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Abstract: In this paper, fractal calculus, which is called Fα-calculus, is reviewed. Fractal calculus
is implemented on fractal interpolation functions and Weierstrass functions, which may be non-
differentiable and non-integrable in the sense of ordinary calculus. Graphical representations of
fractal calculus of fractal interpolation functions and Weierstrass functions are presented.
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1. Introduction

It is well known that many phenomena in nature are modeled using fractals [1–8].
The geometrical structures and properties of irregular objects were narrated by Mandelbrot.
He termed this as fractal, and it plays a vital role in nonlinear analysis [9]. A fractal is
constructed as a non-empty compact invariant set, which is a unique fixed point of a
given set of contraction mapping in a complete metric space. This unique fixed point is, in
generally, called a deterministic fractal or attractor of the iterated function system (IFS).

The classical interpolation theory investigates the existence and reconstruction of a
continuous function that fits the prescribed data. In general, the traditional interpolation
methods generate smooth or piecewise differentiable functions despite given data that is
irregular. Along these lines, existing non-fractal methods are not appropriate to describe
naturally occurring functions. To conquer this circumstance, Barnsley constructed an inter-
polation function with the notion of an iterated function system, which is an improvement
and generalization over the interpolation methods [10].

The concept of a fractal interpolation function (FIF) was developed on this iterated
function system, which initiated a new research field in interpolation/approximation
theory [11–13]. Due to the modern utilization of fractal interpolation functions in approxi-
mating non-smooth functions, extensive research has been established in this realm—for
instance, new types of FIF are constructed by choosing diverse iterated function systems
(see [14–18]).

In addition to bringing the best approximation to the given data, researchers usually
demand that interpolation or approximation methods ought to speak to the physical reality
beyond what many would possibly consider. Fractal interpolation functions produce com-
plicated mathematical structures/naturally occurring functions with a simple recursive
procedure, and thus the fractal approach provides flexibility and versatility in approxima-
tion. Though the approximation of a continuous function regarding a polynomial is given
by the Weierstrass theorem, approximating a non-smooth function is significant, as objects
in the universe, in general, abound in the class of everywhere continuous and nowhere
differentiable functions.

Fractal Fract. 2021, 5, 157. https://doi.org/10.3390/fractalfract5040157 https://www.mdpi.com/journal/fractalfract

https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-5093-2805
https://orcid.org/0000-0002-5008-0163
https://doi.org/10.3390/fractalfract5040157
https://doi.org/10.3390/fractalfract5040157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract5040157
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract5040157?type=check_update&version=2


Fractal Fract. 2021, 5, 157 2 of 15

Hence, numerous researchers have given more consideration as of late to the problem
of how to depict non-smooth functions through the fractal interpolation function from
various viewpoints. Moreover, approaches have been established to analyze the non-
smooth functions with various aspects.

A general framework between fractional calculus and fractal functions by giving the
relation between the fractal dimension of random function and the order of fractional calcu-
lus is narrated in [19–22]. A linear connection between the order of the fractional calculus
and the dimensions of the graph of the Weierstrass functions was investigated [23]. Further,
the fractional integral of a linear fractal interpolation function and its box dimension were
explored in [24].

Similarly, there have been continuous efforts portrayed to analyze the fractal dimen-
sions and order of fractionals [25–29]. Anomalous diffusion was studied by fractional
diffusion equations that lead to power low mean square displacement [30,31]. The Lévy-
walk model was used to generate anomalously fast diffusion and a finite velocity of a ran-
dom walker [32,33]. Analysis on fractals was formulated using measure theory, Brownian
motion, harmonic analysis, fractional spaces, time scale, and non-standard analysis [34–44].

Although every one of these topics has expanded our comprehension and produced
numerous excellent associations, an immediate and straightforward procedure including
fractional order operators on fractals was only recently investigated. Despite the fact that
the measured theoretical approach is exquisite, Riemann integration-like procedures have
their own place. They are more straightforward, constructive, and advantageous according
to algorithmic perspective. Occasionally, numerical calculation algorithms on Lebesgue
integrals are put together more regularly with respect to Riemann sums.

