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Abstract: In the analysis in this article, we developed a scheme for the computation of a semi-
analytical solution to a fuzzy fractional-order heat equation of two dimensions having some external
diffusion source term. For this, we applied the Laplace transform along with decomposition tech-
niques and the Adomian polynomial under the Caputo–Fabrizio fractional differential operator.
Furthermore, for obtaining a semi-analytical series-type solution, the decomposition of the unknown
quantity and its addition established the said solution. The obtained series solution was calculated
and approached the approximate solution of the proposed equation. For the validation of our scheme,
three different examples have been provided, and the solutions were calculated in fuzzy form. All
the three illustrations simulated two different fractional orders between 0 and 1 for the upper and
lower portions of the fuzzy solution. The said fractional operator is nonsingular and global due to
the presence of the exponential function. It globalizes the dynamical behavior of the said equation,
which is guaranteed for all types of fuzzy solution lying between 0 and 1 at any fractional order. The
fuzziness is also included in the unknown quantity due to the fuzzy number providing the solution
in fuzzy form, having upper and lower branches.

Keywords: 2D-fractional fuzzy heat equation; semi-analytical solution; Caputo–Fabrizio fractional
operator

1. Introduction

The area of fractional calculus has attained considerable attention in the last three
decades. Famous scientists have provided their contributions on this aspect by introducing
different fractional operators in different articles. Modern calculus has provided more
realistic results than classical calculus. It has described the dynamics of different real-
world phenomena lying between two integers. Furthermore, the fractional operators
have more degrees of freedom, and they generalize the integer differential operators. To
date, various researchers have published more research articles, more books and different
monographs that touch upon the said area. Podlubny provides a physical and geometrical
explanation of the fractional-order derivatives [1]. An analysis of various dynamical
systems in the sense of fractional-order operators can be seen in [2]. The applications of
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the said calculus in physics may be studied in [3]. Some fuzzy fractional-order linear and
non-linear dynamical problems have been analyzed for semi-analytical solutions using
fractional Sumudo transform [4,5]. Many types of publications have also been based on
existence, uniqueness and numerical analysis under fractional-order concepts.

Modern calculus can be extended to various fields of physical and natural sciences.
These operators may be applicable in the field of applied and pure mathematics. Now, we
will apply these operators to those fields where fuzziness lies in the data. Uncertainty may
be found in quantum mechanics, chemistry and different distributions of chromosomes in
humans or other living things. The concepts of fuzziness were first introduced by Zadeh [6]
in 1965 for sets by defining the membership function. The idea of uncertainty was then
applied in other areas, i.e., fuzzy topology, the fixed-point theorem, fuzzy automata,
control systems, etc. Zadeh, Chang and a few other scientists have applied this idea of
fuzzy sets to define some membership functions and fuzzy control [7]. By applying the
idea of fuzziness and its operators, various scholars have published basic fuzzy differential
calculus [8]. Elementary fuzzy calculus and the study of fuzzy differential equations may
be seen in [9,10]. From 2001, differential equations have been presented in fuzzy form
by taking account of uncertainty in the initial data. Some scholars such as “Dobius” and
“Prada” have defined the fundamental concepts of integral equations in fuzzy form [11].
We deal with all those problems having uncertainty or vagueness in their information
using fuzzy differential and integral equations or systems. Therefore, plenty of research
work on such types of fuzzy fractional differential equations (FDEs) has been presented by
many researchers [12–14].

Semi-analytical investigations for the solution of fuzzy FDEs, important techniques
and schemes have been introduced in the past. Among them are the well-known integral
transforms of Fourier, Natural, Z, Laplace, Sumudu, etc. [4,15,16]. Some of the iterative and
series solution methods such as the “homotopy and improved homotopy method” [17–19],
Adomian decomposition along with Adomian polynomial and Laplace Adomian decom-
position methods (LADM) [20,21], “Taylor’s” series method, etc. have also been used for
dealing with such problems [22,23]. However, to the best of our knowledge, the aforemen-
tioned techniques have not been properly used to study fuzzy fractional partial differential
equations (FPDEs). The idea of a nonsingular fractional derivative is new and has very
recently received attention. Here, we remark that, recently, some valuable work related to
applications of the nonsingular kernel type derivatives CF and ABC have been considered;
see [24–29].

