very accurately; thus, a different concept of differentiation is needed to capture such a process.
Very recently, new classes of differential operators were introduced and have been recognized to be
efficient in capturing processes following the power law, the decay law and the crossover behaviors.
For the study of heat and mass transfer, we applied the newly introduced differential operators to
model such flow. The equations for heat, mass and momentum are established in the terms of Caputo
(C), Caputo–Fabrizio (CF) and Atangana–Baleanu in Caputo sense (ABC) fractional derivatives. The
Laplace transform, inversion algorithm and convolution theorem were used to derive the exact and
semi-analytical solutions for all cases. The obtained analytical solutions were plotted for different
values of existing parameters. It is concluded that the fluid velocity shows increasing behavior for κ,
Gr and Gm, while velocity decreases for Pr and M. For Kr, both velocity and concentration curves
show decreasing behavior. Fluid flow accelerates under the influence of Sr and R. Temperature and
concentration profiles increase for Sr and R. Moreover, the ABC fractional operator presents a larger
memory effect than C and CF fractional operators.

Keywords: second grade fluid; memory effect; magnetic field; inversion algorithm

1. Introduction

Over the past thirty years, fractional derivatives have fascinated multiple investigators
as compared to classical derivatives. Moreover, fractional derivatives are more credible in
mathematical modeling of real-world problems [1–4].

In classical calculus, derivatives and integrals are uniquely computed. A similar situa-
tion exists in the case of fractional integrals. For example, Samko et al. [5], Podlubny [6],
Oldham and Spanier [7], and Miller and Ross [8] used a similar definition to compute
the fractional integrals. However, the circumstances are complicated in fractional order
derivatives (FODs) because several different competing definitions exist in the literature.
For instance, a few of those approaches include the Riemann-Liouville, the Caputo, the
Hadamard, the Marchaud, the Granwald–Letinkov, the Erdelyi–Kober, the Riesz–Feller,
the Caputo–Fabrizio and the Atangana–Baleanu approach. These definitions coincide only
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with some particular cases. Among all these approaches to define fractional differentiation
and fractional integration, the approach of Riemann–Liouville is significant. However, the
approach of Riemann–Liouville does not properly address the physics of some fractional
derivative initial-boundary value problems. Furthermore, this definition can exhibit the
derivative of a constant function other than zero. To overcome this problem, Caputo
proposed an alternate definition of FOD in 1967 [9], and it was used in fluid dynamics to
explain the theory of viscoelasticity [10]. Recently, Caputo and Fabrizio [11] provided a
modern definition of a non-integer order derivative including exponential function and the
Atangana and Baleanu [12], based on Mittatag–Leffler function, which is a generalization
of the exponential function.

The FOD inherits a nonlocal nature, so it is an excellent tool to obtain a better under-
standing of the hereditary properties of different processes and materials. Possibly, the
first utilization of non-integer calculus in physical problems was noticed due to the work
of Abel [13] while finding the solution of integer order equation, known as tautochrone
problem. In this problem, the curve of an object (frictionless wire), lying in a vertical

plane, was determined by using the operator D
1
2
0 and assuming the dependence of the time

position not on the starting point. Bagley [14] presented the first PhD thesis on the applica-
tions of FC in viscoelasticity models. Recently, the applications of FC have been observed
in psychology to determine the time variation of the emotions of mankind [15,16]. The
applications of FOD problems can be seen in dynamics and control systems [17], marine
sciences and wave dynamics [18–21], diffusion processes [22–24], solid mechanics [25–27],
medical sciences [28–31] and many more [32–35].

Convective flow is a self-sustained flow with a temperature gradient. Convective
flow and magnetic effect combined play a very important role in real value problems. The
SGF with warmth-transferring porous medium was discussed by Tan and Masuoka [36].
Mixed MHD convection on an upright plate with permeable space was analyzed by
Aldose et al. [37]. Rashidi et al. [38] also investigated the difference between two normal
kinds of liquid stream between clear liquid and permeable medium. The authors of [39] in-
vestigated the precarious MHD stream of turning SGF past a swaying plate. Khan et al. [40]
discussed the precise answers for quickened flow behavior of a pivoting SGF in a per-
meable space. Bilal et al. [41] and Ali et al. [42] analyzed the SGF with a swaying plate
under different conditions. The literature shows more interest developed in the numerical
and approximate solutions on the convection flow of SGF [43–49]. Exact solutions for
viscoelastic SGF fluid have been investigated by researchers [50–52]. In 2010, the SGF with
Laplace transform methodology over a wavering plate was explored by Nazar et al. [53].
Ali et al. [54] explored the MHD fluid with permeable space. The procedure of heat trans-
fer is expressed by using momentum, energy and continuity equations with stress and
heat flux. The heat transfer phenomenon consists of the fins of the heat exchanger, the
tabulator inside the tube or plates and the convective physical transport phenomenon [55].
MHD free convection radiative stream with different conditions has been considered by
researchers [56–59]. Ali et al. [42] considered SGF with porous surface and determined
the exact solutions. Some recent and useful work has also been done for SGF with frac-
tional differential operators [60–65]. Heat and mass transfer phenomena in nanofluids
with a porous medium have been investigated by [66–68]. Some significant work in the
field of nanoparticles and carbon nanotubes via fractional derivatives have been done by
researchers [69–71]. Recently, Rehman et al. [72] discussed heat and mass transfer of MHD
unsteady SGF in the presence of ramped conditions. Song et al. [73] used the definition of
ABC in order to study SGF with exponential heating and Darcy’s law. Moreover, Riaz et al.
explored MHD SGF with ramped conditions via special functions [74].

