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Abstract: Demand response (DR) flexible loads can provide fast regulation and ancillary services as
reserve capacity in power systems. This paper proposes a demand response optimization dispatch
control strategy for flexible thermostatically controlled loads (TCLs) and plug-in electric vehicles
(PEVs) with stochastic renewable power injection. Firstly, a chance constraint look-ahead program-
ming model is proposed to maximize the social welfare of both units and load agents, through
which the optimal power scheduling for TCL/PEV agents can be obtained. Secondly, two demand
response control algorithms for TCLs and PEVs are proposed, respectively, based on the aggregate
control models of the load agents. The TCLs are controlled by its temperature setpoints and PEVs
are controlled by its charging power such that the DR control objective can be fulfilled. It has been
shown that the proposed dispatch and control strategy can coordinate the flexible load agents and
the renewable power injection. Finally, the simulation results on a modified IEEE 39 bus system
demonstrate the effectiveness of the proposed demand response strategy.

Keywords: chance-constraint programming; source–load systems; demand response control;
thermostatically controlled loads (TCLs); plug-in electric vehicles (PEVs)

1. Introduction

With the rapid increase in energy consumption and environmental pollution, renew-
able energy power generation is becoming more and more popular and various kinds of
distributed generations are connecting into the power grid. Meanwhile, the incorporation
of renewable energy units gives rise to the increasing need for resource capacity or ancillary
services if there exists major forecast uncertainty. Meanwhile, flexible loads in the demand
side can provide different kinds of ancillary services, such as frequency regulation, load
following, and other services. The widely adopted flexible loads for these services include
thermostatically controlled loads (TCLs) and plug-in electric vehicles (PEVs), which can
respond the power dispatch or electricity price timely. To address these concerns, there
have been several valuable studies on the coordination and interaction of traditional units,
renewable units, and flexible loads of source–load systems [1–4].

Renewable power generation has gained much attention and been in an increasing
trend, which is beneficial to environment and economics. Especially, wind and photovoltaic
generation are thought to be the most developed renewable sources worldwide. However,
the power produced by these renewable energies largely depends on natural environmental
conditions, such as wind speed or illumination intensity, which are stochastic and cannot
be precisely predicted.

The uncertainty of renewable power may pose new challenges for power system
operation and control, especially during times of high penetration [5]. To provide a flexible
and comprehensive consideration of the forecast error of renewable power [6], a common
solution is to restrict wind power and abandon light power so as to protect the power
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systems. Another solution is utilizing the various optimization methods. The look-ahead
dispatch method was considered in [7,8], which has proved to be an effective strategy to
reduce the power imbalance caused by the injection of renewable power [9]. By taking
into account the uncertainty of renewable power, robust optimization [10,11], stochastic
optimization [12,13], and chance-constrained stochastic optimization [14,15] have been the
most popular methods to account for uncertainties in power generation.

On the other hand, the demand response of power grids has already switched from
traditional mode of load curtailment to the mode of dynamical response without interfering
with users’ comfort levels [16]. DR optimization has received much attention. The authors
in [17] proposed a hierarchical demand response architecture to control and coordinate
the performance of various DR category resources. Demand response controllability was
investigated in [18] for the unit commitment model with limited predictability and resi-
dential DR resources. By considering the site selection and the incentive price, an optimal
strategy for responsive loads was proposed in [19] for source–network–load system. On-
line demand response for nondeferrable loads was investigated in [20] with rechargeable
battery and renewable energy. By the method of the alternating direction method of multi-
pliers, a hierarchical robust distributed optimization was proposed for demand response
services [21].

As for the TCL agents, it has been shown that TCLs can provide power-balancing
reserves when aggregated due to their thermal energy storage capacity [22,23]. The authors
in [24] demonstrated that TCLs can be considered as rapid DR activation loads for power
system control operations. By using switching-rate actuation, the authors in [25] studied
the demand response of TCLs and household refrigerators. Distributed load following
was investigated in [16] for aggregate TCL loads. The authors in [26] presented a mean-
field model for analysis and control of the aggregate demand of heterogeneous TCLs.
By using a stochastic Markov decision process and distributed robust optimization, ref. [27]
internalized the exogenous uncertain dynamics of TCLs.

Literature on demand response and EV charging scheduling has proved that EVs
will become the main demand response resource in the near-future. Many researches
have concentrated on charging optimization and control problems. The authors in [28–30]
investigated the optimal energy management and control problems of smart home with
PEVs and photovoltaic arrays. By designing a smart-charging scheme for PEV, it was
shown in [31] that the aggregate EVs are able to reduce the peak demand or peak shaving.
A fair demand response strategy for EVs was proposed in [32] for a cloud-based energy
management service in a given time period. The authors in [33] proposed a charging load
model for an electric vehicle charging station, which could be integrated to distribution
systems so as to obtain the optimal charging decisions for demand response provision.