Hence, A.D. Gangal and coworkers tuned calculus to measure the theoretical approach
and systematically explained a series of calculus on fractals involving integrals and deriva-
tives of appropriate orders in between 0 and 1 (refer to [45–47]). This has been generalized
to different fractal spaces and applied in physics and non-equilibrium statistical mechan-
ics [48–51]. In this paper, the fractal integral is applied on the fractal interpolation function;
hence, the function must be continuous. In order to make a fractal function continuous, it
must obey the joint conditions even though these conditions are a particular case of the
so-called compatibility conditions in [12,52,53].

The present work is organized as follows: The mathematical background of fractal
calculus is elaborated in Section 2. The fractal calculus of Weierstrass functions is presented
in Section 2.1. The theoretical background of fractal interpolation functions and their
basic construction is established in Section 3. In Section 4, the fractal calculus of a fractal
interpolation function is investigated, and examples with graphical representation are
presented. Section 5 is devoted to our conclusions.

2. Fractal Calculus

In this section, we briefly recall the requisite general material of fractal calculus. For a
detailed exposition, the reader may refer to [45–51]. The generalization of fractal curves
has been formalized. Continuity is not an intrinsic characteristic of fractals. However, in
the method of interpolation, as is defined in the literature, the functions are required to
be continuous. The key to obtaining continuity is the so-called joint conditions. These
conditions are a particular case of the so-called compatibility conditions, which were
defined in [12] and developed in [52]. There are two methods to obtain fractals functions
from real data: fractal interpolation and the fractal regression [53].

Fractal curves are often defined as images of continuous functions f from R to Rn,
which are fractals. A fractal curve F ⊂ Rn is said to be parametrizable if there exists a
function w : R → F, which is continuous, one-to-one, and onto. A subdivision P[a,b] (or
simply P) of the interval [a, b] is a finite set of points {a = x0, x1, . . . , xn = b}, xi < xi+1.
Any interval of the form [xi, xi+1] is called a component of the subdivision P.
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Definition 1. Let F be a fractal curve and P[a,b] be a subdivision. The mass function is defined
as [46]

γα(F, a, b) = lim
δ→0

inf
{P[a,b] :|P|≤δ}

n−1

∑
i=1

|w(ti)− w(ti+1)|α
Γ(α + 1)

,

where |.| is applied to images of w, 1 < α ≤ 2, and the range of w is Rn, then this would be the
Euclidean metric on Rn and

|P| = max
0≤i≤n−1

(ti+1 − ti)

for a subdivision P.

Definition 2. The staircase functions for the fractal curve are defined by [46]

Sα
F(t) =

{
γα(F, p0, t), t ≥ p0,
−γα(F, t, p0), t < p0,

where p0 ∈ [a, b] is an arbitrary and fixed point.

Definition 3. The γ-dimension of the fractal curve F is defined as [46]

dimγ(F) = inf{α : γα(F, a, b) = 0}
= sup{α : γα(F, a, b) = ∞}.

Definition 4. The Fα-derivative of a function f at θ ∈ F is defined as [46]

dα
F f (θ) = F− lim

θ′→θ

f (θ′)− f (θ)
J(θ′)− J(θ)

,

where J(θ) = Sα
F(w

−1(θ)), θ ∈ F and if the limit exists.

A segment C(t1, t2) of the fractal curve is defined as [46]

C(t1, t2) = {w(t′) : t′ ∈ [t1, t2]}.

Definition 5. The Fα-integral of the function f is defined as [46]∫
C(a,b)

f (θ)dα
Fθ =

∫
C(a,b)

f (θ)dα
Fθ =

∫
C(a,b)

f (θ)dα
Fθ.