In the present work, we propose the mathematical modeling of fractional SGF with
the help of Laplace transform and fractional operators. Moreover, solutions are acquired
for momentum, heat and mass profiles. An inversion algorithm is used for graphical
interpretation of fractional models.
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2. Mathematical Modeling

We begin with SGF on an upright and unbounded plate, with the impact of a magnetic
field having strength B0. The plate is perpendicular to η̃-axis and parallel to x̃-axis. At the
start, the plate and fluid are not moving. T̃∞ is fixed temperature and C̃∞ is concentration
at the surface. At the time τ̃ > 0, the temperature of the plate is either raised or lowered
to T̃∞ + (T̃w − T̃∞) τ̃

τ0
, when τ̃ ≤ τ0, and thereafter, for τ̃ > t0, a constant temperature τ̃w

is maintained and the level of mass transfer at the surface of the wall is either raised or
lowered to C̃∞ + (C̃w − C̃∞) t̃

τ0
, when τ̃ ≤ τ0, and thereafter, for τ̃ > τ0 is maintained at the

constant surface concentration C̃w, respectively. The physical model of the problem can be
given as follows in Figure 1 [75]. The detailed method to solve the problem is shown in
Figure 2.

Figure 1. Geometrical presentation of the problem.

Governing equations for momentum, heat and mass are presented by [75]:

∂ũ
∂τ̃

=

(
υ +

γ

ρ

∂

∂τ̃

)
∂2ũ
∂η̃2 + gβT T̃ − gβT T̃∞ + gβ̃τC̃− gβ̃CC̃∞ −

σB2
o

ρ
ũ− Φ

k̃1

(
υ +

γ

ρ

∂

∂τ̃

)
ũ, (1)

ρCp

(
∂T̃
∂τ̃

)
= k

(
∂2T̃
∂η̃2

)
− ∂q̃r

∂η̃
+ Q0T̃ −Q0T̃∞, (2)

(
∂C̃
∂η̃

)
= DM

(
∂2C̃
∂η̃2

)
+ DT

(
∂2T̃
∂η̃2

)
− k̃2C̃− k̃2C̃∞, (3)

and the imposed initial and boundary conditions are [75]:

τ̃ ≤ 0, ũ(η̃, 0) = 0, T̃(η̃, 0) = T̃∞, C̃(η̃, 0) = C̃∞, η ≥ 0, (4)

τ̃ > 0, ũ(η̃, τ̃) = uo τ̃2, T̃(0, τ̃) =

{
T̃∞ + (T̃w − T̃∞) τ̃

τ0
, 0 < τ̃ ≤ τ0;

T̃w, τ̃ > τ0,
(5)
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C̃(0, τ̃) =

{
C̃∞ + (C̃w − C̃∞) τ̃

τ0
, 0 < τ̃ ≤ τ0;

C̃w, τ̃ > τ0,
η̃ = 0, (6)

τ̃ ≥ 0, ũ(η̃, τ̃)→ 0, T̃(η̃, τ̃)→ T̃∞, C̃(η̃, τ̃)→ C̃∞, η̃ → ∞. (7)

Figure 2. Flow chart of the method.

For the simplification of Equations (1)–(7), we introduce the dimensionless variables
given below:

ζ =
u0τ̃2

0
υ

η̃, w =
ũ

τ̃2
0 u0

, θ =
T̃ − T̃∞

T̃w − T̃∞
, C =

C̃− C̃∞

C̃w − C̃∞
, M2 =

σB2
0τ0

ρ
, Kr = τ0k̃2, (8)

Sc =
υ

DM
, Gr =

gβ̃T
(
T̃w − T̃∞

)
ũ0τ0

, Gm =
gβ̃C

(
C̃w − C̃∞

)
ũ0τ0

, τ0 =

(
υ

ũ2
0

) 1
5

, γ1 =
γ

ρυτ0
, (9)

Sr =
DT
(
T̃w − T̃∞

)
υ
(
C̃w − C̃∞

) , Pr =
ρυCp

k
, R =

16σ∗T̃3
∞

3kk∗
,

1
k1

=
u0υτ2

0 Φ
k̃1

, H =
Q0υτ0

k
, (10)

t =
τ̃

τ2
0

h =
1

u0τ0k̃1
, c = 1 + γ1h, b = M2 + h. (11)

Therefore, the dimensionless momentum, energy and mass equations are [75]

c
(

∂w(ζ, t)
∂t

)
=

∂2w
∂ζ2 + γ1

(
∂3w(ζ, t)

∂t∂ζ2

)
+ Grθ(ζ, t) + GmC(ζ, t)− bw(ζ, t), (12)
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Pr

(
∂θ(ζ, t)

∂t

)
= (1 + R)

∂2θ(ζ, t)
∂ζ2 + Hθ(ζ, t), (13)