Both aggregate TCLs and aggregate PEVs are large-scale flexible loads in power
grids, which can be involved in the DR program together to share the power imbalance.
By considering the uncertainty in renewable energy generation, load consumption, and load
reserve capacities, a chance-constrained optimal power flow model was proposed in [34,35]
to procure minimum cost energy. The authors in [36] proposed a chance-constrained
optimal power flow model to schedule the power production of both generators and
controllable electric loads. By the method of stochastic model predictive control, the authors
in [37] investigated the optimal power dispatch and control for power grids with renewable
energy resources and EVs. Based on the mixed-integer linear programming method,
intelligent DR for industrial energy management was designed in [38] by considering TCLs
and EVs.

Despite there being several related studies conducted for TCLs and PEVs, there are
still some challenging problems that remain unsolved. According to different DR incentive
strategies, such as price response, policy response, or control response, the actual customers’
responses are varied and diverse. As for the control response loads, the basic control model
of the objective is needed. The individual models of the TCL and PEV are mature while
the aggregate models and the aggregate control strategies of these loads are immature.
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Motivated by the above observations, this paper intends to investigate the optimization
dispatch and demand response control of source–load systems with uncertain renewable
power injection and flexible TCL and PEV load agents. To the best knowledge of the authors,
most of the demand response problems are solved by various kinds of optimization models
and methods; few published literature have investigated this problem by aggregate control
algorithms. This paper aims to fill this gap and solve the demand response optimal power
allocation and response problems of source–load systems via aggregate control models
and strategies for flexible loads.

The main contributions are summarized three-fold: (1) A probabilistic controllable
interval is introduced to the chance-constrained look-ahead optimization, which can cope
with the uncertainty of both the renewable power generation and the flexible load response;
(2) compared with discrete-time on/off control of TCLs, a continuous-time setpoint tem-
perature regulating control algorithm based on aggregated models is proposed to guidance
the power change of the TCL agent; (3) a time-varying charging power control algorithm
based on the saturation function is proposed for the PEV agent such that the aggregate
PEVs can follow the reference power trajectory.

An outline of the remainder of the paper is organized as follows. Section 2 states the
problem formulation and the optimization and control framework. Section 3 provides
the chance-constrained look-ahead programming model for the source–load system with
the injection of renewable power and flexible TCL/PEV agents. Section 4 describes the
aggregate model for TCL/PEV agents and designs the corresponding control algorithms
for the optimal power profile tracking. Section 5 shows the effectiveness of the proposed
optimization and control algorithm on a modified IEEE 39 bus system. Section 6 discusses
the optimization and control framework and draws the conclusions.

Some abbreviations are provided in the following before the main results.

Acronyms Full Name

DR Demand response
TCL Thermostatically controlled load
TCL Plug-in electric vehicle
SAA Sample average approximation
TOU Time-of-use
SoC State-of-charge

2. Problem Formulation

Consider the coordination optimization problem of a source–load system, where the
source of the system includes the traditional generating units and renewable power (mainly
wind power and photovoltaic power) and the load of the system includes rigid load and
flexible load. The rigid loads, such as lighting and computers, are always uncontrollable
but can be predicted. The flexible loads, such as thermostatically controlled loads and
plug-in electric vehicles, can be controlled by the corresponding control signals. On the
other hand, the renewable power injection is always a random variable because the wind
speed and the ambient temperature and illumination are always random. Therefore, how
to balance the power production and consumption with the maximal social welfare is a
crucial problem among units and flexible loads.

This paper intends to solve this problem by setting up a chance-constrained look-
ahead programming model for the source–load system and designing two kinds of demand
response control algorithms for TCLs and EVs. Specifically, flexible loads are aggregated
as a load agent, which can be involved in the electricity market to participate in the
load bidding. The terminal DR loads are controlled by the load agent by issuing the
corresponding control signals. The schematic diagram of the optimization dispatch is
shown in Figure 1.
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Figure 1. Structure of the optimization dispatch framework of source–load systems.

Based on the prediction of the rigid load, the actual renewable power injection, and
the day-ahead power generation plan, the look-ahead optimization dispatch with chance
constraints can be solved by the sample average approximation (SAA) method [39,40].
Furthermore, the generating units respond with optimal generating instructions and the
flexible load agents achieve the optimal power profile by demand response control of
massive-terminal, small, controlled loads. The detailed control models and the control
algorithms of TCL agents and PEV agents will be discussed in the following section.