2.1. Fractal Calculus of the Weierstrass Function

For example, w : R → R2 is defined by w(t) = (t, Ws
λ(t)) where Ws

λ(t) is the Weier-
strass function, which is defined by

Ws
λ(t) =

∞

∑
k=1

λ(s−2)k sin(λkt) (1)

where λ > 1 and 1 < s < 2.
The fractal derivative of Weierstrass functions using conjugacy of fractal calculus with

ordinary calculus is given by [47]:

Dα
FWs

λ(t) = 1.7411 cos(2Sα
F(t)) + 3.03143 cos(4Sα

F(t)) + 5.27803 cos(8Sα
F(t))

+ 9.18959 cos(16Sα
F(t)) + 16. cos(32Sα

F(t)) + 27.8576 cos(64Sα
F(t))

+ 48.5029 cos(28Sα
F(t)) + 84.4485 cos(256Sα

F(t)) + 147.033 cos(512Sα
F(t))

+ 256 cos(1024Sα
F(t)) + · · ·

(2)
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The fractal integral of a Weierstrass function is given by∫
Ws

λ(t)d
α
F(t) = −0.870551 cos(Sα

F(t))
2 − 0.189465 cos(4Sα

F(t))− 0.0824692 cos(8Sα
F(t))

− 0.0358968 cos(16Sα
F(t))0.015625 cos(32Sα

F(t))− 0.00680118 cos(64Sα
F(t))

− 0.00296038 cos(128Sα
F(t))− 0.00128858 cos(256Sα

F(t))

− 0.000560888 cos(512Sα
F(t))− 0.000244141 cos(1024Sα

F(t))− · · ·

(3)

Figure 1 sketches the graph of the Weierstrass function, and Figures 2 and 3 elucidate
the fractal derivative and fractal integral of the Weierstrass function.
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Figure 1. A Weierstrass function with λ = 2, s = 1.8.
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Figure 2. Fractal derivative of order α = 1.5 of the Weierstrass function.
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Figure 3. Fractal integral of order α = 1.5 of the Weierstrass function.

3. Fractal Interpolation Functions

This section provides the theoretical background of the fractal interpolation functions
and establishes their basic construction, which is required for the subsequent sections. For
more details, readers are directed to [10–14,52].

3.1. The Original Formulation

For N ∈ N, let NN denote the subset {1, 2, . . . , N} of N. Let a set of data points
{(xi, yi) ∈ R2 : i ∈ NN} satisfying x1 < x2 < · · · < xN , N > 2, be given. Set I = [x1, xN ],
Ii = [xi, xi+1] for i ∈ NN−1. Let Li : I → Ii, i ∈ NN−1 be contraction homeomorphisms
satisfying the endpoint condition

Li(x1) = xi, Li(xN) = xi+1. (4)

Let 0 < ri < 1, i ∈ NN−1, and X := I×R. Let N− 1 continuous mappings Ri : X → R
such that

Ri(x1, y1) = yi, Ri(xN , yN) = yi+1, |Ri(x, y)− Ri(x, y∗)| ≤ ri|y− y∗|, (5)

where (x, y), (x, y∗) ∈ X. Define functions fi : X → Ii × R, fi(x, y) =
(

Li(x), Ri(x, y)
)

∀ i ∈ NN−1. It is known that there exists a metric on R2, equivalent to the Euclidean metric,
with respect to which fi, i ∈ NN−1, are contractions. The collection {X; fi : i ∈ NN−1} is
called an Iterated Function System (IFS). Associated with the IFS {X; fi : i ∈ NN−1}, there
is a set-valued Hutchinson map F : H(X)→ H(X) defined by

F(B) =
N−1⋃
i=1

fi(B) (6)

for B ∈ H(X), where H(X) is the set of all nonempty compact subsets of X endowed
with the Hausdorff metric Hd. The Hausdorff metric Hd completes H(X). Further, F is
a contraction map on the complete metric space (H(X), Hd). By the Banach Fixed Point
Theorem, there exists a unique set G ∈ H(X) such that F(G) = G. This set G is called the
attractor corresponding to the IFS {X; fi : i ∈ NN−1}. The attractor G is the graph of a
continuous function g : I → R, which obeys g(xi) = yi for i ∈ NN . The function g whose
graph is the attractor of an IFS is called a Fractal Interpolation Function (FIF) corresponding
to the IFS {X; wi : i ∈ NN−1}.