∂C(ζ, t)
∂t

=
1
Sc

(
∂2C(ζ, t)

∂ζ2

)
+ Sr

(
∂2θ(ζ, t)

∂ζ2

)
− KrC(ζ, t), (14)

with initial and boundary conditions

t ≤ 0, w(ζ, 0) = 0, θ(ζ, 0) = 0, C(ζ, 0) = 0, ζ ≥ 0, (15)

t > 0, w(ζ, t) = t2, θ(0, t) =

{
t 0 < t ≤ 1;
1 t > 1,

, C(0, t) =

{
t 0 < t ≤ 1;
1 t > 1,

, ζ = 0, (16)

t > 0, w(ζ, t)→ 0, θ(ζ, t)→ 0, C(ζ, t)→ 0, ζ → ∞. (17)

3. Solution for Caputo Fractional Operator

The Caputo (C) fractional time derivative and its Laplace transform [76] are given below:

CDκ
τ N(ζ, τ) =

1
Γ(n− κ)

∫ τ

0

(
N(n)(ξ)

(τ − ξ)κ+1−n

)
dξ, (18)

L
(

CDκ
τ N(ζ, τ)

)
= sκL

(
N(ζ, τ)

)
− sκ−1N(ζ, 0). (19)

3.1. Temperature Field

The following Caputo derivative form of temperature Equation (13) is developed by
using Equation (18):

Pr
CDκ

t θ(ζ, t) = (1 + R)
∂2θ

∂ζ2 + Hθ. (20)

By implementing the Laplace transform on Equation (20), we obtain

∂2θ̄c(ζ, s)
∂ζ2 −

(
Pr

1 + R

)(
sκ − H

Pr

)
θ̄c(ζ, s) = 0, (21)

where the homogenous solution of the above equation is

θ̄c(ζ, s) = c1e−ζ
√
( Pr

1+R )(sκ− H
Pr ) + c2eζ

√
( Pr

1+R )(sκ− H
Pr ). (22)

c1 and c2 can be determined by employing Equations (15)–(17), and the required
solution is given below:

θ̄c(ζ, s) =
(

1− e−s

s2

)
e−ζ

√
( Pr

1+R )(sκ− H
Pr ). (23)

3.2. Concentration Field

The following Caputo derivative form of concentration Equation (14) is developed by
using Equation (18):

CDκ
t C(ζ, t) =

1
Sc

∂2C(ζ, t)
∂ζ2 + Sr

∂2θ(ζ, t)
∂ζ2 − KrC(ζ, t). (24)
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By implementing the Laplace transform on Equation (24),

(sκ + Kr)C̄c(ζ, s) =
1
Sc

∂2C̄c(ζ, s)
∂ζ2 + Sr

∂2θ̄c(ζ, s)
∂ζ2 , (25)

the homogenous solution of the above equation is

C̄h(ζ, s) = c1e
−ζ

√
Sc

(
sκ

(1−κ)s+κ
+Kr

)
+ c2e

ζ

√
Sc

(
sκ

(1−κ)s+κ
+Kr

)
, (26)

the particular solution of Equation (25) is

C̄p(ζ, s) =−
ScSr(1− e−s)

{
(Pr − H + Hκ)sκ − Hκ

}
s2
{(

Pr − H(1− κ)− Sc(1 + R)− ScKr(1 + R)(1− κ)

)
sκ − (Hκ + ScKrκ(1 + R))

}

e
−ζ

√
Pr

1+R

(
sκ

(1−κ)s+κ
− H

Pr

)
, (27)

and the required solution is given below:

C̄c(ζ, s) =
(

1− e−s

s2 − A1

)
e−ζ
√

Sc(sκ+Kr) + A1e−ζ
√
( Pr

1+R )(sκ− H
Pr ). (28)

where

A1 =
ScSr

(
Pr

1+R

)(
sκ − H

Pr

)
(1− e−s)(

H
1+R

)
+ ScKr

×

(
( Pr

1+R − Sc)

sκ( H
1+R ) + ScKr

+
1
s2 −

1

( H
1+R + ScKr)

(
sκ
(

Pr
1+R − Sc

)
−
(

H
1+R + ScKr

))). (29)

3.3. Velocity Field

The following Caputo derivative form of velocity Equation (12) is developed by using
Equation (18):

(1 + hγ1)(
CDκ

t )w(ζ, t) =
(

1 + γC
1 Dκ

t

)∂2w
∂ζ2 + Grθ + GmC−

(
M2 + h

)
w. (30)

By implementing the Laplace transform on Equation (30),

(1 + γ1sκ)
∂2w̄c(ζ, s)

∂ζ2 − (csκ + b)w̄c(ζ, s) = −Gr θ̄c(ζ, s) + GmC̄c(ζ, s), (31)

the homogenous solution of above equation is

w̄h(ζ, s) = c1e
−ζ

√√√√(1+ γ1
k1

)(
sκ

(1−κ)s+κ

)
+

(
M2+k1

)
+ c2e

ζ

√√√√(1+ γ1
k1

)(
sκ

(1−κ)s+κ

)
+

(
M2+k1

)
, (32)

the particular solution for Equation (31) is
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w̄p(ζ, s) =− Gr(1− e−s)(sκ + b2)
2

s2

{
(a4s− a5)(a12s + b2)− (a13s + a14)(s + b2)