As far as novelty is concerned, we consider an initial value heat equation with external
source terms under the fuzzy Caputo fractional operator. We take the fuzziness in an
unknown quantity and initial conditions to find its approximate solution in fuzzy form
with two branches, because of the fuzzy number. Different scientists have worked on
diffusion equations, of both integer and fractional order; some have worked on the fuzzy
heat equation. We consider both fuzziness and fractional order for the analysis of the
said equation having different external source terms [12–14,30–32]. Therefore, a fuzzy
solution is required, as many quantities can be obtained in fuzzy format when there is some
ambiguity regarding the exact quantity. Keep in mind the fact that the considered method
has the ability to produce series-type solutions for such problems under consideration.
Furthermore, this method decreases the error and avoids wasting time. Additionally, this
method is free from any axillary parameters that run the whole system. The adopted
method can be used as a robust tool to analyze fuzzy problems under the mentioned
fractional operator. Therefore, here, in the current work, we compute a semi-analytical
series solution or approximate solution using analytical techniques applying Laplace
Adomian decomposition under the fuzzy Caputo–Fabrizio derivative concept for the
proposed 2D heat equation given as

CFDθ
τŨ(x1, x2, τ) = D2

x1
Ũ(x1, x2, τ) +D2

x2
Ũ(x1, x2, τ) +F (x1, x2, τ)k̃(r), 0 < θ ≤ 1,

Ũ(x1, x2, 0) = k̃(r)g(x1, x2), (1)
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where CFDθ
τ represents the Caputo–Fabrizio fractional operator while

F ∈ C(R3, R), g̃ ∈ (R3).

Generally, the transfer of heat in a thin rod from one point to the other can be formulated by
the boundary value problem of the one-dimensional heat equation. The two-dimensional
heat equation represents the transfer of heat through an infinite thin sheet. Here, Ũ
represents the temperature of the body at any point in the thin sheet. The phenomena
of heat transfer may be found in many diffusion problems. Therefore, the investigation
of partial differential equations such as the heat equation has much more application in
real life [33,34]. The analysis for semi-analytical solutions for the problems of electrical
circuits [35] has been performed using numerical approximation. The use of different
analytical techniques such as Laplace transform may be found in [36]. The technique
of double Laplace transform for waves and Laplace equations was conducted in [37].
The phenomenon of heat conduction was discussed in [38]. The semi-analytical solution,
via the Laplace Adomian decomposition method, is provided in [39,40]. The semi-analytical
solution of the 2D heat equation was found using double Laplace transform without an
external diffusion term F in [37]. We analyze the 2D heat equation by applying the external
term under the fuzzy concept. Different examples along with a numerical simulation were
used to perform the verification of the theoretical results.

2. Background Materials

In the following part, we present some theorems, lemmas and definitions of classical
calculus [1,2] and some well-known fractional operators from [11,41].

Definition 1. Take a continuous fuzzy operator Ũ(τ) on a [0, b] subset of R; we provide the
definition of fuzzy fractional-order integration in Caputo–Fabrizio type w.r.t τ as

CFIθŨ(τ) =
1− θ

M(θ)
Ũ(ø) +

θ

M(θ)

∫ τ

0
Ũ(η)dη, θ, η ∈ (0, ∞), (2)

where M(0) = M(1) = 1. Next, if Ũ(τ) ∈ LF[0, b] ∩ CF[0, b], CF[0, b] is the space of the fuzzy
operator along with continuity while LF[0, b] is the space of Lebesgue fuzzy integrable operators,
respectively, then the non-integer-order Caputo–Fabrizio fuzzy integration is given as:

[CFIθŨ(τ)]r = [IθUr(τ), IθUr(τ)], 0 ≤ r ≤ 1, (3)

or

CFIθU(τ) =
1− θ

M(θ)
U(τ) +

θ

M(θ)

∫ τ

0
U(η)dη, θ, η ∈ (0, ∞).

CFIθU(τ) =
1− θ

M(θ)
U(τ) +

θ

M(θ)

∫ τ

0
U(η)dη, θ, η ∈ (0, ∞).

Definition 2. Similarly, for an operator Ũ(τ) ∈ LF[0, b]∩CF[0, b], as Ũ(τ) = [Ur(τ), Ur(τ)],
0 ≤ r ≤ 1 and 0 < τ0 < b, the fractional-order Caputo–Fabrizio (CF) differential operator in the
fuzzy sense is given as