The fractal interpolation function g, which is obtained as the fixed point of the Read–
Bajraktarević (RB) operator T on a complete metric space (G, δ), is defined as

(Th)(x) = Ri

(
L−1

i (x), h ◦ L−1
i (x)

)
∀ x ∈ Ii, i ∈ NN−1, (7)
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where G := {h : I → R | h is continuous on I, h(x1) = y1, h(xN) = yN} equipped with
the metric δ(h, h∗) = max{|h(x) − h∗(x)| : x ∈ I} for h, h∗ ∈ G. It can be seen that T
is a contraction mapping on (G, δ) with a contraction factor r = max{ri : i ∈ NN−1} < 1.
The fixed point of T is the FIF g corresponding to the IFS. Therefore, g satisfies the func-
tional equation:

g(x) = Ri

(
L−1

i (x), g ◦ L−1
i (x)

)
, x ∈ Ii, i ∈ NN−1. (8)

3.2. System of Iterative Functional Equations

This type of functions may also be obtained as solutions of a system of iterative
functional equations (see e.g., [11–13,52]). Let X and Y be non-empty sets and p ≥ 2 be an
integer. Consider a system of functional equations

ϕ
(

f j(x)
)
= Fj(x, ϕ(x)), x ∈ Xj, j = 0, 1, . . . p− 1, (9)

where X and Y are non-empty sets, Xj ⊂ X, f j : Xj → X, Fj : Xj × Y → Y are given

functions, and ϕ : ∪p−1
j=0 Xj = X → Y is the unknown function. It is proven in [11] that the

solutions of (9) have a fractal structure.
We consider the affine case

ϕ

(
x + j

p

)
= aj ϕ(x) + bjx + cj, x ∈ [0, 1], 0 ≤ j ≤ p− 1, (10)

where aj, bj, cj ∈ R are the parameters of the model with
∣∣aj
∣∣ < 1, ∀0 ≤ j ≤ p− 1.

Parameters aj are the scaling factors or fractal coefficients.
The construction of function solutions of (10) is based on the p-expansion of numbers

x ∈ [0, 1] (see [12,13,52]. If the corresponding compatibility conditions (see [12,13,52]) are
verified, the function ϕ solution of (10) is given by

ϕ

(
∞

∑
n=1

ξn

pn

)
=

∞

∑
n=1

(
n−1

∏
k=1

aξk

)(
bξn

∞

∑
m=1

ξm+n

pm + cξn

)
, (11)

where 0 ≤ ξn ≤ p− 1 are integers.

4. Fractal Calculus on Fractal Interpolation Function
4.1. With Cantor Like Sets Domains

The first example of a fractal F in the theory of fractal calculus is the (ternary) Cantor
set. The Cantor set consists of all x ∈ [0, 1] that do not have the digit 1 in their p-expansion.
The images of fractal curves ϕ solutions of (10) are naturally adapted to a domain given by
this Cantor set. In fact, the images are obtained from (11) when ξn 6= 1, ∀n ∈ N. Another
Cantor type set may be defined as domains for systems (10), where all elements would be
given with one or more missing digits (fixed digits) from their p-expansion.

Definition 6. Let p ≥ 2 be an integer and V ( {0, 1, . . . , p− 1}, such that #V = v < p− 1. A
Cantor like F is a fractal set defined by

F =

{
∞

∑
n=1

ξn

pn : ξn ∈ {0, 1, . . . , p− 1} \V

}
. (12)

In this setting, the fractal calculus fits very well and the natural subdivisions on
Cantor-like set F are as follows:

Definition 7. A subdivision P[0,1] is a finite set of points {xi = i/n, 0 ≤ i ≤ n}.
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Now, xi+1− xi = p−k, where k ∈ N. The definitions of fractal calculus become simpler
in the case of a Cantor-like set F.

Definition 8. For a Cantor-like set F and a subdivision P[0,1], with #P[0,1] = n = pk + 1,∣∣∣P[0,1]

∣∣∣ = p−k

σα[F, P] =
n−1

∑
i=0

nα−1

Γ(α + 1)
θ

(
F,
[

i
n

,
i + 1

n

])
,

where for a closed interval I,

θ(F, I) =

{
1 if F ∩ I = ∅
0 otherwise.