} e
−ζ

√
Pr

1+R

(
sκ

(1−κ)s+κ
− H

Pr

)

− Gm(1− e−s)(sκ + b2)
2

s2

{
(a7sκ − a8)(a12s + b2)− (a13sκ + a14)(sκ + b2)

}×

ScSr

{
(Pr − H + Hκ)sκ − Hκ

}
s2
{(

Pr − H(1− κ)− Sc(1 + R)− ScKr(1 + R)(1− κ)

)
sκ − (Hκ + ScKrκ(1 + R))

}
(

1− e−s

s2

)
e
−ζ

√
Sc

(
sκ

(1−κ)sκ+κ
+Kr

)
− Gm(1− e−s)(sκ + b2)

2

s2

{
(a7sκ − a8)(a12sκ + b2)− (a13sκ + a14)(sκ + b2)

}

×
{

e
−ζ

√
Sc

(
sκ

(1−κ)s+κ
+Kr

)
− e
−ζ

√
Pr

1+R

(
sκ

(1−κ)s+κ
− H

Pr

)}
(33)

and the required solution is given below:

w̄c(ζ, s) =
2
s3 e

−ζ
√

csκ+b
1+γ1sκ +

Gr(1− e−s)

s2

{
( Pr

1+R )(s
κ − H

Pr
)(1 + γ1sκ)− (csκ + b)

}×
{

e
−ζ
√

csκ+b
1+γ1sκ − e−ζ

√
( Pr

1+R )(sκ− H
Pr )

}

+
Gm

Sc(sκ + Kr)(1 + γ1sκ)− (csκ + b)
×{(

1− e−s

s2

)
e
−ζ
√

csκ+b
1+γ1sκ −

(
1− e−s

s2

)
e−ζ
√

Sc(sκ+Kr) + A1 A2

}
, (34)

where

A2 = e−ζ
√

Sc(sκ+Kr) − e−ζ
√
( Pr

1+R )(sκ− H
Pr ), b1 =

1
1− κ

, b2 = κb1,

a1 =
1 + R

Pr
, a2 =

H
Pr

, a3 =
1
a1

, a4 = a3b1 − a3a2, a5 = a3a2b2,

b4 = a3 − Sc, b5 = a3a2 + ScKr, a6 =
b5

b4
, a7 = Sc(b1 + Kr),

a8 = ScKrb2, a9 = a4 − a7, a10 = a5 + a8, a11 =
a10

b9
,

a12 =
γ

1− κ
+ 1, a13 =

c
1− κ

+ b, a14 =
bκ

1− κ
+ b. (35)
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4. Solution for Caputo–Fabrizio Fractional Operator

The CF derivative and its Laplace transform [77] are given below:

CFDκ
τ N(ζ, τ) =

1
1− κ

∫ τ

0
exp
(
−κ(τ − ξ)

1− κ

)
N/(ξ) dξ, 0 < κ < 1, (36)

L
(

CFDκ
τ N(ζ, τ)

)
=

sL
(

N(ζ, τ)

)
− N(ζ, 0)

(1− κ)s + κ
. (37)

4.1. Temperature Field

The following CF derivative form of temperature Equation (13) is developed by using
Equation (36):

Pr
CFDκ

t θ(ζ, t) = (1 + R)
∂2θ

∂ζ2 + Hθ. (38)

By implementing the Laplace transform on Equation (38),

∂2θ̄c f (ζ, s)
∂ζ2 − Pr

1 + R

(
s

(1− κ)s + κ
− H

Pr

)
θ̄c f (ζ, s) = 0, (39)

the homogenous solution of above equation is

θ̄c f (ζ, s) = c1e
−ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)
+ c2e

ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)
, (40)

and c1 and c2 can be determined by employing Equations (15)–(17). The required solution
is given below:

θ̄c f (ζ, s) =
(

1− e−s

s2

)
e−ζ
√

B2 . (41)

4.2. Concentration Field

The following CF derivative form of concentration Equation (13) is developed by
using Equation (36):

CFDκ
t C(ζ, t) =

1
Sc

∂2C(ζ, t)
∂ζ2 + Sr

∂2θ(ζ, t)
∂ζ2 − KrC(ζ, t). (42)

By implementing the Laplace transform on Equation (42),(
s

(1− κ)s + κ
+ Kr

)
Cc f (ζ, s) =

1
Sc

∂2C̄c f (ζ, s)
∂ζ2 + Sr

∂2θ̄c f (ζ, s)
∂ζ2 , (43)

the homogenous solution of the above equation is

C̄h(ζ, s) = c1e
−ζ

√
Sc

(
s

(1−κ)s+κ
+Kr

)
+ c2e

ζ

√
Sc

(
s

(1−κ)s+κ
+Kr

)
, (44)
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the particular solution of Equation (44) is

C̄p(ζ, s) =−
ScSr(1− e−s)

{
(Pr − H + Hκ)s− Hκ

}
s2
{(

Pr − H(1− κ)− Sc(1 + R)− ScKr(1 + R)(1− κ)

)
s− (Hκ + ScKrκ(1 + R))