3. Chance-Constrained Look-Ahead Optimization

This paper considers the joint real-time economic dispatch problem for generating
units and flexible load agents by considering the uncertainty of renewable energy power
generation. The objective of the power scheduling is to maximize social welfare, i.e., maxi-
mizing both generating units and load agents:

max
T

∑
t=1

F(P(t)) =
T

∑
t=1

[
∑
i∈G

ΩG,i
(

PG,i(t), p(t)
)
+ ∑

j∈L
ΩL,j

(
PL,j(t), p(t)

)]
, (1)

where F is the total social welfare with respect to the real-time power variable
P(t) = [P1(t), P2(t), . . . , P|G|+|L|(t)]T = P0(t) + ∆P(t) (day-ahead scheduling plus intra-
day corrective scheduling); p(t) is the time-of-use (TOU) power price; ΩG,i(·) and ΩL,j(·)
are the welfare functions of the ith generating unit and the jth load agent, which are given
as follows: {

ΩG,i(PG,i(t), p(t)) = p(t)PG,i(t)− Ci
(

PG,i(t)
)
,

ΩL,j(PL,j(t), p(t)) = Ul
(

PL,j(t)
)
− p(t)PL,j(t).

(2)

For the units, the cost function Ci(·) usually can be approximated by a quadratic
convex function Ci(Pi) = aiP2

i + biPi + ci, where ai, bi, and ci are predetermined constants
and Pi is the generated power. For the load agents, the utility function Uj(·), often assumed
to be the convex utility function with the zero initial value, is a quadratic utility function
that can be described by [41,42]

Uj(PL,j) =


ωjPL,j − αjP2

L,j, 0 ≤ PL,j ≤
ωj

2αj
,

ω2
j /4αj, PL,j ≥

ωj

2αj
,

(3)

where ωj and αj are predetermined constant coefficients.
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Considering the randomness of the actual renewable power, the following chance
constraint with a controllable interval is involved:

Pr
(

Plo ≤ ∑
i∈G

PG,i(t) + PRew(t)−∑
j∈L

PL,j(t)− PD(t) ≤ Phi

)
≥ pa, (4)

where [Plo, Phi] is the controllable confidence interval of the source–load system, which is
often set to be smaller than the actual operation interval because of the response uncertainty
of the flexible DR loads; PRew(t) = Pwi(t) + Ppv(t) is the renewable power injection with
the random wind power variable Pwi and the random photovoltaic power Ppv; PD is the
prediction value of the rigid load in the system; the probability pa is required to be at least
95%.

Other considered inequality constraint conditions for such an optimization problem
are given as follows: 

Pmin
G,i ≤ PG,i(t) ≤ Pmax

G,i ,

− Rdn
G,i ≤

1
∆T
(

PG,i(t + 1)− PG,i(t)
)
≤ Rup

G,i,

Pmin
L,j (t) ≤ PL,j(t) ≤ Pmax

L,j (t),

− Rdn
L,j ≤

1
∆T
(

PL,j(t + 1)− PL,j(t)
)
≤ Rup

L,j,

(5)

for ∀i ∈ G, j ∈ L, and t = 1, . . . , T; Pmin
G,i and Pmax

G,i are the lower and upper bounds for ith
generating unit; Pmin

L,j (t) and Pmax
L,j (t) are the time-varying lower and upper bounds for

jth load agent; Rdn
G/L and Rup

G/L are the lower and upper ramping rates of the units and
load agents.

By the sample average approximation method [39,40], the optimal power scheduling for
units and flexible load agents can be obtained by solving the look-ahead optimization (1)–(5)
with chance constraint. In the following, the design of the demand response control algorithms
for the aggregate TCL agents and PEV agents will be provided.

Remark 1. The power variability and uncertainty of the renewable power are handled by the
probabilistic chance-constrained optimization, where the probability distributions of the wind power
and the PV power are assumed to be mutually independent. Then, the joint probability density
function can be derived by the probability theory. Then, the sample of the renewable power can
be generated by its probability distribution. The power balance constraint is transformed to be a
probability confidence interval with a predefined confidence level pa, which is able to cope with
the volatility of the renewable power. On the other hand, the inherent uncertainty of flexible
TCLs and PEVs is absorbed by the reserve capacity of the system, i.e., the controllable confidence
interval of the optimization constraint (4) can be set smaller than the actual operation interval of
the source–load system.