[CFDθŨ(τ0)]r = [DθUr(τ0),DθUr(τ0)], 0 < θ ≤ 1, (4)

here

CFDθUr(τ0) =
M(θ)

1− θ

[ ∫ τ

0
U′(η) exp(

−θ(τ − η)

1− θ
)dη

]
,

CFDθUr(τ0) =
M(θ)

1− θ

[ ∫ τ

0
U′(η) exp(

−θ(τ − η)

1− θ
)dη

]
,
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where the integration exists or converges and m = dθe+ 1. As θ lies in the interval (0, 1], m = 1.

Definition 3. For x, either real or complex, the transform of Laplace for the fuzzy function F (x)
is given as

F (x) = L[ f (x)] =
∫ ∞

0
e−xτ f (τ)dτ τ > 0. (5)

Definition 4. The Laplace transform for CF is

L[CFDθ+nŨ(t)] =
sn+1Ũ(s)− snŨ(0)− sn−1Ũ′(0) . . .− Ũn(0)

s + θ(1− s)
.

Definition 5. The “Mittag-Leffler” operator Eβ(t) is

Eβ(τ) =
∞

∑
n=0

τn

Γ(1 + nβ)
, (6)

where 0 < β.

Definition 6. A mapping k : R → [0, 1] is called a fuzzy number if the following conditions hold:

(i) k is continuous up to a peak value;
(ii) k {µ(y1) + µ(y2)} ≥ min{k(y1), k(y2)};
(iii) ∃ y0 ∈ R; k(y0) = 1, i.e., k is normal;
(iv) cl{y ∈ R, k(y) > 0} is bounded and continuous, where cl represents closure for the support

of y.

We denote the set of fuzzy numbers collectively as E .

Definition 7. The parameterization form of a “fuzzy number" is (k(r)), k(r)), for 0 ≤ r ≤ 1, and
the following conditions hold:

(i) k(r) is left-defined on [0,1], with a bounded increasing operator on (0, 1];
(ii) k(r) is right-defined on [0,1], with a bounded decreasing operator on (0, 1];
(iii) k(r) ≥ k(r).

If k(r) = k(r) = r, then r is the crisp number.

3. Main Work

In this section, we investigate our proposed model for a semi-analytical solution.
For this, we use the Laplace transform of the Caputo–Fabrizio fractional differential opera-
tor along with decomposition techniques for (1) as

L [CFDθ
τŨ(τ, x2, x2)] = L

[
D2

x1
Ũ(τ, x2, x1) +D2

x2
Ũ(τ, x2, x1) + k̃(r)F (τ, x2, x1)

]
, (7)

where θ is in (0, 1]; therefore, the Laplace transform of (7) is

sL [Ũ(ø, x2, x1)]− Ũ(0, x2, x1)

s + θ(1− s)
= L [D2

x1
Ũ(ø, x2, x1) +D2

x2
Ũ(ø, x2, x1) + k̃(r)F (ø, x2, x1)],

On using the initial condition, we obtain

sL [Ũ(ø, x2, x1)] = g(x2, x1) + (s + θ(1− s))L [D2
x1

u(τ, x2, x1) +D2
x2

u(τ, x2, x1) + k̃(r)F (τ, x2, x1)],

L [Ũ(ø, x2, x1)] =
g(x2, x1)

s
+(

s + θ(1− s)
s

)
L

[
D2

x1
Ũ(ø, x2, x1) +D2

x2
Ũ(ø, x2, x1) + k̃(r)F (τ, x2, x1)

]
. (8)
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Decompose the solution as Ũ(τ, x2, x1) = ∑∞
n=0 Ũn(τ, x2, x1); then, (8) implies

L [
∞

∑
n=0

Ũn(τ, x2, x1)] =
g(x2, x1)

s
+

(
s + θ(1− s)

s

)
L

[
D2

x1

∞

∑
n=0

Ũn(τ, x2, x1) +

∞

∑
n=0

Ũn(τ, x2, x1) + k̃(r)F (τ, x2, x1)

]
. (9)