}

e
−ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)
, (45)

and the required solution is given below:

C̄c f (ζ, s) =
(

1− e−s

s2 − A3

)
e−ζ
√

B3 + A3e−ζ
√

B2 , (46)

where

A3 =
ScSr

((
Pr

1+R

(
1

1−κ −
H
Pr

))
s−

(
H

1+R

)(
κ

1−κ

))
(1− e−s)(

H
1+R + ScKr

)(
κ

1−κ

) ×

(( Pr
1+R

)(
1

1−κ −
H
Pr

)
− Sc

(
1

1−κ + Kr

)
s( H

1+R + ScKr)
(

κ
1−κ

) +
1
s2 − A4

)
, (47)

A4 =
1

( H
1+R + ScKr)

(
κ

1−κ

)(
s
(

Pr
1+R

)(
1

1−κ −
H
Pr

)
−
(

H
1+R + ScKr

)(
κ

1−κ

)) , (48)

B3 =
Sc

(
1

1−κ + Kr

)
s + ScKr

(
κ

1−κ

)
s + κ

1−κ

, (49)

B2 =

(
Pr

1+R

)(
1

1−κ −
H
Pr

)
s−

(
H

1+R

)(
κ

1−κ

)
s + κ

1−κ

. (50)

4.3. Velocity Field

The following CF derivative form of velocity Equation (12) is developed by using
Equation (36):

(1 + hγ1)(
CFDκ

t )w(ζ, t) =
(

1 + γCF
1 Dκ

t

)∂2w
∂ζ2 + Grθ + GmC−

(
M2 + h

)
w. (51)

By implementing the Laplace transform on Equation (51),(( c
1−κ + b

)
s + bκ

1−κ

s + κ
1−κ

)
w̄c f (ζ, s) =

(( γ1
1−κ + 1

)
s + κ

1−κ

s + κ
1−κ

)
∂2w̄c f (ζ, s)

∂ζ2

+ Gr θ̄c f (ζ, s) + GmC̄c f (ζ, s), (52)

the homogenous solution of the above equation is

w̄h(ζ, s) = c1e
−ζ

√√√√(1+ γ1
k1

)(
s

(1−κ)s+κ

)
+

(
M2+k1

)
+ c2e

ζ

√√√√(1+ γ1
k1

)(
s

(1−κ)s+κ

)
+

(
M2+k1

)
. (53)
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The particular solution of Equation (52) is

w̄p(ζ, s) =− Gr(1− e−s)(s + b2)
2

s2

{
(a4s− a5)(a12s + b2)− (a13s + a14)(s + b2)

} e
−ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)

− Gm(1− e−s)(s + b2)
2

s2

{
(a7s− a8)(a12s + b2)− (a13s + a14)(s + b2)

}×

ScSr

{
(Pr − H + Hκ)s− Hκ

}
s2
{(

Pr − H(1− κ)− Sc(1 + R)− ScKr(1 + R)(1− κ)

)
s− (Hκ + ScKrκ(1 + R))

}
(

1− e−s

s2

)
e
−ζ

√
Sc

(
s

(1−κ)s+κ
+Kr

)
− Gm(1− e−s)(s + b2)

2

s2

{
(a7s− a8)(a12s + b2)− (a13s + a14)(s + b2)

}

×
{

e
−ζ

√
Sc

(
s

(1−κ)s+κ
+Kr

)
− e
−ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)}
(54)

and the required solution is given below:

w̄c f (ζ, s) =
2
s3 e−ζ

√
B1 +

Gr(1− e−s)
(
s + κ

1−κ

)2

s2 A7

(
e−ζ
√

B1 − e−ζ
√

B2
)

+
Gm
(
s + κ

1−κ

)2

s2 A8

(
e−ζ
√

B1 − e−ζ
√

B3
)
+ A5

(
e−ζ
√

B1 − e−ζ
√

B2
)

(55)

where

A7 =

((
Pr

1 + R

)(
1

1− κ
− H

Pr

)
s−

(
H

1 + R

)(
κ

1− κ

))((
γ1

1 + κ
+ 1
)

s +
κ

1− κ

)
−
((

c
1− κ

+ b
)

s +
bκ

1− κ

)(
s +

κ

1− κ

)
, (56)

A8 =

(
Sc

(
1

1− κ
− Kr

)
s + ScKr

(
κ

1− κ

))((
γ1

1 + κ
+ 1
)

s +
κ

1− κ

)
−
((

c
1− κ

+ b
)

s +
bκ

1− κ

)(
s +

κ

1− κ

)
(57)

B1 =

( c
1−κ + b

)
s + bκ

1−κ(
γ1

1−κ + 1
)

s + κ
1−κ

(58)

5. Solution for Atangana–Baleanu Fractional Operator

The ABC derivative and its Laplace transform [78] are given below:

ABCDα
τ f (ξ, τ) =

1
1− α

∫ τ

0
Eα

(
−α(t− τ)α

1− α

)
∂ f (ξ, τ)

∂τ
dτ, (59)

L
(

ABCDκ
t f (ξ, τ)

)
=

sκL( f (ξ, τ))− sκ−1 f (ξ, 0)
(1− κ)sκ + κ

. (60)
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5.1. Temperature Field