Definition 9. Given δ > 0, the coarse grained mass γα
δ (F, 0, 1) of F ∩ [0, 1] is given by

γα
δ (F, 0, 1) = inf

{P[0,1] :|P[0,1]|=p−k≤δ}
σα[F, P]

= inf
{P[0,1] :|P[0,1]|=p−k≤δ}

n−1

∑
i=0

nα−1

Γ(α + 1)
θ

(
F,
[

i
n

,
i + 1

n

])
.

The ternary Cantor set C has γ-dimension as follows,

dimγ C =
ln 2
ln 3

.

Similarly, the γ-dimension of a Cantor-like set F is given by

dimγ F =
ln(p− v)

ln p
.

In these cases, the γ-dimension is equal to both the box and Hausdorff dimensions
(see [46]).

4.2. The Fα-Integral

We compute the Fα-integral of ϕ solution of (10) with a fractal domain. Before we
compute the integral of a FIF, we present an affine change of variables in the Fα-integral.

Theorem 1. Let ϕ be the solution of (10) with a domain that is a Cantor-like set F as defined
in (12). Then, ∫ 1

0
ϕ

(
x + j

p

)
dα

Fx = pα
∫ j+1

p

j
p

ϕ(x)dα
Fx, (13)

where α = dimγ F and let p ≥ 2 be an integer.

Proof. The goal is to transform the integral on ϕ
(

x+j
p

)
, by an integral on ϕ(x). An Fα-

integral may be computed either as∫ 1

0
ϕ(x)dα

Fx = inf
P[0,1]

Uα[ϕ, F, P],

or ∫ 1

0
ϕ(x)dα

Fx = sup
P[0,1]

Lα[ϕ, F, P],
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where

Uα[ϕ, F, P] =
n−1

∑
i=0

sup
x∈F∩[ i

n , i+1
n ]

ϕ(x)
(

Sα
F

(
i + 1

n

)
− Sα

F

(
i
n

))
,

and

Lα[ϕ, F, P] =
n−1

∑
i=0

inf
x∈F∩[ i

n , i+1
n ]

ϕ(x)
(

Sα
F

(
i + 1

n

)
− Sα

F

(
i
n

))
.

We work with the Uα[ϕ, F, P]. We have

∫ 1

0
ϕ

(
x + j

p

)
dα

Fx = inf
P[0,1]

n−1

∑
i=0

sup
x∈F∩[ i

n , i+1
n ]

ϕ

(
x + j

p

)(
Sα

F

(
i + 1

n

)
− Sα

F

(
i
n

))

= inf
P[0,1]

n−1

∑
i=0

sup
x∈F∩

[
j
p +

i
pn , j

p +
i+1
pn

]ϕ(x)
(

γα

(
F, 0,

i + 1
n

)
− γα

(
F, 0,

i
n

))
.

By the properties of γα,

Sα
F

(
i + 1

n

)
− Sα

F

(
i
n

)
= γα

(
F, 0,

i + 1
n

)
− γα

(
F, 0,

i
n

)
= pαγα

(
1
p

F, 0,
i + 1
pn

)
− pαγα

(
1
p

F, 0,
i

pn

)
= pα

[
γα

(
1
p

F +
j
p

,
j
p

,
j
p
+

i + 1
pn

)
− γα

(
1
p

F +
j
p

,
j
p

,
j
p
+

i
pn

)]
= pα

[
γα

(
F,

j
p

,
j
p
+

i + 1
pn

)
− γα

(
F,

j
p

,
j
p
+

i
pn

)]
= pα

[
Sα

F

(
j
p
+

i + 1
pn

)
− Sα

F

(
j
p
+

i
pn

)]
.

Then,

∫ 1

0
ϕ

(
x + j

p

)
dα

Fx = pα inf
P[ j

p , j+1
p

]
n−1

∑
i=0

sup
x∈F∩

[
j
p +

i
pn , j

p +
i+1
pn

]ϕ(x)
(

Sα
F

(
j
p
+

i + 1
pn

)
− Sα

F

(
j
p
+

i
pn

))

= pα
∫ j+1

p

j
p

ϕ(x)dα
Fx.