Take parts of the solution by choice of comparison as

L [Ũ0(τ, x2, x1)] =
g(x2, x1)

s
+

(
s + θ(1− s)

s

)
L
[

k̃(r)F (τ, x2, x1)

]
,

L [Ũ1(τ, x2, x1)] =

(
s + θ(1− s)

s

)
L

[
D2

x1
Ũ0(τ, x2, x1) +D2

x2
Ũ0(τ, x2, x1)

]
,

L [Ũ2(τ, x2, x1)] =

(
s + θ(1− s)

s

)
L

[
D2

x1
Ũ1(τ, x2, x1) +D2

x2
Ũ1(τ, x2, x1)

]
,

...

L [Ũn+1(τ, x2, x1)] =

(
s + θ(1− s)

s

)
L

[
D2

x1
Ũn(τ, x2, x1) +D2

x2
Ũn(τ, x2, x1)

]
. (10)

Taking the inverse Laplace transform, we obtain

U0(τ, x2, x1) = g(x2, x1) +L −1
[(

s + θ(1− s)
s

)
L

[
k(r)F (τ, x2, x1)

]]
,

U0(τ, x2, x1) = g(x2, x1) +L −1
[(

s + θ(1− s)
s

)
L

[
k(r)F (τ, x2, x1)

]]
,

U1(τ, x2, x1) = L −1
[(

s + θ(1− s)
s

)
L

[
D2

x1
U0(τ, x2, x1) +D2

x2
U0(τ, x2, x1)

]]
,

U1(τ, x2, x1) = L −1
[(

s + θ(1− s)
s

)
L

[
D2

x1
U0(τ, x2, x1) +D2

x2
U0(τ, x2, x1)

]]
,

U2(τ, x2, x1) = L −1
[(

s + θ(1− s)
s

)
L

[
D2

x1
U1(τ, x2, x1) +D2

x2U1(τ, x2, x1)

]]
,

U2(τ, x2, x1) = L −1
[(

s + θ(1− s)
s

)
L
[
D2

x1
U1(τ, x2, x1) +D2

x2
U1(τ, x2, x1)

]]
,

...

Un+1(τ, x2, x1) = L −1
[(

s + θ(1− s)
s

)
L
[
D2

x1
Un(τ, x2, x1) +D2

x2
Un(τ, x2, x1)

]]
,

Un+1(τ, x2, x1) = L −1
[(

s + θ(1− s)
s

)
L
[
D2

x1
Un(τ, x2, x1) +D2

x2
Un(τ, x2, x1)

]]
, (11)

n ≥ 0.

Thus, the solution becomes

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) + · · · ,

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) + · · · . (12)

Equation (12) is the solution in series form, whose convergence was also derived in [42].

4. Examples

Now, in this part, we provide some illustrations of 2D fuzzy arbitrary-order heat
equations with external source terms by applying the aforementioned method for obtaining
the approximate results.
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Example 1. The first example is of a fuzzy heat equation of fractional order having the external
source term F (τ, x2, x1) = (x2 + x1 + 1) along with a fuzzy initial condition as in [12–14], as
follows:

Dθ
τŨ(τ, x2, x1) = D2

x1
Ũ(τ, x2, x1) +D2

x2
Ũ(τ, x2, x1) + k̃(r)(x2 + x1 + 1), 0 < θ ≤ 1, 0 < x2, x1 < 1,

Ũ(x2, x1, 0) = k̃(r) exp(−(x2 + x1)). (13)

Using the scheme of Equation (11), we obtain

U0(τ, x2, x1) = k(r) exp[−(x2 + x1)] + k(r)(x2 + x1 + 1)
[

1 + θτ − θ

]
,

U0(τ, x2, x1) = exp[−(x2 + x1)]k(r) + (x2 + x1 + 1)k(r)
[

1 + θτ − θ

]
,

U1(τ, x2, x1) = 2k(r) exp[−(x2 + x1)]

[
1 + θτ − θ

]
,

U1(τ, x2, x1) = 2k(r) exp[−(x2 + x1)]

[
1 + θτ − θ

]
,

U2(τ, x2, x1) = 4k(r) exp[−(x2 + x1)]

[
(1− θ)2θτ + (1− θ)2 +

θ2τ2

2

]
,

U2(τ, x2, x1) = 4k(r) exp[−(x2 + x1)]

[
(1− θ)2θτ + (1− θ)2 +

θ2τ2

2

]
,

U3(τ, x2, x1) = 8k(r) exp[−(x2 + x1)]

[
(1− θ)23θτ + (1− θ)3 +

3θ2(1− θ)τ2

2
+

θ3τ3

3!