The following ABC derivative form of temperature Equation (13) is developed by
using Equation (59):

Pr
ABCDκ

t θ(ζ, t) = (1 + R)
∂2θ

∂ζ2 + Hθ, (61)

The Laplace transform of Equation (61) is

∂2θ̄abc(ζ, s)
∂ζ2 − Pr

1 + R

(
sκ

(1− κ)sκ + κ
− H

Pr

)
θ̄abc(ζ, s) = 0, (62)

the homogenous solution of above equation is

θ̄abc(ζ, s) = c1e
−ζ

√
Pr

1+R

(
sκ

(1−κ)sκ+κ
− H

Pr

)
+ c2e

ζ

√
Pr

1+R

(
sκ

(1−κ)sκ+κ
− H

Pr

)
. (63)

and c1 and c2 can be determined by employing Equations (15)–(17). The required solution
is given below:

θ̄abc(ζ, s) =
(

1− e−s

s2

)
e−ζ
√

B2 . (64)

5.2. Concentration Field

The following ABC derivative form of concentration Equation (14) is developed by
using Equation (59):

ABCDκ
t C(ζ, t) =

1
Sc

∂2C(ζ, t)
∂ζ2 + Sr

∂2θ(ζ, t)
∂ζ2 − KrC(ζ, t). (65)

The Laplace transform of Equation (65) is(
sκ

(1− κ)sκ + κ
+ Kr

)
C̄abc(ζ, s) =

1
Sc

∂2C̄abc(ζ, s)
∂ζ2 + Sr

∂2θ̄abc(ζ, s)
∂ζ2 , (66)

and the homogenous solution of the above equation is

C̄h(ζ, s) = c1e
−ζ

√
Sc

(
sκ

(1−κ)sκ+κ
+Kr

)
+ c2e

ζ

√
Sc

(
sκ

(1−κ)sκ+κ
+Kr

)
. (67)

The particular solution of Equation (66) is

C̄p(ζ, s) =−
ScSr(1− e−s)

{
(Pr − H + Hκ)sκ − Hκ

}
s2
{(

Pr − H(1− κ)− Sc(1 + R)− ScKr(1 + R)(1− κ)

)
sκ − (Hκ + ScKrκ(1 + R))

}

e
−ζ

√
Pr

1+R

(
sκ

(1−κ)sκ+κ
− H

Pr

)
, (68)

and the required solution is given below:

C̄abc(ζ, s) =
(

1− e−s

s2 − A5

)
e−ζ
√

B6 + A5e−ζ
√

B5 , (69)

where
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A5 =
ScSr

((
Pr

1+R

(
1

1−κ −
H
Pr

))
sκ −

(
H

1+R

)(
κ

1−κ

))
(1− e−s)(

H
1+R + ScKr

)(
κ

1−κ

) ×

(( Pr
1+R

)(
1

1−κ −
H
Pr

)
− Sc

(
1

1−κ + Kr

)
sκ( H

1+R + ScKr)
(

κ
1−κ

) +
1
s2 − A6

)
, (70)

A6 =
1

( H
1+R + ScKr)

(
κ

1−κ

)(
sκ
(

Pr
1+R

)(
1

1−κ −
H
Pr

)
−
(

H
1+R + ScKr

)(
κ

1−κ

)) , (71)

B6 =
Sc

(
1

1−κ + Kr

)
sκ + ScKr

(
κ

1−κ

)
sκ + κ

1−κ

, (72)

B5 =

(
Pr

1+R

)(
1

1−κ −
H
Pr

)
sκ −

(
H

1+R

)(
κ

1−κ

)
sκ + κ

1−κ

. (73)

5.3. Velocity Field

The following ABC derivative form of velocity Equation (12) is developed by using
Equation (59):

(1 + hγ1)(
ABCDκ

t )w(ζ, t) =
(

1 + γABC
1 Dκ

t

)∂2w
∂ζ2 + Grθ + GmC−

(
M2 + h

)
w. (74)

The Laplace transform of Equation (74) is(( c
1−κ + b

)
sκ + bκ

1−κ

sκ + κ
1−κ

)
w̄abc(ζ, s) =

(( γ1
1−κ + 1

)
sκ + κ

1−κ

sκ + κ
1−κ

)
∂2w̄abc(ζ, s)

∂ζ2

+ Gr θ̄abc(ζ, s) + GmC̄abc(ζ, s), (75)

the homogenous solution of the above equation is

w̄h(ζ, s) = c1e
−ζ

√√√√(1+ γ1
k1

)(
s

(1−κ)s+κ

)
+

(
M2+k1

)
+ c2e

ζ

√√√√(1+ γ1
k1

)(
s

(1−κ)s+κ

)
+

(
M2+k1

)
, (76)

the particular solution of Equation (75) is

w̄p(ζ, s) =− Gr(1− e−s)(s + b2)
2

s2

{
(a4s− a5)(a12s + b2)− (a13s + a14)(s + b2)

} e
−ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)

− Gm(1− e−s)(s + b2)
2

s2

{
(a7s− a8)(a12s + b2)− (a13s + a14)(s + b2)

}×

ScSr

{
(Pr − H + Hκ)s− Hκ

}
s2
{(

Pr − H(1− κ)− Sc(1 + R)− ScKr(1 + R)(1− κ)