4. Demand Response Control of Load Agents

It is well-known that both TCLs and PEVs are small loads in the distribution grid
compared with the traditional generating units in the main grid. Therefore, how to control
these dispersive and numerous small loads to fulfill a global optimization and control objec-
tive is a key problem in the implementation of the DR control. The aggregate approximate
models are critical for such an optimization and control realization, which will simplify
the complex task for the decentralized control strategies. In the actual control process, one
needs to design the corresponding control strategies such that the aggregate power PT(t)
of all terminal-controllable loads can track the reference power trajectory Pre f (t) optimized
in the chance-constrained optimization. The approximate models for aggregated TCLs and
PEVs are utilized in this paper, based on which the error feedback control strategies are
proposed. The following provides detailed models and control algorithms.
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4.1. Aggregated TCL Model and Feedback Control

Suppose a population of homogeneous TCLs under a common control area is aggre-
gated as a TCL agent, the aggregate power of which—based on the temperature control—is
approximated by a bilinear system [43] as follows:{

ẋc(t) = Acxc(t) + Bcxc(t)uc(t),

yc(t) = Ccxc(t),
(6)

where xc(t) ∈ RQ is the internal state denoting the average number of off or on TCLs in
each temperature subinterval of the temperature deadband; PT(t) = yc(t) ∈ R is the ap-
proximate aggregate power output of the TCL agent; the coefficient matrices Ac, Bc, Cc can
be found in [43], which are omitted here due to space limits; uc(t) ∈ R is an incorporated
control input satisfying the constraint

uc(t) =
1

CR
(∆θa(t)− ∆θset(t))− ∆θ̇set(t), (7)

where C (kWh/◦C) is the thermal capacitance and R (◦C/kW) is the thermal resistance;
∆θa(t) = θa(t)− θbase is the deviation value between the ambient temperature θa(t) and the
base value θbase; ∆θset(t) = θset(t)− θdes

set is a bounded deviation value between the actual
temperature setpoint θset(t) and preferred setpoint temperature θdes

set for the comfort levels
of customers. ∆θ̇set is the changing rate of the setpoint temperature θset(t), which needs
to be designed within an interval [ᾱon, ᾱoff ] so as to make the aggregate bilinear model (6)
make sense, see the detailed illustration in [44].

Parameters ᾱon and ᾱoff are functions with the independent variables θbase and θdes
set ,

given as 
ᾱon(θbase, θdes

set ) =
1

CR
(θbase − θdes

set − RPr),

ᾱoff (θbase, θdes
set ) =

1
CR

(θbase − θdes
set ),

where Pr (kW) is the energy transfer rate to or from the thermal mass, which is positive for
cooling TCLs.

Next, the setpoint temperature θset(t) is determined indirectly by viewing the incorpo-
rated control uc(t) as an entire variable. By the optimization calculation from the dispatch
center, the optimal power profile Ptcl

re f (t) for the TCL agent can be derived. The updating of
control input uc(t) is proposed based on the error feedback control:

uc(t) = µ1
(

Ptcl
re f (t)− yc(t)

)
+ µ2

∫ t

t0

(
Ptcl

re f (t)− yc(t)
)
dt, (8)

where µ1 and µ2 are the control gains. The control structure is given in Figure 2.

+

-

1
m 2

s

m
cu

tcl

refP

cy

Figure 2. The control flowchart of the aggregate TCL control strategy.
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While the actual temperature setpoint deviation values of TCLs can be updated by
substituting (8) into (7). Furthermore, the real-time setpoint temperature θset(t) for the
TCLs in the load agent can be obtained by

θset(t) = θdes
set + ∆θset(t). (9)

According to the generated setpoint temperature control signal, the temperature of
each TCL changes by the following temperature regulation differential equation:

dθ(t)
dt

=
1

CR
(
θa(t)− θ(t)− s(t)RPr

)
, (10)

where θ(t) is the internal temperature of the conditioned mass. The operation state s(t) is
governed by the following thermostatic switching law:

s(t) =


0, if s(t− τ) = 1 & θ(t) < θ−(t)
1, if s(t− τ) = 0 & θ(t) > θ+(t)

s(t− τ), otherwise
(11)

where τ is the sampling period of temperature, and the lower and upper boundaries of the
temperature deadband are given as

θ−(t) = θset(t)−
δdb
2

; θ+(t) = θset(t) +
δdb
2

. (12)

The deadband of each controlled TCL is a time-varying interval [θ−(t), θ+(t)], since
the setpoint temperature is regulated according to the global optimization objective.

In the above aggregate model (6), the parameters of TCLs are assumed to be homo-
geneous for model simplification. As for the heterogeneous TCLs, there are two methods
to approximate the aggregate power. The first one is to utilize the averaged equivalent
model with the averaged equipment parameters. The second one is to divide the heteroge-
neous TCLs to multiple homogeneous groups and model the homogeneous TCLs by an
aggregate model.