]
,

U3(τ, x2, x1) = 8k(r) exp[−(x2 + x1)]

[
(1− θ)3 + 3θ(1− θ)2τ +

3θ2(1− θ)τ2

2
+

θ3τ3

3!

]
,

U4(τ, x2, x1) = 16k(r) exp[−(x2 + x1)]

[
(1− θ)4 + 4θ(1− θ)3τ +

4θ2(1− θ)2τ2

2
+

4θ3(1− θ)τ3

3!
+

θ4τ4

4!

]
,

U4(τ, x2, x1) = 16k(r) exp[−(x2 + x1)]

[
(1− θ)4 + 4θ(1− θ)3τ +

4θ2(1− θ)2τ2

2
+

4θ3(1− θ)τ3

3!
+

θ4τ4

4!

]
(14)

In a similar fashion, we can obtain the higher terms. The series solution is obtained using
Equation (12); therefore, we write

Ũ(τ, x2, x1) = Ũ0(τ, x2, x1) + Ũ1(τ, x2, x1) + Ũ2(τ, x2, x1) . . . ,

while, in upper and lower portion form, it is

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) . . . ,

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) . . . .

Figure 1 is the representation of a 3D plot, showing the upper and lower branches of a fuzzy solution
for a fractional-order heat equation at x1 = 0.8, x2 = 0.5, and at two different fractional orders of
θ. Figure 2 shows the dynamical behavior of the upper and lower branches of the fuzzy solution for
the fractional-order heat equation of Example 1 at x1 = 0.8, x2 = 0.5, and τ = 0.5 and at various
fractional orders of θ and r ∈ [0, 1]. The curve in both the 2D and 3D cases for the lower and
upper portions begins from zero and continues to positive and negative values. This is also because
k̃(r) = [k(r), k(r)] = [1− r, r− 1], and k(r) = 1− r, r ∈ [0, 1] provides the upward portion or
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positive fuzzy solution, while k(r) = [r− 1], r ∈ [0, 1] provides the lower portion or negative fuzzy
solution.
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Figure 1. 3-D fuzzy upper and lower branch plot of semi-analytical series solution up to first four
terms at τ = t = 0.5, x2 = y = 0.5, and at θ = 0.5, 0.8, for Example 1.
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Figure 2. 2-D fuzzy upper and lower branch plot of semi-analytical series solution up to first four
terms at x1 = x = 0.8, τ = t = 0.5, y = x2 = 0.5, and at θ = 0.5, 0.8, for Example 1.

Example 2. Take another illustration of the fuzzy fractional heat equation having the external
source term F (τ, x2, x1) = τ2 + x2 + x1 with an initial approximation as in [12–14] as follows:

CFDθ
τŨ(τ, x2, x1) = D2

x1
Ũ(τ, x2, x1) +D2

x2
Ũ(τ, x2, x1) + τ2 + x2 + x1, 0 < θ ≤ 1,

Ũ(0, x2, x1) = k̃(r) sin((x1 + x2)π), 0 < x2, x1 < 1, (15)

k̃(r) = [k(r), k(r)] = [1− r, r− 1]. Upon the application of the Laplace transform of the Caputo–
Fabrizio derivative, one may obtain

U0(τ, x2, x1) = sin((x1 + x2)π)k(r) + (x2 + x1)[1 + θτ − θ] + 2
[

τ2

2
+

θτ3

3!
− θτ2

2

]
,

U0(τ, x2, x1) = sin(π(x2 + x1))k(r) + (x2 + x1[1 + θτ − θ] + 2
[

τ2

2
+

θτ3

3!
− θτ2

2

]
,

U1(τ, x2, x1) = [−2π2 sin((x1 + x2)π)k(r)(1 + θτ − θ)],

U1(τ, x2, x1) = [−2π2 sin((x1 + x2)π)k(r)(1 + θτ − θ)],

U2(τ, x2, x1) = 4π4 sin((x1 + x2)π)k(r)
[
(1− θ)2θτ + (1− θ)2 +

θ2τ2

2

]
,

U2(τ, x2, x1) = 4π4 sin((x2 + x1)π)k(r)
[
(1− θ)2θτ + (1− θ)2 +

θ2τ2

2

]
,
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U3(τ, x2, x1) = −8π6 sin((x1 + x2)π)k(r)
[
(1− θ)23θτ + (1− θ)3 +

3θ2(1− θ)τ2

2
+

θ3τ3

3!