)
s− (Hκ + ScKrκ(1 + R))

}
(

1− e−s

s2

)
e
−ζ

√
Sc

(
s

(1−κ)s+κ
+Kr

)
− Gm(1− e−s)(s + b2)

2

s2

{
(a7s− a8)(a12s + b2)− (a13s + a14)(s + b2)

}

×
{

e
−ζ

√
Sc

(
s

(1−κ)s+κ
+Kr

)
− e
−ζ

√
Pr

1+R

(
s

(1−κ)s+κ
− H

Pr

)}
(77)
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and the required solution is given below

w̄abc(ζ, s) =
2
s3 e−ζ

√
B4 +

Gr(1− e−s)
(
sκ + κ

1−κ

)2

s2 A9

(
e−ζ
√

B4 − e−ζ
√

B5
)

+
Gm
(
sκ + κ

1−κ

)2

s2 A10

(
e−ζ
√

B4 − e−ζ
√

B6
)
+ A6

(
e−ζ
√

B4 − e−ζ
√

B5
)

. (78)

where

A9 =

((
Pr

1 + R

)(
1

1− κ
− H

Pr

)
sκ −

(
H

1 + R

)(
κ

1− κ

))((
γ1

1 + κ
+ 1
)

sκ +
κ

1− κ

)
−
((

c
1− κ

+ b
)

sκ +
bκ

1− κ

)(
sκ +

κ

1− κ

)
, (79)

A10 =

(
Sc

(
1

1− κ
− Kr

)
sκ + ScKr

(
κ

1− κ

))((
γ1

1 + κ
+ 1
)

sκ +
κ

1− κ

)
−
((

c
1− κ

+ b
)

sκ +
bκ

1− κ

)(
sκ +

κ

1− κ

)
, (80)

B4 =

( c
1−κ + b

)
sκ + bκ

1−κ(
γ1

1−κ + 1
)

sκ + κ
1−κ

. (81)

As κ → 1 in Equations (23), (41) and (64) for temperature, Equations (28), (46) and (69)
for concentration and Equations (34), (55) and (78) for velocity, we recuperate results for
temperature, concentration and velocity profile for integer order shown in Kataria and
Hari (Equations (13)–(15)) [75], respectively.

Stehfest’s formula [79] is one of the simplest algorithms we use to sort out the inverse
Laplace transform.

w(r, t) =
e4.7

t

[
1
2

w̄
(

r,
4.7
t

)
+ Re

{
N1

∑
k=1

(−1)kw̄
(

r,
4.7 + kπi

t

)}]
,

where Re(.) is the real part, i is the imaginary unit and N1 is a natural number.

6. Results and Discussion

This article shows the effect of heat and mass transfer in MHD SGF past a vertical
plate. Three fractional models C, CF and ABC for flow, energy and mass equations are
presented. Fractional derivatives and Laplace transform are applied to examine solutions
for non-dimension fractional models. The limiting cases of fractional models are discussed.
The impact of several parameters on momentum, heat and mass profiles are compared and
studied by graphs.

Figure 3 highlights the behavior of momentum curves for κ. We see the velocity
accelerates by raising κ. The reason is by an increment in κ, the thickness of the boundary
layer will enhance, so the velocity increases. Moreover, velocity is highest for the ABC.

Figure 4 reveals the deviation in velocity distribution under the MHD condition. As M
increases, the frictional force rises and hence fluid velocity decreases. For different values
of M, an increase in Lorentz force effectively decreases flow accelerating forces; as a result,
velocity is decelerated. Fluid velocity is maximum, moderate and minimum for ABC, CF
and C models, respectively.

Figure 5 analyzes the influence of Gr on momentum profile. Physically, large values
respond to significant buoyancy force as it is related to strong convection currents. As Gr
increases, all buoyancy forces are dominant frictional forces and the hence momentum
profile becomes amplified.

To highlight the velocity behavior for Gm, we present Figure 6. Physically, the incre-
ment in buoyancy forces reduces the viscous force that leads to augmenting the flow raise
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with higher values of Gm. The velocity curves show maximum behavior for the ABC model
as compared to the other two models.

Figure 3. Velocity curves corresponding to C, CF and ABC with variable κ where Pr = 7, Sc = 0.66, Gr = 10, Gm = 5, H = 3,
R = 5, Sr = 3, Kr = 2, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.

Figure 4. Velocity curves corresponding to C, CF and ABC with variable M where Pr = 7, Sc = 0.66, Gr = 10, Gm = 5,
H = 3, R = 5, Sr = 3, Kr = 2, κ = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.

Figure 5. Velocity curves corresponding to C, CF and ABC with variable Gr where Pr = 7, Sc = 0.66, κ = 0.5, Gm = 5,
H = 3, R = 5, Sr = 3, Kr = 2, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.
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Figure 6. Velocity curves corresponding to C, CF and ABC with variable Gm where Pr = 7, Sc = 0.66, κ = 0.5, Gr = 10,
H = 3, R = 5, Sr = 3, Kr = 2, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.