Theorem 2. Let ϕ be the solution of (10) with a domain that is a Cantor-like set F as defined
in (12). Then, integral between 0 and 1 of (ϕ(x + j)/p) is equal to pα integral (ϕ(x)

∫ 1

0
ϕ(x)dα

Fx =

p−1

∑
j=0,j 6=V

bj

∫ 1

0
xdα

Fx + Sα
F(1)

p−1

∑
j=0,j 6=V

cj

pα −
p−1

∑
j=0,j 6=V

aj

(14)

where α = dimγ F and aj, bj, cj are in R and |aj| < 1.
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Proof. By definition of ϕ, for each j ∈ {0, 1, . . . , p− 1} \V,

aj

∫ 1

0
ϕ(x)dα

Fx =
∫ 1

0
ϕ

(
x + j

p

)
dα

Fx− bj

∫ 1

0
xdα

Fx− cj

∫ 1

0
1dα

Fx. (15)

Using the change of variables (13), summing(15) for all j ∈ {0, 1, . . . , p− 1} \V, and
solving the resulting equation in order to

∫ 1
0 ϕ(x)dα

Fx, we obtain the desired conclusion.

Remark 1. Calculation of
∫ 1

0 xdα
Fx in (14) is done in [47] for the ternary Cantor set. For a general

Cantor-like set F, the calculation is similar.

Since the Fα-integral is a generalization of the Riemann integral, the integral of ϕ for
the domain [0, 1] is the following.

Corollary 1. Let ϕ be the solution of (10) with domain [0, 1]. Then,

∫ 1

0
ϕ(x)dx =

p−1
∑

j=0

( bj
2 + cj

)
p−

p−1
∑

j=0
aj

. (16)

4.3. The Fα-Integral as a FIF

This section presents the fractal calculus of the fractal interpolation function defined
by the mappings:

Li(x) = aix + bi, Ri(x, y) = riy + qi(x), i ∈ NN−1. (17)

Here, −1 < ri < 1 and qi : I → R are suitable continuous functions satisfying (5). The
parameter ri is called a vertical scaling factor of the transformation fi, and α = (r1, r2, . . . , rN−1)
is the scale vector corresponding to the IFS. Further, F is a fractal curve in Definition 1.

Theorem 3. If g is the fractal interpolation function associated with {(Li(x), Ri(x, y)) : i ∈ NN−1}
where Ri is given in Equation (17) and, for a given ỹ1, we define g̃(x) = ỹ1 +

∫ x
x1

Sα
F(g(t))dα

Ft.
Then, g̃ is the fractal interpolation function associated with {(Li(x), R̃i(x, y)) : i ∈ NN−1}, where,
for i ∈ NN−1,

R̃i = airiy + q̃i(x),

ai =
xi+1 − xi
xN − x1

,

q̃i(x) = ỹi − airi ỹ1 + ai

∫ x

x1

Sα
F(qi(t))dα

Ft,

ỹi+1 = ỹ1 +
i

∑
k=1

ak

[
rk(ỹN − ỹ1) +

∫ xN

x1

Sα
F(qi(t))dα

Ft
]

,

ỹN = ỹ1 +
∑N−1

k=1 ak
∫ xN

x1
Sα

F(qk(t))dα
Ft

1−∑N−1
k=1 akrk

.

Proof. Define the fractal integral of g at the initial point as

g̃(x) = ỹ1 +
∫ x

x1

Sα
F(g(t))dα

Ft,



Fractal Fract. 2021, 5, 157 10 of 15

and then

g̃(Li(x)) = ỹ1 +
∫ xi

x1

Sα
F(g(t))dα

Ft +
∫ Li(x)

xi

Sα
F(g(t))dα

Ft

= ỹi +
∫ Li(x)

xi

Sα
F(g(t))dα

Ft.