]
,

U3(τ, x2, x1) = −8π6 sin((x1 + x2)π)k(r)
[
(1− θ)23θτ + (1− θ)3 +

3θ2(1− θ)τ2

2
+

θ3τ3

3!

]
,

U4(τ, x2, x1) = 16π8 sin((x1 + x2)π)k(r)
[
(1− θ)4 + 4θ(1− θ)3τ +

4θ2(1− θ)2τ2

2
+

4θ3(1− θ)τ3

3!
+

θ4τ4

4!

]
,

U4(τ, x2, x1) = 16(r)π8 sin((x1 + x2)π)k(r)
[
(1− θ)4 + 4θ(1− θ)3τ +

4θ2(1− θ)2τ2

2
+

4θ3(1− θ)τ3

3!
+

θ4τ4

4!

]
, (16)

From (12), we can write Ũ(τ, x2, x1) = Ũ0(τ, x2, x1) + Ũ1(τ, x2, x1) + Ũ2(τ, x2, x1) . . . such
that

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) . . .

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) . . .

Figure 3 is the 3D plot showing the upper and lower portions of the fuzzy solution for the fractional-
order fuzzy heat equation of Example 2 at x1 = 0.8, x2 = 0.5, and at various fractional orders of θ.
Figure 4 shows the behavior of the upper and lower portions of the fuzzy solution in two-dimensional
format for the fractional-order heat equation of Example 2 at x1 = 0.8, x2 = 0.5, τ = 0.5, and at
various fractional orders of θ and r ∈ [0, 1]. Like for the first example, the curve in both the 2D and
3D cases for the lower and upper portions begins from zero and continues to positive and negative
values. This is also due to k̃(r) = [k(r), k(r)] = [1− r, r− 1], k(r) = 1− r, r ∈ [0, 1] providing
the upward portion or positive fuzzy solution, while k(r) = [r− 1], r ∈ [0, 1] provides the lower
portion or negative fuzzy solution.
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Figure 3. 3-D fuzzy upper and lower portion simulation of semi-analytical series solution up to first
four terms at τ = t = 0.5, x2 = y = 0.5, and at θ = 0.5, 0.8, for Example 2.
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Figure 4. 2-D fuzzy upper and lower portion simulation of semi-analytical series solution up to
first four terms at x1 = x = 0.8, τ = t = 0.5, x2 = y = 0.5, and for different fractional orders of
Example 2.

Example 3. Let us consider the last example of a non-integer-order heat equation having un-
certainty in the initial condition along with the source term F (τ, x2, x1) = τ4 + x2 + x1 like
in [12–14] as follows:

CFDθ
τŨ(τ, x2, x1) =

1
2
(x2 + x2

1)[D2
x1

Ũ(τ, x2, x1) +D2
x2
]Ũ(τ, x2, x1) + +τ4 + x2 + x1, 0 < θ ≤ 1,

Ũ(0, x2, x1) = = (x2 + x1)
2K̃(r), 0 < x2, x1 < 1. (17)

Using the scheme of Laplace transform and by the decomposition of Ũ(τ, x2, x1) into small
terms, we obtain a hierarchy of terms as follows:

U0(τ, x2, x1) = (x2 + x1)
2k(r) + (x2 + x1)[1 + θτ − θ] + 4!

[
τ4

4!
+

θτ5

5!
− θτ4

4!

]
,

U0(τ, x2, x1) = (x2 + x1)
2k(r) + (x2 + x1[1 + θτ − θ] + 4!

[
τ4

4!
+

θτ5

5!
− θτ4

4!