The significant impact of Kr on momentum and mass profiles is shown in Figure 7.
Both the fluid flow and the concentration decay with the rise in the Kr. The presence of
chemical reaction reduces the buoyancy effects, which decreases and hence weakens the
flow field. Clearly, the ABC model shows the highest velocity and concentration.

Figure 7. Velocity and concentration curves corresponding to C, CF and ABC with variable Kr where Pr = 7, Sc = 0.66,
κ = 0.5, Gm = 5, H = 3, R = 5, Sr = 3, κ = 0.5, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.
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Figure 8 describes the behavior of momentum and mass profile with increasing values
of Sr. As the velocity profile increases, the momentum boundary layer becomes thicker.
Physically, large values of Sr respond with a significant increase in mass buoyancy force;
as a result, momentum and mass profile are raised. The effect is greatest for the ABC
fractional MHD SGF model.

Figure 8. Velocity and concentration curves corresponding to C, CF and ABC with variable Sr where Pr = 7, Sc = 0.66,
κ = 0.5, Gm = 5, H = 3, R = 5, Gr = 10, Kr = 2, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.

By raising thermal radiation parameter, momentum and heat profiles accelerate as
shown in Figure 9. As the thermal radiation parameter increases, heat generation through
flow increases, and as a result, bonds between fluid particles split which causes fluid to
flow fast.

Figure 10 depicts velocity curves corresponding to C, CF and ABC for κ = 0.6. Clearly,
the ABC model shows significant behavior as compared to the other two curves. The reason
is that Atangana and Baleanu propounded an advanced fractional operator by utilizing the
generalized Mittag–Leffler function as a non-local and non-singular kernel. Comparison of
Nusselt number with ref. [72] at Pr = 0.71 is given in Table 1.
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Figure 9. Velocity and temperature curves corresponding to C, CF and ABC with variable R where Pr = 7, Sc = 0.66,
κ = 0.5, Gm = 5, H = 3, Sr = 3, Gr = 10, Kr = 2, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.

Figure 10. Velocity curves corresponding to fractional models with κ = 0.6 and Pr = 7, Sc = 0.66,
κ = 0.5, Gm = 5, H = 3, Sr = 3, Gr = 10, Kr = 2, M = 0.5, γ1 = 0.1, h = 0.5, c = 1.05 and b = 0.75.
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Table 1. Comparison of Nusselt number with ref. [72] at Pr = 0.71.

R φ t Nu (Ref. [75]) for Ramped Temp Nu (C) for Ramped Temp Nu (CF) for Ramped Temp Nu (ABC) for Ramped Temp

2 3 0.3 0.3837 0.384 0.385 0.386
2 3 0.5 0.5583 0.557 0.558 0.559
2 3 0.7 0.7289 0.727 0.728 0.729
2 3 0.5 0.4498 0.447 0.448 0.449
2 3 0.5 0.5583 0.557 0.558 0.559
2 5 0.5 0.6521 0.653 0.654 0.655
2 3 0.5 0.5583 0.557 0.558 0.559
4 3 0.5 0.4324 0.433 0.434 0.435
6 3 0.5 0.3655 0.366 0.367 0.368

7. Conclusions

This article is about the study of SGF with radiation and chemical reaction. Three
fractional operators are applied to establish momentum, heat and mass profiles. Laplace
transform and Stehfest’s formula are utilized for the solutions of the mentioned equa-
tions. Several graphs are presented to illustrate the impact of incipient parameters for the
solutions. Some main results are given below:

• Velocity curves are increasing for greater values of κ, Gr and Gm.
• Fluid flow descends for Pr and M.
• Velocity and concentration curves show a decreasing behavior under the influence

of Kr.
• Fluid velocity accelerates under the impact of Sr and R.
• Heat and mass profiles for Sr and R are show an increasing behavior.
• Curves show prominent behavior for ABC among C, CF and ABC.

Extending the work in this article as suggested below will be an interesting endeavor.
We have studied MHD SGF in the presence of ramped concentration and temperature

with thermodiffusion. This study can be further carried out by considering more complex
OBF models. Additionally, this study can be carried out by a rotational fluid model. More-
over, the present work can be extended by selecting different non-dimensional parameters
and quantities.
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Nomenclature

Symbol Quantity
w Velocity of the fluid
θ Temperature of the fluid
C Concentration of the fluid
g Acceleration due to gravity
k Thermal conductivity of the fluid
k1 Permeability parameter
Kr Parameter of chemical reaction
M Parameter of magnetic field
Q0 Coefficient of heat absorption/generation
Pr Prandtl number
Sc Schmidt number
Gr Thermal Grashof number
Gm Mass Grashof number
R Parameter of thermal radiation
Sr Soret number
DM Coefficient of mass diffusion
DT Coefficient of thermal diffusion
θw Temperature of fluid at the plate
θ∞ Temperature of fluid far away from the plate
Cw Concentration level on the plate
C∞ Concentration of the fluid far away from the plate
Cp Specific heat at constant temperature
s Laplace transforms parameter
ρ Fluid density
κ Fractional parameter
γ One of the material modules of second grade fluids
γ1 Second grade parameter
µ Dynamic viscosity
υ Kinematic viscosity
βT Volumetric coefficient of thermal expansion
βC Volumetric coefficient of expansion for mass concentration
Φ Porosity
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