We apply a change of variable on t by Li(t) in the second term. Sα
F is linear, and, from

Equation (17), one can find that

g̃(Li(x)) = ỹi + ai

∫ x

x1

Sα
F(rig(t) + qi(t))dα

Ft

= ỹi + airi

∫ x

x1

Sα
F(g(t))dα

Ft + ai

∫ x

x1

Sα
F(qi(t))dα

Ft

= ỹi + airi(g̃(x)− ỹ1) + ai

∫ x

x1

Sα
F(qi(x))dα

Fx

= airi g̃(x) + q̃i(x),

where q̃i(x) = ỹi − airi ỹ1 + ai
∫ x

x1
Sα

F(qi(t))dα
Ft. Hence, g̃ is also a fractal interpolation func-

tion generated by the IFS {Li(x), R̃i(x, y)) : i ∈ NN−1}. Note that q̃i(x) need not be linear.
If q̃i(x) is linear, then the corresponding FIF is called linear FIF. Take x = xN , Li(xN) = xi+1

ỹi+1 = ỹi + airi(ỹN − ỹ1) + ai

∫ xN

x1

Sα
F(qi(x))dα

Fx

ỹi+1 − ỹi = ai

[
ri(ỹN − ỹ1) +

∫ xN

x1

Sα
F(qi(x))dα

Fx
]

.

We know that ỹi+1 = ỹ1 + ∑i
k=1(ỹk+1 − ỹk)

ỹi+1 = ỹ1 +
i

∑
k=1

ak

[
rk(ỹN − ỹ1) +

∫ xN

x1

Sα
F(qk(x))dα

Fx
]

.

Take i = N − 1,

ỹN = ỹ1 +
N−1

∑
k=1

ak

[
rk(ỹN − ỹ1) +

∫ xN

x1

Sα
F(qk(x))dα

Fx
]

ỹN − ỹ1 =
N−1

∑
k=1

akαk(ỹN − ỹ1) +
N−1

∑
k=1

ak

∫ xN

x1

Sα
F(qk(x))dα

Fx

ỹN = ỹ1 +
∑N−1

k=1 ak
∫ xN

x1
Sα

F(qk(t))dα
Ft

1−∑N−1
k=1 akrk

.

Thus, g̃ interpolates the new set of data {(xi, ỹi) : i ∈ NN}, where, for each i ∈ NN−1,

ai =
xi+1 − xi
xN − x1

ỹi+1 = ỹ1 +
i

∑
k=1

ak
(
rk(ỹN − ỹ1) +

∫ xN

x1

Sα
F(qi(t))dα

Ft
)
,

ỹN = ỹ1 +
∑N−1

k=1 ak
∫ xN

x1
Sα

F(qk(t))dα
Ft

1−∑N−1
k=1 akrk

.
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In Theorem 3, the fractal integral of the fractal interpolation function is studied by
predefining the initial condition ỹ1. Whereas, in the following theorem, by predefining the
initial condition ỹN , the fractal integral of FIF is investigated, and the corresponding new
set of interpolation data are explicitly presented.

Theorem 4. If g is the fractal interpolation function associated with {(Li(x), Ri(x, y)) : i ∈ NN−1}
where Ri is given in Equation (5) and, for a given ỹN , we define g̃(x) = ỹN −

∫ xN
x Sα

F(g(t))dα
Ft.

Then, g̃ is the fractal interpolation function associated with {(Li(x), R̃i(x, y)) : i ∈ NN−1}, where,
for i ∈ NN−1,

R̃i = airiy + q̃i(x),

ai =
xi+1 − xi
xN − x1

q̃i(x) = ỹi+1 − airi ỹN −
∫ xN

x
Sα

F(qi(t))dα
Ft,

ỹi = ỹN −
N−1

∑
k=i

ak
(
rk(ỹN − ỹ1) +

∫ x

x1

Sα
F(qi(t))dα

Ft
)
,

ỹ1 = ỹN −
∑N−1

k=1 ak
∫ xN

x1
Sα

F(qk(t))

1−∑N−1
k=1 akrk

.

Proof. Define the fractal integral of g at the endpoint as

g̃(x) = ỹN −
∫ xN

x
Sα

F(g(t))dα
Ft,

and then

g̃(Li(x)) = ỹN −
∫ xi+1

Li(x)
Sα

F(g(t))dα
Ft−

∫ xN

xi+1

Sα
F(g(t))dα

Ft

= ỹi+1 −
∫ xi+1

Li(x)
Sα

F(g(t))dα
Ft.