]
,

U1(τ, x2, x1) = [2(x2 + x1)
2[1 + θτ − θ]k(r),

U1(τ, x2, x1) = [2(x2 + x1)
2[1 + θτ − θ]k(r),

U2(τ, x2, x1) = 4(x2 + x1)
2
[
(1− θ)2θτ + (1− θ)2 +

θ2τ2

2

]
k(r),

U2(τ, x2, x1) = 4(x2 + x1)
2
[
(1− θ)2θτ + (1− θ)2 +

θ2τ2

2

]
k(r),

U3(τ, x2, x1) = 8(x2 + x1)
2
[
(1− θ)23θτ + (1− θ)3 +

3θ2(1− θ)τ2

2
+

θ3τ3

3!

]
k(r),

U3(τ, x2, x1) = 8(x2 + x1)
2
[
(1− θ)23θτ + (1− θ)3 +

3θ2(1− θ)τ2

2
+

θ3τ3

3!

]
k(r),

U4(τ, x2, x1) = 16(x2 + x1)
2
[
(1− θ)4 + 4θ(1− θ)3τ +

4θ2(1− θ)2τ2

2
+

4θ3(1− θ)τ3

3!
+

θ4τ4

4!

]
k(r),

U4(τ, x2, x1) = 16(x2 + x1)
2
[
(1− θ)4 + 4θ(1− θ)3τ +

4θ2(1− θ)2τ2

2
+

4θ3(1− θ)τ3

3!
+

θ4τ4

4!

]
k(r). (18)
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Now, we can write all the decomposed terms into sum form as

Ũ(τ, x2, x1) = Ũ0(τ, x2, x1) + Ũ1(τ, x2, x1) + Ũ2(τ, x2, x1) . . . ,

such that

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) . . . ,

U(τ, x2, x1) = U0(τ, x2, x1) + U1(τ, x2, x1) + U2(τ, x2, x1) . . . .

In Figure 5, we have drawn a 3D plot showing the upper and lower regions of the fuzzy solution for
the fractional-order fuzzy heat equation at x1 = 0.8, x2 = 0.5, and at different fractional orders of
θ. Figure 6 shows the fuzzy solution of the upper and lower portions for the fractional-order heat
equation at x1 = 0.8, x2 = 0.5, τ = 0.5, and at different fractional orders of θ and r ∈ [0, 1].
The curve in both the 2D and 3D cases for the lower and upper portions begin from zero and
continue to positive and negative values. This is due to the fuzzy number k̃(r) = [k(r), k(r)] =
[1− r, r− 1], k(r) = 1− r, r ∈ [0, 1], providing the above portion or positive fuzzy solution, while
k(r) = [r− 1], r ∈ [0, 1], provides the below portion or negative fuzzy solution.
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Figure 5. 3-D fuzzy upper and lower part simulation of semi-analytical series solution up to first four
terms at τ = t = 0.5, x2 = y = 0.5, and at θ = 0.5, 0.8, for Example 3.
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Figure 6. 2-D fuzzy upper and lower part simulation of semi-analytical series solution up to first four
terms at x1 = x = 0.8, τ = t = 0.5, x2 = y = 0.5, and for different non-integer orders of Example 3.

5. Conclusions and Discussion

Finally, we conclude that a successful scheme for the computation of semi-analytical or
approximate solutions has been used for two-dimensional fuzzy fractional-order diffusion
or heat partial differential equations having diffusion terms as external terms. The tech-
niques of Laplace Adomian decomposition (LADM) were applied for the analysis of a
semi-analytical solution in the form of a series solution and may be used for different
fractional-order problems. We also verified our general techniques of solution using three
specific illustrations. All of the three examples were analyzed using the said techniques
by taking account of the uncertainty in the initial values by multiplying the fuzzy number
at two different fractional orders. The obtained results for all the three examples were



Fractal Fract. 2021, 5, 139 11 of 12

simulated with two different formats of 2D and 3D graphs. The achieved results were also
obtained in the form of uncertainty, having upper branches and lower branches of fuzzy
solutions. We may also take different values of fractional orders to check and compare them
with the integer order. By increasing the order of θ, we can converge to the value of integer
order 1. For the future, the implementation of this scheme may be applied to different
partial differential equations for series-type solutions, for both integer and non-integer
orders in fuzzy form. Furthermore, the adopted techniques can be used as a robust tool to
study fractional-order non-linear and linear dynamical systems.
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