4.2. Aggregated PEV Model and Feedback Control

As for the PEV in the power grid, the SoC equation of a single PEV is always utilized
to characterize the process of power consumption:

SoC(k + 1) = SoC(k) +
ηe

Be
ue(k)Pmax

e ∆t, (13)

where Be denotes the battery capacity; ηe is the charging efficiency; Pmax
e is the maximal

charging power of the PEV; ∆t is the sampling period of the SoC value; ue(k) is the charging
ratio that needed to be designed. The value of SoC is distributed in the interval [0, 1], often
characterized by an actual interval [SoCmin, SoCmax], where SoCmin is the minimal value
for the charging battery and SoCmax is the objective charging state.

Suppose a population of PEVs under a common charging control area is aggregated
as a PEV agent, and the aggregate charging control model of the agent is given by a
transport-based load model [45]:{

ẋe(t) = Aexe(t)ue(t) + ω(t),

ye(t) = Cexe(t)ue(t).
(14)

where xe(t) ∈ Rn is the concentration of PEVs; ue(t) ∈ [0, 1] is a bounded control input
denoting the charging ratio relative to the maximal charging power of the PEV (the same
with ue(t) in (13)); ω(t) ∈ Rn is the disturbance of the entering/exiting PEV flow; ye(t) is
the aggregate power output of the PEV agent.
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In the above aggregate model, the SoC interval [SoCmin, SoCmax] is discretized into n
equal segments of length h, and xej(t) denotes the concentration of PEVs in the jth segment
of the PEV agent at time t. The coefficient matrices Ae, Ce are given with

Ae =
1
h


−Pmax

e 0 · · · · · · 0
Pmax

e −Pmax
e · · · · · · 0

...
. . . . . . · · ·

...
0 · · · Pmax

e −Pmax
e 0

0 · · · · · · Pmax
e 0


n×n

,

Ce = [Pmax
e , · · · , Pmax

e , 0]n, h =
SoCmax − SoCmin

n
.

Furthermore, the transport-based flow ω(t) of PEVs is defined as

ω(t) =

{
ϑi f (i)in (t), i = 1, 2, . . . , n1,
ϑi f (i)in (t)− f (i)out(t), i = n1 + 1, . . . , n,

where ϑi is the transport flow coefficient satisfying ∑n
i=1 ϑi = 1; f (i)in (t) is the input flow;

f (i)out(t) is the output flow at ith discretization segments (n1 ≤ i ≤ n governed by the
transport dynamics of PEVs, given by

f (i)out(t) = f (i)depa(t)− f (i)stay(t) =
Pmax

e
h

xi(t)ue(t)− f (i)stay(t), (15)

where f (i)stay(t) means the EVs charged that can leave (the concentration of this kind of PEV load

is denoted by f (i)depa(t)) while choosing not to leave at this time—e.g., f (i)stay(t) = 0.8 f (i)depa(t)
denotes that 80% of EVs stopped charging while waiting to leave.

Remark 2. The dynamic characteristic of flexible terminal EV loads is described by the variable of
the transport-based flow ω(t) of PEVs, where EVs can leave the power grid with a satisfied charging
objective, i.e., they do not wait to leave until they are fully charged.

By the optimization calculation from the dispatch center, the optimal power profile
Ppev

re f (t) for the PEV agent can be derived. The updating of control input ue(t) is proposed
based on the error feedback control:

u̇e(t) = κsat
(

Ppev
re f (t)− ye(t)

)
, (16)

where κ is positive control gain; the function sat(·) is a saturation function defined by

sat(υ) =


1, υ > ε

υ/ε, −ε ≤ υ ≤ ε
−1, υ < ε

(17)

where 1/ε is the slope of the predefined saturation function. The initial value for the
reference control input is set to satisfy the constraint 0 ≤ ue(0) ≤ 1. The control structure
is given in Figure 3.
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Figure 3. Control flowchart of the aggregate PEV control strategy.