Applying a change of variable on t by Li(t) in the second term. Sα
F is linear, and, from

Equation (17), one can find,

g̃(Li(x)) = ỹi+1 − ai

∫ xN

x
Sα

F(rig(t) + qi(t))dα
Ft

= ỹi+1 − airi

∫ xN

x
Sα

F(g(t))dα
Ft + ai

∫ xN

x
Sα

F(qi(t))dα
Ft

= ỹi+1 − airi(ỹN − g̃(x))− ai

∫ xN

x
Sα

F(qi(x))dα
Fx

= airi g̃(x) + q̃i(x),

where q̃i(x) = ỹi+1 − airi ỹN − ai
∫ xN

x Sα
F(qi(t))dα

Ft. Hence, g̃ is also a fractal interpolation
function generated by the IFS {Li(x), R̃i(x, y)) : i ∈ NN−1}. Note that, q̃i(x) need not
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be linear. If q̃i(x) is linear, then the corresponding FIF is called linear FIF. Further, g̃
interpolates the new set of data {(xi, ỹi) : i ∈ NN}, where, for each i ∈ NN−1,

ai =
xi+1 − xi
xN − x1

ỹi = ỹN −
N−1

∑
k=i

ak
(
rk(ỹN − ỹ1) +

∫ xN

x1

Sα
F(qi(t))dα

Ft
)
,

ỹ1 = ỹN −
∑N−1

k=1 ak
∫ xN

x1
Sα

F(qk(t))

1−∑N−1
k=1 akrk

.

Let {(0, 0), (1/3, 1/2), (2/3, 1/2), (1, 0)} be the given dataset. Then, the fractal in-
terpolation function g passing through the given dataset with vertical scaling factors
r1 = 0.7071, r2 = −0.7071 and r3 = 0.7071 is determined by the iterated function system:

L1(x) =
1
3

x, R1(x, y) = 0.7071y + 0.0976x,

L2(x) =
1
3

x + 1, R2(x, y) = −0.7071y− 0.0976x + 1,

L3(x) =
1
3

x + 2, R3(x, y) = 0.7071y + 0.0976x.

Here, qi(x) is selected as a linear function, i.e., qi(x) = aix + bi for i = 1, 2, 3. The
fractal interpolation function g of the given dataset is graphically demonstrated in Figure 4.
Additionally, the fractal interpolation function g̃, which is determined through the iterated
function system with the same Li(x) and R̃i(x, y), is given by

R̃1(x, y) = 0.2357y + 0.0163(Sα
F(x))2,

R̃2(x, y) = −0.2357y− 0.0163(Sα
F(x))2 +

Sα
F(x)
3

+ 0.1378,

R̃3(x, y) = 0.2357y + 0.0163(Sα
F(x))2 + 0.3762.

Here, the coefficients of IFS are obtained from Theorem 3, and the fractal integral of the
fractal interpolation function g is estimated by predefining the initial condition ỹ1 = 0. The
fractal integral of order α = 0.5 of fractal interpolation function g is graphically elucidated
in Figure 5. The vertical scaling factors of g are r1 = 0.2357, r2 = −0.2357, r3 = 0.2357
and fractal integral of g shows smoothness and a self-similar pattern. The dots in Figure 4
represent the given set of data points, and the solid red line provides the corresponding
fractal interpolation function. In Figure 5, the blue dots give the new set of data points, and
the solid red line presents the fractal integral of FIF.
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Figure 4. Graphical representation of the fractal interpolation function with scaling factors
r1 = 0.7071, r2 = −0.7071, r3 = 0.7071.
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Figure 5. A fractal integral of order α = 0.5.

5. Conclusions

In this paper, fractal calculus was studied and utilized to obtain the fractal integral and
derivatives of the Weierstrass functions and the fractal interpolation functions, which are
not differentiable in the sense of ordinary derivatives. Using fractal calculus on Weierstrass
functions, one can derive the mean square displacement of random walks by considering
the Fokker–Planck equation on Weierstrass functions.

Fractal local derivatives and integral will be of interest to explore fractal functions in a
future work.
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