Finally, the practice charging power of PEV is Pi(t) = Pmax
e,i ue(t); then, the charging

state is measured by the SoC Equation (13). Instead, the power capacity available for
the aggregator can be calculated approximately by the concentration of PEVs in each
SoC subinterval:

∆P(t) =
n

∑
j=1

xej(t)× Pmax
e ,

the minimal charging time tmin
j for EVs in the jth segment (i.e., minimal available control

period) can be calculated by

tmin
j =

Be
(
SoCobj − j(SoCmax − SoCmin)/n

)
ηePmax

e
,

and the maximal available control period tmax
j = tdep

j − tarr
j , where tarr

j and tdep
j are the

arrival time and the temperature time.
Meanwhile, if the dwell time of the EV is smaller than the minimal charging time—i.e.,

tdep
j − tarr

j <
Be
(
SoCobj − SoCini

)
ηePmax

e
,

where SoCobj and SoCini
i are the objective and the initial SoC values—then, the EV is not

available for scheduling, which can be viewed as disturbance for the aggregate model, and
its practice charging power can be set Pi(t) = Pmax

e,i directly.
As for the PEV agents, the maximal and minimal regulation capacities are time-varying

according to the changing of the transport flow of EVs and the states of the SoC equation.
Therefore, the constraints for PEV agents are time-varying as well.

Remark 3. The battery of the PEV can be charged at rated power or maximal charging power by
time-controlled charge scheduling to become fully charged. Meanwhile, the charging power Pc of
PEV can be varied in [Pmin

c , Pmax
c ] by turning the charging modes with the constant voltage or

current. Therefore, the voltage controller or current controller can be utilized to realize the optimal
charging power by Pc = Uc × Ic. As in the voltage stabilization mode, the charging current can
be controlled in the interval [Imin

c , Imax
c ] by feedback control to regulate the actual charging power.

Fast charging technology for batteries have already been applied in practice to reduce charging time
by increasing the charging current. On the other hand, the time-varying charging power utilized in
practice is sampled with a fixed sampling period instead of the fast-changing continuous power and,
in each charging period, the charging power is a constant charging power as well.

In order to illustrate the accuracy of the demand response control, the relative errors
are utilized to measure control performance:

E1(t) =
|Ptcl

re f (t)− yc(t)|
Ptcl

re f (t)
, E2(t) =

|Ppev
re f (t)− ye(t)|

Ppev
re f (t)

.
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If the optimal power tracking errors are acceptable, then the proposed demand re-
sponse control algorithms can be utilized for demand response applications.

Remark 4. The aggregate models of TCLs and PEVs are utilized in this paper mainly due to the
fact that the actual TCL and PEV are often integrated into the power grid without extra electricity
supervision. Therefore, the actual aggregate power is difficult to measure, and the aggregate models
provide an approximate estimation for the aggregate power. The error feedback control algorithms
are based on the tracking error of the optimal power profiles, which could ensure the tracking
performance. The power response of the TCL agent is based on the temperature setpoint control
signals, and the power response of the PEV agent is based on the changing of charging power.

5. Case Study

This section validates the performance of the proposed chance-constrained optimiza-
tion and demand response control architecture through numerical simulation on a modified
IEEE 39-bus test system, the unifilar diagram system structure is given in Figure 4. Suppose
that the loads under bus nodes B11, B23, B28, and B32 are flexible controllable loads, which
are managed by the corresponding load agents TCL/PEV A1/2, and loads under the bus
nodes B27 and B29 are fixed loads. On the other hand, the generators G1∼G6 are slow
units and generators G7∼G10 are AGC units.
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Figure 4. The modified IEEE39 bus system for testing and verification.

The flexible controllable loads serve as demand side resources, which can provide
active power regulation services together with generation units. Six slow units and the four
flexible load agents are dispatched by the dispatch center based on the chance-constrained
look-ahead dispatch. The cost coefficients and capacities for all the participants are given
in Table 1. We considered the optimization dispatch and demand response control of a
summer working day, where the TCLs (mainly air conditioners) and PEVs are controlled
in real-time.
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Table 1. Parameters of generation units and demand agents.

Generation Unit Parameters (MW)

G ai bi Rdn
G,i Rup

G,i Pmin
G,i Pmax

G,i

G1 0.0451 2.8213 15 20 25 200
G2 0.0365 2.2421 22 24 20 180
G3 0.0274 3.1518 20 25 30 200
G4 0.0518 2.8523 18 12 30 150
G5 0.0818 4.1533 20 16 20 200
G6 0.0353 2.3472 15 15 20 160

Demand Agent Parameters (MW)

L αj ωj Rdn
L,j Rup

L,j Pmin
L,j Pmax

L,j

TCL A1 0.2116 21.1621 4 6 10 50
TCL A2 0.2452 19.6168 5 9 15 40
PEV A1 0.2021 18.1892 8 6 10 45
PEV A2 0.2456 24.2234 5 7 12 50

Furthermore, the optimization period is 15 min and the look-ahead period T = 4;
the DR control sampling period for real-time control is 20 s. The coupling time-scale
relationship is given in Figure 5.

 !"#!$%!&'()$%&*+,-.'/01'*-,2('!-&'+0!&'!.%-2(
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Figure 5. The timescale for chance-constrained look-ahead programming and real-time DR control.

In the test system, we assume all TCLs in the same agent are homogeneous—that
is, with the same thermal capacitance C, thermal resistance R, output cooling energy Pr,
energy transmission efficiency η, and preferred setpoint θdes

set . The number of TCLs in each
agent and the initial proportion of the off TCLs proff and other parameters are given in
Table 2. Suppose the ambient temperature is 24∼38 ◦C, given in Figures 6 and θbase = 34 ◦C.
The predicted rigid load and the TOU price are provided in Figure 6 as well.

Table 2. TCL agents’ private parameters.

Ag. NL proff R C Pr η θdes
set δdb

A1 11780 0.52 5.12 8.82 19.63 2.92 23.15 1
A2 9730 0.49 5.44 9.89 16.56 2.71 22.45 1

On the other hand, the renewable power includes wind power and photovoltaic
power, where the wind power is a random variable bounded by its rated output power.
Suppose there are 50 wind generators in the wind farm with a rated power of 1.5 MW
for each generator and 60 photovoltaic panels in the system. The photovoltaic power
is closed related to the ambient temperature and illumination; its value is provided in
Figure 6 as well. In the simulation, wind power and photovoltaic power are mixed together,
the renewable power interval is shown in Figure 7, and a sampled wind power curve is
distributed in the power interval.
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Figure 6. Load prediction and photovoltaic power injection.
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Figure 7. Renewable power interval with stochastic wind power.

The controllable interval of the source–load system is set to be 60% of the maximal
regulation capacity 100 MW, [Plo, Phi] = [−60, 60] MW, and the chance-constraint proba-
bility pa = 95%. By solving the chance-constrained look-ahead optimization, the optimal
power trajectories for units and load agents are given in Figures 8 and 9, respectively.
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Figure 8. The optimal power output of generating units.
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Figure 9. The optimal power consumption of load agents.

As can be seen from Figures 8 and 9, the power generation follows the load fluctuation
and load agents gain the corresponding regulation capacity as well. If all the TCLs and
PEVs are not involved in the demand response program, then the extra power generation
will be compensated by the generating units. Next, the simulation of the demand response
control is illustrated.

As for the TCL agents, the state-space dimension Q = 30, the sampling period
τ is set to be 20 s, and the initial temperature of the TCLs follows a uniform distribu-
tion U [22, 25] ◦C; the comfort temperature intervals for the two agents are given with
[21.15, 26.15] and [22.45, 27.25] separately. By setting µ1 = 0.7 and µ2 = 0.1, and running
the system (6) with control input (8), the reference power and the actual aggregate power
are given in Figures 10 and 11. The relative error curves are provided in Figure 12, and are
smaller than 0.07%.
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Figure 10. The power tracking of the first TCL agent.

As for the PEV agents, the SoC interval is set to be [SoCmin, SoCmax] = [0.1, 1], and the
interval was divided into n = 9 subintervals. Furthermore, n1 = 3 means the EVs with
the SoC value lower than 40% can only enter but not exit and EVs with the SoC value
upper than 40% can enter or exit freely. The sampling period δt = 20 s as well. The initial
centralization of PEV x·1(0) = [23,520, 30,225] and x·j(0) = [0, 0] for 2 ≤ j ≤ n. The hourly
transport flows for the incoming EVs of two PEV agents in time period from 07:00 to 19:00
are given in Figure 13. According to the survey of the daily trip lengths, over 40% of the
PEVs return to the first SoC discretization segment and the transport flow coefficient θj is
set to be θ·1 = [0.42, 0.45] and θ·j ∈ U[0.03, 0.09] for 2 ≤ j ≤ n.
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Figure 11. The power tracking of the second TCL agent.
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Figure 12. The relative power tracking errors of TCL agents.
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Figure 13. The input flow of each PEV cluster for hourly data.

The output transport flow of PEVs can be calculated by Equation (15), where f (i)stay(t)

is set to be 0.8 f (i)depa(t)—that is, 80% PEVs charged that can leave while choosing not to

leave at this time. Here, f (i)depa(t) denotes the concentration of PEV whose SoC has reached
the target charging area.

We set ε = 2 in the saturation function, κ = 0.6, and the initial value uref(0) =
[0.372, 0.348] in the controller. Then, by system (14) with the control input (16), the optimal
power profile and aggregate power of PEV agent are given in Figures 14 and 15 for agents
PEV A1 and A2.

As can be seen from Figures 14 and 15, the PEV agents follow the optimal charging
power profile well since the maximal charging power of the transport flow of PEVs in the
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simulation is much larger than its actual charging power. The relative error curves are
provided in Figure 16, which are smaller than 0.03%.
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Figure 14. The power tracking of the first PEV agent.
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Figure 15. The power tracking of the second PEV agent.
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Figure 16. The relative power tracking errors of PEV agents.

Finally, the total response deviation curve ∆P = ∑i∈G PG,i(t)+ PRew(t)−∑j∈L PL,j(t)−
PD(t) is shown in Figure 17. As can be seen from the figure, the deviation is distributed in
the regulation interval and the statistical probability is 97.5%, which satisfies the chance-
constraint probability.
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Figure 17. The stochastic response curve within the controllable confidence interval [−60, 60] MW.

As can be seen from the simulation results and the relative tracking errors, the demand
response control performance of the TCL and PEV agents is acceptable as long as the
optimal power curves are solvable, which shows that the proposed demand response
control algorithm can realize the demand response power tracking of flexible load agents.
By participating in the demand response program, the owner of the TCL or PEV can
receive some compensation with lower electricity costs. The proposed dispatch and control
framework can be applied not only in bulk power systems but also in microgrids since the
structural design is similar.

Remark 5. In the upper layer of optimization calculation, the renewable power curve for 15 min
of data is derived by the cubic spline interpolation method. In the lower layer of control procedure,
the control interval (20 s) for the flexible TCL and PEV loads is much smaller than the renewable
power injection sampling period (1 h), which allows the DR loads sufficient time to track the
uncertainty of the power injection.

6. Discussion

Compared with the traditional mode of power generation following load, the re-
newable power injection and the flexible loads in the demand side could participate in
the interactive operation of power grids. The chance-constrained look-ahead optimiza-
tion and demand response control algorithm proposed in this paper are effective for the
coordinating operation of the source–load system, which can be applied in practice.

(1) Implementation: In the proposed dispatch optimization and control framework,
units and load agents report their basic information to the dispatch center; then, the
optimization can be solved in the dispatch center. The optimal dispatch plan is returned
to the units and agents, and the units achieve the scheduled power by their own control
algorithms. As for load agents, the control system of agents are equipped with the aggregate
models for TCLs and PEVs, based on the error feedback algorithms; the corresponding
control signals for the terminal TCLs and PEVs are generated and then broadcasted to
them in a centralized way. The controllable power interval can be fulfilled by AGC units
and flexible loads with price compensation. In order to protect the power grid, the power
interval for the optimization calculation can be set conservatively, such as 60% of the actual
regulation capacity.

(2) Drawbacks: As for the chance-constrained optimization, there may be no optimal
solution for the optimization. The confidence interval can be set larger and the confidence
probability can be set smaller in the actual optimization, even when there is no solution for
the optimization. On the other hand, since the aggregate models are approximate models,
the actual control response errors are unavoidable. It has been shown in literature that
the accuracy of the model is related to the dimension of the state-space model, i.e., the
higher the dimensionality of the model, the higher the accuracy of the model. Conversely,
the higher the dimensionality of the model, the higher the computation complexity. There-
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fore, a moderate choice for the dimension is feasible for the actual application. Meanwhile,
since the proposed demand response control algorithm for PEVs is based on the time-
varying charging power instead of on/off charging control, the EVs are assumed to be
always available. Therefore, the chargeability of the EVs and user comfort levels have not
been considered sufficiently in the manuscript. If the EV needs to be charged to the desired
SoC with the desired minimal time instant, the EV can be charged at the maximal charging
power directly.

7. Conclusions

This paper investigated the optimal dispatch and demand response control problems
of flexible TCL and PEV loads in the smart grid with renewable energies. The dispatch
and control strategy is realized by a chance-constraint optimization model and the aggre-
gated TCL/PEV control models. By designing feedback control algorithms, the TCLs are
controlled by the temperature setpoint and the PEVs are controlled by the time-varying
charging power. The results revealed that the proposed dispatch and control strategy
could coordinate the renewable energy power injection and the optimal DR realization of
flexible loads effectively. Meanwhile, the simulation results demonstrated that the TCLs
and PEVs respond well according to the proposed control algorithm and tracking errors
are acceptable.

This paper only considers the charging control model of PEVs and the chargeability
of the EVs, and user comfort constraints are not fully considered in the control model.
Future work could incorporate the discharging control model of PEVs or some energy
storage units into the DR control structure. The proposed optimization and control method
need to consider more actual operation constraints, such as spot electricity price, comfort
constraints, and consumers’ responses to uncertainty and randomness.
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